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The RL updated picture
Agent

at, dipende dalla situazione!

Environment

What action 

should I choose 

now? (policy)

rt+1

at

st+1
st

What the world is like now 

(internal representation)?

st+1 = f(st,at)

rt+1 = h(st,at,st+1)
at = g(st)

Which is the value 

of my action (value 

function)?
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Meccanismo di apprendimento nel RL

Inizializzazione: se l’agente non agisce sull’ambiente non succede nulla. Occorre specifiare 
una policy iniziale. 

Ciclo dell’agente (le tre fasi sono sequenziali):

1) Implemento una policy ((s,a)) 

2) Apprendo la sua Value function (Q(s,a)) = stima del reward totale

3) Miglioro la policy.

Itero i passi 2 e 3 fino a quando non raggiungo l’ottimo.
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Meccanismo di apprendimento nel RL

Ciclo dell’agente (le tre fasi sono sequenziali):

1) Implemento una policy ((s,a)) 

2) Stimo la Value function (Q(s,a)) per tutte le coppie stato-azione

3) Miglioro la policy, (s,a).

Framework analizzati per calcolare Q(s,a):

1. Stocastico completo. L’agente conosce la statistica della dinamica dell’ambiente e 
dei reward, scrive le equazioni lineari che legano le value function in stati diversi e 
calcola i valori di Q(.).

2. Stocastico con aggiornamento. L’agente conosce la statistica della dinamica 
dell’ambiente e dei reward. Procede da uno stato iniziale a quello finale. Da ogni 
stato esplora in parallelo tutti i possibili stati prossimi e aggiorna i valori delle 
Q(.).

3. Stocastico con interazione singola e con la scelta di una singola azione. L’agente 
NON conosce la statistica della dinamica dell’ambiente e dei reward. Procede da 
uno stato iniziale a quello finale. Da ogni stato esplora una sola azione e un SOLO 
solo stato prossimo. Aggiorna i valori di Q(.).
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Esempio: AIBO search

Azioni:

1) Rimanere fermo e aspettare che qualcuno getti nel cestino una lattina vuota.

2) Muoversi attivamente in cerca di lattine.

3) Tornare alla sua base (recharge station) e ricaricarsi.

Stato:

1) Alto livello di energia.

2) Basso livello di energia.

Azioni ammissibili (policy):

a(s = high) = {Search, Wait}

a(s = low) = {Search, Wait, Recharge}

Goal: collezionare il maggior 

numero di lattine.
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Esempio di calcolo della Value 
function

Policy deterministica  Value function

a(high) = wait   Q(high, wait) = ?  

a(low) = search  Q(low, search) = ? 

=Pr 𝑠𝑡+1 = 𝐻𝑖𝑔ℎ|𝑠𝑡 = 𝐻𝑖𝑔ℎ, 𝑎𝑡 = 𝑆𝑒𝑎𝑟𝑐ℎ =0.4

=Pr 𝑠𝑡+1 = 𝐿𝑜𝑤|𝑠𝑡 = 𝐿𝑜𝑤, 𝑎𝑡 = 𝑆𝑒𝑎𝑟𝑐ℎ =0.1, 

=0.8, Rsearch=3, Rwait=1 Rdead = -3, Rauto = 0
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Analisi a un passo al tempo t – st = high

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+1

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

Policy deterministica  

a(high) = wait   

a(low) = search  

at+1 = search

st = high 

at = search 
at = wait

s’t+1=high 
s’t+1=low 

 −

at+1=wait

at+1=recharge

at+1=wait

7

8



5

9/62A.A. 2025-2026
http:\\borghese.di.unimi.it\

Analisi a un passo al tempo t – st = high

𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡 = ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+1 =

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎
Policy deterministica  

a(high) = wait   

a(low) = search  

𝑅𝑤𝑎𝑖𝑡 + ෍

𝑘=1

∞

𝛾𝑘𝑟𝑡+𝑘+1 =

𝑅𝑤𝑎𝑖𝑡 + 𝛾 ෍

𝑘=1

∞

𝛾𝑘−1𝑟𝑡+𝑘+1 =

𝑅𝑤𝑎𝑖𝑡 + 𝛾 ෍

𝑘=𝟎

∞

𝛾𝑘𝑟𝑡+𝑘+𝟐

𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡 = ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+1 = 𝑅𝑤𝑎𝑖𝑡 + 𝛾𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡

Q(h,w) = [1 + 0.8 Q (h,w)]
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Analisi a un passo al tempo t – st = low

st = low 

at = search at = wait

s’t+1=low 
s’t+1=high 

at+1 = wait

 −

at+1=search

at=recharge

at+1=search

Policy deterministica  

a(high) = wait   

a(low) = search  

at = wait

at=recharge

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+1

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎
2 cammini possibili!!

9
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Policy deterministica – st = low

Q(low,search) = σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+1 = 𝛽 (𝑅𝑠𝑒𝑎𝑟𝑐ℎ + 𝛾𝑄𝜋 𝑙𝑜𝑤, 𝑠𝑒𝑎𝑟𝑐ℎ +

(1 - 𝛽) (𝑅𝑑𝑒𝑎𝑑 + 𝛾𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡

Q(low,search) = 0.1x[3+0.8xQ(low,search)] +

0.9x[-3+0.8 Q(high,wait)]

=0.4, =0.1, =0.8, 

Rsearch=3, Rwait=1 Rdead = -3, Rauto = 0

s = High - a = Wait;

s = Low  - a = Search;
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Analisi a un passo dal tempo t

st = low 

at = search at = wait

s’t+1=low 
s’t+1=high 

at+1 = wait

 −

at+1=search

at=recharge

at+1=search

Policy deterministica  

a(high) = wait   

a(low) = search  

at = wait

at=recharge

2 cammini possibili per at = search !!

1) 𝑅𝑠𝑒𝑎𝑟𝑐ℎ + 𝛾𝑄𝜋 𝑙𝑜𝑤, 𝑠𝑒𝑎𝑟𝑐ℎ

𝑄𝜋 𝑙𝑜𝑤, 𝑠𝑒𝑎𝑟𝑐ℎ = ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+1 =

2) 𝑅𝑑𝑒𝑎𝑑 + 𝛾𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡

𝑄𝜋 𝑙𝑜𝑤, 𝑠𝑒𝑎𝑟𝑐ℎ = 𝛽 𝑅𝑠𝑒𝑎𝑟𝑐ℎ + 𝛾𝑄𝜋 𝑙𝑜𝑤, 𝑠𝑒𝑎𝑟𝑐ℎ + 1 − 𝛽 𝑅𝑑𝑒𝑎𝑑 + 𝛾𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡

Q(l,s) = 0.1x[3+0.8xQ(l,s)]+0.9x[-3+0.8 Q(h,w)]

Contiene la probabilità di ricevere un reward Q(s’,a), condizionata a st+1 = s’!
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Calcolo ricorsivo della Value function

Relazione tra Q(s,a) e Q(st+1,at+1)?

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 = σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+1

𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) = 𝐸𝜋 𝑅𝑡|𝑠𝑡+1 = 𝑠′, 𝑎𝑡+1 = 𝑎′ = ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+𝟐

a’
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𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝛾0𝑟𝑡+1 + ෍

𝑘=0

∞

𝛾𝑘+1𝑟𝑡+𝑘+2 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

Calcolo ricorsivo della Value function

Isolo il reward ad un passo (k = 0), nella serie dei reward.

Io termine

(a un passo)

IIo termine

(passi futuri)

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 = σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+1

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝛾0𝑟𝑡+1 + σ𝑘=1
∞ 𝛾𝑘𝑟𝑡+𝑘+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 ⇒

a’a’
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Q(st,at) : primo termine

Visione Statistica: Probabilità di ottenere il reward: condizionata all’arrivare nello stato s’:

Per ogni coppia stato-azione devo valutare:

• Più stati prossimi

• Reward stocastici nella transizione ad un passo

jassR '|→

𝐸𝜋 𝑟𝑡+1|𝑠𝑡+1 = 𝑠′, 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 =  ෍

𝑠′

P𝑠→𝑠′|𝑎𝑅𝑠,𝑠′,𝑎

P𝑠→𝑠′|𝑎 ≜  Pr(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)

a’a’
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Q(st,at) : secondo termine

𝐸𝜋 ෍

𝑘=0

∞

𝛾𝑘+1𝑟𝑡+𝑘+2 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

P𝑠→𝑠′|𝑎 ≜  Pr(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)
a’

𝐸𝜋 ෍

𝑘=0

∞

𝛾𝑘+1𝑟𝑡+𝑘+2 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎  

 =  𝛾 ෍

𝑠′

P𝑠→𝑠′|𝑎 𝐸𝜋 ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+2 |𝑠𝑡+1 = 𝑠′ Sommo su tutti gli s’

or

15
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Putting all together

σ𝑠′ P𝑠→𝑠′|𝑎𝑅𝑠,𝑠′,𝑎+ 

𝛾 σ𝑠′ P𝑠→𝑠′|𝑎 𝐸𝜋 σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+2 |𝑠𝑡+1 = 𝑠′ =

σ𝑠′ P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾𝐸𝜋 σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+2 |𝑠𝑡+1 = 𝑠′

Io termine

(a un passo) IIo termine

(passi futuri)

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 = σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+1

𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) = 𝐸𝜋 𝑅𝑡|𝑠𝑡+1 = 𝑠′, 𝑎𝑡+1 = 𝑎′

Not yet there
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Formulazione ricorsiva – policy 
deterministica

σ𝑠′ P𝑠→𝑠′|𝑎𝑅𝑠,𝑠′,𝑎+ 

=  𝛾 σ𝑠′ P𝑠→𝑠′|𝑎 𝐸𝜋 σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+2 |𝑠𝑡+1 = 𝑠′ =

σ𝑠′ P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 {𝐸𝜋 σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+2 |𝑠𝑡+1 = 𝑠′, 𝑎𝑡+1 = 𝑎′ }

𝑄𝜋 𝑠𝑡, 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾𝑄𝜋(𝑠′, 𝑎′)

Io termine

(a un passo)

IIo termine

(passi futuri, per ogni azione at+1)

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 = σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+1

𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) = 𝐸𝜋 𝑅𝑡|𝑠𝑡+1 = 𝑠′, 𝑎𝑡+1 = 𝑎′

a’

17
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Osservazioni

𝑄𝜋 𝑠𝑡, 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾𝑄𝜋(𝑠′, 𝑎′)

Devo considerare i reward a un passo che portano da s a tutti gli stati prossimi s’ 

che possono venire visitati.

A partire da ogni s’, devo considerare il reward a lungo termine che si può 

accumulare nell’interazione con l’ambiente, 𝑄𝜋(𝑠′, 𝑎′).

Abbiamo considerate una policy deterministica: a = g(s).

a’
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Un ciclo di interazione

Dobbiamo completare un ciclo con 

la scelta dell’azione!

Environment

Agent

What action 

should I choose 

now? (policy)

rt+1

at

st+1
st

What the world is like now

(internal representation)?

st+1 = f(st,at)

rt+1 = h(st,at,st+1)
at = g(st)

Which is the value 

of my action (value 

function)?

19
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Sommario

Le equazioni di Bellman per policy deterministica

Le equazioni Bellman per policy stocastica

Iterative policy evaluation

Miglioramento della policy
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Valutazione policy stocastica

a’

Nel valutare Q(s,a) dobbiamo valutare tutti i cammini che partono da 

ogni s’.

(s,a) stocastica

Policy stocastica

Q(s,a)

21
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Policy stocastica

Deterministica (1 azione scelta in s’):

Q(high,wait) = 1 x {Rwait +  Q(high,wait)]}

Stocastica (più azioni scelte in s’): 

Q(high,wait) = 1 x {Rwait +  [(Pr(a’=search|high)Q(high,search)+ (Pr(a’=wait|high) Q(high,wait)]}

Q(high,wait) = 1x {1+0.8[Pr(a’=search|high) Q(high,search) + Pr(a’=wait|high) Q(high,wait)]}

a’
=Pr 𝑠𝑡+1 = 𝐻𝑖𝑔ℎ|𝑠𝑡 = 𝐻𝑖𝑔ℎ, 𝑎𝑡 = 𝑆𝑒𝑎𝑟𝑐ℎ =0.4

=Pr 𝑠𝑡+1 = 𝐿𝑜𝑤|𝑠𝑡 = 𝐿𝑜𝑤, 𝑎𝑡 = 𝑆𝑒𝑎𝑟𝑐ℎ =0.1, 

=0.8, Rsearch=3, Rwait=1 Rdead = -3, Rauto = 0
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Policy stocastica

Deterministica (1 azione scelta in s’):

Q(high,search) = Pr 𝑠𝑡+1 = 𝐻𝑖𝑔ℎ|𝑠𝑡 = 𝐻𝑖𝑔ℎ, 𝑎𝑡 = 𝑆𝑒𝑎𝑟𝑐ℎ x {Rsearch+ Q(high,search)} +

Pr 𝑠𝑡+1 = 𝐿𝑜𝑤|𝑠𝑡 = 𝐻𝑖𝑔ℎ, 𝑎𝑡 = 𝑆𝑒𝑎𝑟𝑐ℎ ) x  {Rsearch+ Q(low,search)}

Stocastica (più azioni scelte in s’):

Q(high,search) = Pr 𝑠𝑡+1 = 𝐻𝑖𝑔ℎ|𝑠𝑡 = 𝐻𝑖𝑔ℎ, 𝑎𝑡 = 𝑆𝑒𝑎𝑟𝑐ℎ x 

{Rsearch+ (Pr(a’=search|high) Q(high,search) + Pr(a’=wait|high) Q(high,wait)]} +

Pr 𝑠𝑡+1 = 𝐿𝑜𝑤|𝑠𝑡 = 𝐻𝑖𝑔ℎ, 𝑎𝑡 = 𝑆𝑒𝑎𝑟𝑐ℎ x 

{Rsearch+ Pr(a’=search|low)Q(low,search)+Pr(a’=wait|low)Q(low,wait)+Pr(a’=recharge|low)Q(low,rech)]}

  

Q(high,search) = 0.4x{3+0.8(Pr(a’=search|high)Q(high,search)+Pr(a’=wait|high) Q(high,wait)]} +

0.6x{3+0.8Pr(a’=search|low)Q(low,search)+Pr(a’=wait|low)Q(low,wait)

+Pr(a’=recharge|low)Q(low,rech)]}

a’
=Pr 𝑠𝑡+1 = 𝐻𝑖𝑔ℎ|𝑠𝑡 = 𝐻𝑖𝑔ℎ, 𝑎𝑡 = 𝑆𝑒𝑎𝑟𝑐ℎ =0.4

=Pr 𝑠𝑡+1 = 𝐿𝑜𝑤|𝑠𝑡 = 𝐿𝑜𝑤, 𝑎𝑡 = 𝑆𝑒𝑎𝑟𝑐ℎ =0.1, 

=0.8, Rsearch=3, Rwait=1 Rdead = -3, Rauto = 0

23
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Policy stocastica

a’

Q(low,wait) = 1 x {Rwait+ Pr(a’=search) Q(low,search)+ Pr(a’=wait) Q(low,wait) +

Pr(a’=recharge) Q(low,reharge)]}

Q(low,search) =  x {Rsearch+ (Pr(a’=search) Q(high,search)+ Pr(a’=wait) Q(high,wait)+

Pr(a’=recharge) Q(low,reharge)]} +

(1-) x {Rdead+ Pr(a’=search) Q(high,search)+ Pr(a’=wait) Q(high,wait)]}

Q(low,recharge) =  x {Rauto+ (Pr(a’=search) Q(high,search)+ Pr(a’=wait) Q(high,wait)]}

  

=0.4, =0.1, =0.8, 

Rsearch=3, Rwait=1 Rdead = -3, Rauto = 0

5 equazioni in 5 incognite

26/62A.A. 2025-2026
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Analisi a un passo al tempo t

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+1

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

Policy stocastica  

1) 𝑅𝑤𝑎𝑖𝑡 + 𝛾𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡

2) 𝑅𝑤𝑎𝑖𝑡 + 𝛾𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑠𝑒𝑎𝑟𝑐ℎ

2 cammini possibili quando scelgo wait in st !!

at+1 = search

st = high 

at = search 
at = wait

s’t+1=high 
s’t+1=low 

 −

at+1=wait

at+1=recharge

at+1=waitat+1=search

25
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Analisi a un passo al tempo t

st = high 

at = search 
at = wait

s’t+1=high 

s’t+1=low 

at+1 = search

 −

at+1=wait

at+1=recharge

at+1=wait

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+1

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

Policy stocastica (uniforme)  

at+1=

search

2 cammini possibili!!

𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡 = 𝑅𝑤𝑎𝑖𝑡 + 0.5 𝛾 𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡 + 0.5𝛾𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑠𝑒𝑎𝑟𝑐ℎ

1) 𝑅𝑤𝑎𝑖𝑡 + 𝛾𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡

2) 𝑅𝑤𝑎𝑖𝑡 + 𝛾𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑠𝑒𝑎𝑟𝑐ℎ

Pr=0.5

Pr=0.5

Wait e search  

equiprobabili

28/62A.A. 2025-2026
http:\\borghese.di.unimi.it\

Analisi a un passo al tempo t

st = low 

at = search at = wait

s’t+1=low 
s’t+1=high 

at+1 = wait

 −

at+1=search

at=recharge

at+1=search

Policy stocastica  

at = wait

at=recharge 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+1

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

5 cammini possibili!!

𝑄𝜋(𝑙𝑜𝑤, 𝑠𝑒𝑎𝑟𝑐ℎ) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑙𝑜𝑤, 𝑎𝑡 = 𝑠𝑒𝑎𝑟𝑐ℎ

27
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Analisi a un passo al tempo t

st = low 

at = search at = wait

s’t+1=low 
s’t+1=high 

at+1 = wait

 −

at+1=search

at=recharge

at+1=search

Policy stocastica (equiprobabile)  

at = wait

at=recharge

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

5 cammini possibili!!

Wait e search  

equiprobabili

Recharge, wait e 

search equiprobabili

30/62A.A. 2025-2026
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Analisi a un passo al tempo t

st = low 

at = search at = wait

s’t+1=low 
s’t+1=high 

at+1 = wait

 −

at+1=search

at=recharge

at+1=search

Policy stocastica (equiprobabile)  

at = wait

at=recharge

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

5 cammini possibili da at = search!!

5 equazioni in 5 incognite

29
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Formulazione ricorsiva – policy 
stocastica

σ𝑠′ P𝑠→𝑠′|𝑎𝑅𝑠,𝑠′,𝑎+ 

=  𝛾 σ𝑠′ P𝑠→𝑠′|𝑎 𝐸𝜋 σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+2 |𝑠𝑡+1 = 𝑠′ =

σ𝑠′ P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾P𝑎′|𝑠′{𝐸𝜋 σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+2 |𝑠𝑡+1 = 𝑠′, 𝑎𝑡+1 = 𝑎′ }

𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 ෍

𝑎′

𝜋 𝑠′, 𝑎′ 𝑄𝜋(𝑠′, 𝑎′)

Io termine

(a un passo)

IIo termine

(passi futuri, per ogni azione at+1)

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 = σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+1

𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) = 𝐸𝜋 𝑅𝑡|𝑠𝑡+1 = 𝑠′, 𝑎𝑡+1 = 𝑎′

a’
. .

and

32/62A.A. 2025-2026
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Sommario

Le equazioni di Bellman per policy deterministica

Le equazioni Bellman per policy stocastica

Iterative policy evaluation

Miglioramento della policy

31
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Fondamenti del metodo

• Supponiamo di essere all’istante t. In questo istante t, siamo in st e da st si può 

passare a un certo insieme di stati: {s’t+1}.

•Analizziamo un solo passo: cosa succede nella transizione da t a t+1.

• Migliorare la stima della nostra Value Function ad ogni iterazione. 

34/62A.A. 2025-2026
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Equazioni di Bellman

. .

𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠→𝑠′|𝑎 + 𝛾 ෍

𝑎′

𝜋 𝑠′, 𝑎′ 𝑄𝜋(𝑠′, 𝑎′)

Calcolo ricorsivo di Q(.)

. a’

st = high 

at = search 
at = wait

s’t+1=high 

s’t+1=low 

at+1 = search

 −

at+1=wait

at+1=recharge

at+1=wait

at+1=

search

𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡 = 𝑅𝑤𝑎𝑖𝑡 + 0.5 𝛾 𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑤𝑎𝑖𝑡 + 0.5𝛾𝑄𝜋 ℎ𝑖𝑔ℎ, 𝑠𝑒𝑎𝑟𝑐ℎ

33
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Osservazioni

Passo da t a t+1 poi

guardo backwards in 

time

s

Calcolo ricorsivo di Q(.)

𝑄𝜋 𝑠𝑡, 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 ෍

𝑎′

𝜋 𝑠′, 𝑎′ 𝑄𝜋(𝑠′, 𝑎′)

36/62A.A. 2025-2026
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t

t+1
(s,a) fissata

Back-up

Conosciamo Q(st,at) st,at anche per {s’t+1, a’t+1} quindi:

• Analizziamo la transizione da {st,at} -> {s’t+1,a’t+1}

• Calcoliamo un nuovo valore di Q per {s,a: Q(st, at) congruente con:

Q(st, at) ed rt+1

Full backup se esaminiamo tutti gli s’ e a’ (cf. DP).

Da {s’, a’}  mi guardo indietro e aggiorno Q(s,a)
 fissata

Tecnica full-backup

a’

35
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t

t+1

(s,a) fissata

Back-up

Conosciamo Q(st,at) st,at anche per {s’t+1, a’t+1} quindi:

• Analizziamo la transizione da {st,at} -> {s’t+1,a’t+1}

• Calcoliamo un nuovo valore di Q per {s,a: Q(st, at) congruente con:

Q(st, at) ed rt+1

Full backup se esaminiamo tutti gli s’ e a’ (cf. DP).

Da {s’, a’}  mi guardo indietro e aggiorno Q(s,a).

 fissata

Tecnica full-backup

a’

𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 ෍

𝑎′

𝜋 𝑠′, 𝑎′ 𝑄𝜋(𝑠′, 𝑎′)

38/62A.A. 2025-2026
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Algoritmo per “iterative policy 
evaluation”, versione batch

Partiamo da una politica (s,a) data, supponiamo deterministica. 

Definiamo una soglia di convergenza 

Inizializziamo Q(s,a) = 0 s, a, compreso gli stati finali.

Repeat

{      = 0;

for s = 1 : NS                         // s, ≠ TS

{ a = policy(s);

{    Temp_Q(s,a) = 0;

for s_next = 1 : NS                                      // for all possible next states

{ Pr_s_next = NextState(s,a);             // compute the probability that st+1 = s’

reward = ComputeReward(s,a,s_next);    // Compute average 1 step reward

a_next = policy(s_next); // Next action

Temp_Q(s,a) = Pr_s_next * (reward + Q(s_next,a_next); 

}      }   }                                                 // Until End of states - End of an episode

for s=1:NS; 

{ a = policy(s);

if ( |  Temp_Q(s,a) – Q(s,a) | >  )

  =  |  Temp_Q(s,a) – Q(s,a) | ;

}

Q(s,a) = Temp_Q(s,a);

}

}  Until ( < );

1 step Forwards

Pass for all states

1 step Backwards

Pass for all states

(full backup)

37
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Interpretazione dell’update 
(batch o trial)

Al termine dell’aggiornamento dei Q(s,a) per tutti gli stati, 

Q(s,a) = Q
new(s,a). Aggiornamento batch.

In alternativa, utilizzerò in parte già il nuovo valore di Q(s,a) all’interno 

dell’equazione di aggiornamento. Aggiornamento per trial.

Entrambe le modalità di aggiornamento convergono.

𝑄𝜋 𝑠𝑡, 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 ෍

𝑎′

𝑄𝜋(𝑠′, 𝑎′)

40/62A.A. 2025-2026
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Algoritmo per “iterative policy 
evaluation”, versione per trial

Partiamo da una politica (s,a) data, deterministica.

Definiamo una soglia relativa di convergenza 

Inizializziamo V(s) = 0 s, compreso gli stati finali.

Repeat

{  = 0;

for s = 1 : NS                          // s, ≠ TS

{      a = policy(s);

Value = Q(s,a);

for s_next = 1 : NS                                      // for all next states

{ Pr_s_next = NextState(s,a);             // compute the probability that st+1 = s’

reward = ComputeReward(s,a,s_next);    // Compute average 1 step reward

a_next = policy(s_next); // Next action

Q(s,a) = Pr_s_next * (reward + Q(s_next,a_next); 

 = max(, (| Value – Q(s,a) |));

}      }   }                                                 // Until end of States – End of an episode

} Until ( < );

1 step Forwards

Pass for all states

39
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Problematiche legate al calcolo di 
V(s): problema di policy evaluation

3 assunzioni:

1) Conoscenza della dinamica dell’ambiente: P(s->s’| a)

2) Conoscenza della policy (eventualmente stocastica), (s, a) 

3) Potenza di calcolo sufficiente

4) Proprietà Markoviane dell’ambiente (definizione di uno stato).

Le equazioni contengono dei termini statistici (valori attesi).

Soluzione di un sistema lineare in N incognite (numero di stati).

Come mai posso determinare la Value function per la policy (.), se questa si basa sul 

reward che riceverò negli istanti futuri?

C’e’ poca interazione con l’ambiente e molta simulazione (cf. metodi Montecarlo).

42/62A.A. 2025-2026
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Riassunto

Posso determinare la Value function in modo ricorsivo. Per ogni stato, sarà 

funzione dell’output dell’ambiente in quell’istante (attraverso la funzione 

stato prossimo ed il reward istantaneo) e della policy scelta in quell’istante e 

dei reward a lungo termine attesi negli stati in cui l’ambiente mi porta.

Per scegliere la policy devo esaminare il reward a lungo termine che mi si 

prospetta nello stato in cui mi trovo e scegliere l’azione che lo massimizza.

41
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Sommario

Le equazioni di Bellman per policy deterministica

Le equazioni Bellman per policy stocastica

Iterative policy evaluation

Miglioramento della policy

44/62A.A. 2025-2026
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Meccanismo di apprendimento nel RL

Inizializzazione: se l’agente non agisce sull’ambiente non succede nulla. Occorre specifiare 
una policy iniziale. 

Ciclo dell’agente (le tre fasi sono sequenziali):

1) Implemento una policy ((s,a)) 

2) Aggiorno la Value function (Q(s,a))

3) Aggiorno la policy.

43
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Miglioramento della policy

Tutti gli stati sono valutati in funzione di una policy data. 

Condizioni di funzionamento dell’agente:

•Policy deterministica: a = (s).

•Ambiente stocastico.

Cosa succede se cambiamo la policy per un certo stato sm? anew ≠ (sm).

Cosa viene influenzato?

Scelgo anew in sm, visiterò una certa sequenza di stati, per questi stati seguirò la policy 

precedente per s ≠ sm. Cosa viene influenzato?

Come faccio a valutare se miglioro la policy o no?

46/62A.A. 2025-2026
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Dimostrazione del teorema del 
miglioramento della policy

Analizziamo la seguente condizione:

‘=  s tranne che per sm per il quale si applica l’azione:

anew = ’(sm)

Risulta che il reward a lungo termine è maggiore per anew = ’(s). 

V’(s) = Q’(s,anew = ’(s)) >= Q(s, a = (s)) = V(s)   

Tesi: ’ è meglio di . Cioè: V’(s) >= V(s) s (ed in 

particolare per gli altri stati s)
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Effetto del cambiamento della policy
Cambia, a, cambiano i possibili stati successivi ad sm, {st+ k}, ed il reward a lungo termine 

(V(st+1) = Q(st+1, at+1)) per policy deterministica): 

( ) 

 )'(

)(,|),(

'
'

'

11

sV

saasssVrEasQ

RP
new

m

new

m

a

ss
s

a

ss

mnewtmtttnewm












+

===+=

−−

++



𝑄𝜋(𝑠𝑚, 𝑎𝑛𝑒𝑤) >=< 𝑄𝜋(𝑠𝑚, 𝑎 = 𝜋(𝑠𝑚))∀𝑠, 𝑎?

?

Se il reward fosse migliore con anew, sceglierò sempre anew in sm.

Il reward a lungo termine può essere maggiore (minore) solamente se aumenta (diminuisce) 

il reward totale “visto” a un passo (reward del passo + reward successivo).
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Ipotesi:  and ’ are deterministic policies Q(sm, ’(sm)) ≥ V(sm)

Tesi:   ’ è meglio di . Cioè: V’(s,a(s)) >= V(s,a(s)) s.

Q’(s,anew) >= Q(s,aold)

𝑄𝜋 𝑠, 𝑎𝑛𝑒𝑤 = 𝜋′(𝑠𝑚) = ෍

𝑘

𝑃𝑠𝑚→𝑠𝑘|𝑎𝑛𝑒𝑤
𝑅𝑠𝑚→𝑠𝑘|𝑎𝑛𝑒𝑤

+ 𝛾𝑉𝜋(𝑠𝑘)

Enunciato del teorema del 
miglioramento della policy

 )(),( || kass

k

ass sVRPasQ
kk

 += →→

st=sm st+1

aold

anew
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Dimostrazione del teorema del 
miglioramento della policy

Th: V’(s) >= V(s)

}|))(({ 22'1' sssVrErE tttt =++= +++


 

V(s) 

= 𝐸𝜋′{𝑟𝑡+1 + 𝛾𝑉𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠}

}|))({ 2

2

21' sssVrrE tttt =++= +++


 

Sostituisco ancora Q*(.)

))(',( ssQ 

}|))(',({ 111' ssssQrE tttt =+= +++  


}|......{ 3

2

21' ssrrrE tttt =+++= +++ 

sHp: Q(s,’(s)) >= V(s)        ’(s,a) è migliore per almeno uno stato
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Osservazioni

s = sm ))(,())(',( ssQssQ mm   

s  sm
}|)({),( 11' sssVrEasQ ttt =+= ++




 

}|))(,({ 111' ssssQrE tttt =+= +++  


Se st+k = sm miglioro la Q(s,a).

Se nessun st+k = sm. Non varia la Q(s,a).
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50



26

51/62A.A. 2025-2026
http:\\borghese.di.unimi.it\

t

t+1

Ogni volta che sono in uno stato, s , scelgo un’azione che migliora il reward a 

lungo termine ottenuto da quell’istante/stato in poi.

Per gli altri stati, il reward a lungo termine non viene modificato ogni volta che 

l’albero uscente da s’ passa per s.

Visione grafica del miglioramento
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Ottimizzazione policy

Per ogni stato scelgo le azioni secondo la policy: (s,a).

Posso ordinare la Value function Q(s,a) in ordine decrescente, in 

funzione delle azioni scelte in s (policy).

Si definisce una policy, 1, migliore di un’altra, 2, se e solo se:

Q1 (s,a(s)) > =Q2 (s,a(s)) s.

In particolare si definisce una politica ottima, *, se e solo se:

Q*(s,a(s)) > =V(s,a(s)) s

Q*(s,a(s)) > =Q(s,a(s)) [s,a]

.
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𝑄𝜋 𝑠𝑡, 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 ෍

𝑎′

𝜋 𝑠′, 𝑎′ 𝑄𝜋(𝑠′, 𝑎′)

Q(s,a) – Osservazioni

Per ogni stato devo valutare con informazioni 

esclusivamente racchiuse in 1 passo l’azione 

migliore a lungo termine

t+1

Max

𝑎
𝑛𝑒𝑤

∶ max
𝑎

𝑄𝜋(𝑠, 𝑎)

E’ supposto noto il funzionamento dell’ambiente (simulazione)

Policy nota 

(stocastica)

54/62A.A. 2025-2026
http:\\borghese.di.unimi.it\

Calcolo ricorsivo della Value function 
ottima::confronti

Q*(s,a) di uno  stato-azione, quando viene scelta la policy ottima, deve  essere  uguale al 

valore atteso del reward Totale per l’azione migliore per lo stato s.

Politica greedy: scelgo l’azione ottimale. 

Ha senso per il robot raccogli-lattine?

𝑄∗ 𝑠𝑡, 𝑎𝑡 = max
𝑎′

෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 𝜋(𝑠′, 𝑎′) ෍

𝑎′

𝑄𝜋(𝑠′, 𝑎′)

𝑄𝑘+1
𝜋 𝑠𝑡, 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 𝜋(𝑠′, 𝑎′) ෍

𝑎′

𝑄𝜋(𝑠′, 𝑎′)
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Policy iteration

Iterazione tra:

• Calcolo iterativo della Value function (iterative policy evaluation)

• Miglioramento della policy (policy improvement)

0  → Q0   →   1   → Q1   →   2   →   Q2  →    ……..

  →    *
     → Q

 

Converge velocemente ad una buona politica
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Algoritmo

Inizialization

Q(s,a) = 0; 

(s,a) = random (e.g. equiprobabile) o deterministica;

Repeat

Policy evaluation.

Policy improvement.

until policy_stable
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Algoritmo per “iterative policy 
evaluation”, versione per trial

Partiamo da una politica (s,a) data, deterministica.

Definiamo una soglia relativa di convergenza 

Inizializziamo V(s) = 0 s, compreso gli stati finali.

Repeat

{  = 0;

for s = 1 : NS                          // s, ≠ TS

{      a = policy(s);

Value = Q(s,a);

for s_next = 1 : NS                                      // for all next states

{ Pr_s_next = NextState(s,a);             // compute the probability that st+1 = s’

reward = ComputeReward(s,a,s_next);    // Compute average 1 step reward

a_next = policy(s_next); // Next action

Q(s,a) = Pr_s_next * (reward + Q(s_next,a_next); 

 = max(, (| Value – Q(s,a) |));

}      }   }                                                 // Until end of States – End of an episode

} Until ( < );

1 step Forwards

Pass for all states
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Policy improvement

policy_stable = true;

for s = 1:NS   // in alternativa, scelgo uno stato

a_old = (s);

a_new =                                                                  

if (a_new  a_old)

policy_stable = false;

end;

a𝑟𝑔 max
𝑎′

෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 𝜋(𝑠′, 𝑎′) ෍

𝑎′

𝑄𝜋(𝑠′, 𝑎′)

Operazione di max hard o «soft» -> policy -greedy, pursuit, ...
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Iterative policy evaluation sulla value 
function V(s)

Converge al limite a Q(s,a). Come facciamo a troncare?

𝑄𝑘+1
𝜋 𝑠𝑡, 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 𝜋(𝑠′, 𝑎′) ෍

𝑎′

𝑄𝑘
𝜋 𝑠′𝑡+1, 𝑎′𝑡+1
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Value iteration

Invece di considerare una policy stocastica, consideriamo 

l’azione migliore:

s

𝑄𝑘+1
𝜋 𝑠𝑡, 𝑎𝑡 = ෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 𝜋(𝑠′, 𝑎′) ෍

𝑎′

𝑄𝑘
𝜋 𝑠′𝑡+1, 𝑎′𝑡+1

𝑄𝑘+1 𝑠𝑡, 𝑎𝑡 = max
𝑎′

෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 𝜋(𝑠′, 𝑎′) ෍

𝑎′

𝑄𝑘 (𝑠′, 𝑎′)
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Visualizzazione grafica

t

Max

t+1

Full  back-up

𝑄𝑘+1 𝑠𝑡, 𝑎𝑡 = max
𝑎′

෍

𝑠′

P𝑠→𝑠′|𝑎 𝑅𝑠,𝑠′,𝑎 + 𝛾 𝜋(𝑠′, 𝑎′) ෍

𝑎′

𝑄𝑘 (𝑠′, 𝑎′)

a’
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Sommario

Le equazioni di Bellman per policy deterministica

Le equazioni Bellman per policy stocastica

Iterative policy evaluation

Miglioramento della policy
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