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Abstract—This paper describes a project that applies Convolutional
Neural Networks (CNNs) to the purpose of ricognizing emotions in Ryer-
son Audio-Visual Database of Emotional Speech and Song (RAVDESS)
dataset.

To address the problem, two types of data were considered: visual
and acoustic. After extracting the features from the audio and video data,
several models were made: initially a CNN for audio data only and one
for video data only, finally the two CNNs were merged into a single model
with the aim of improving the effectiveness of the classifier. Since human
emotions are expressed through both audio and video information, the
combination of this two types of data should achieve better performance.

The language Python with the support of its libraries was used for
the developement of the project.

1 INTRODUCTION

This project addresses the study of emotion recognition
using Convolutional Neural Networks (CNN). The models
built was tested on audio and video data and have the
purpose of discriminating between eight different emotions:
neutrality, calm, happiness, sadness, anger, fear, disgust,
surprise. These emotions correspond to those proposed as
primary by P. Ekman, with the addition of calm and neu-
trality.

CNNs are a class of models applicable to tasks such
as image classification, as they use filters that preserve the
spatial characteristics of pixels by extracting salient features
from the image. They apply convolution and subsampling
operations to the images and create a more useful represen-
tation of them, identifying, for example, outlines, lines and
shapes.

The study on audio data focuses on how to determine
a person’s emotional state based on vocal characteristics:
that is, not by what the person says but by how s/he says
it. About videos, faces were taken into consideration, then
facial expressions.

Importance of the problem: The presence of software able
to recognize and evaluate human emotions is increasingly
important in various fields, for example in the fields of
health, safety, education and entertainment. Emotion recog-
nition can be useful in helping computers have the ability to
interact more naturally and intelligently with people.
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Images and sounds are the main channels through which
people acquire information. Paralinguistic features and fa-
cial expressions can help understand a person’s mental state
(emotion). Information concerning this type of characteris-
tics can be extracted from audio and video data.

Approach adopted: In the project, after a preprocess-
ing phase, different methods of audio and video fea-
ture extraction were implemented. In the case of audio
data, the effect of two different types of features was
compared: Log-Mel Spectrogram and Mel-Frequency Cep-
stral Coefficients (MFCCs). A pre-trained model based on
the VGG19 architecture (https://github.com/WuJiel010/g
Facial-Expression-Recognition.Pytorch.git) was used to ex-
tract the facial features from the videos.

Later, Pytorch-based CNNs were used and have the
task of classifying and recognizing emotions. The subject’s
emotional state is initially determined using two separate
sources of information: audio and video. The results are
compared to evaluate the most efficient resource for the
recognition of emotions. Three different models were devel-
oped, all using a CNN. The first model was trained using
only the voice characteristics (features), the second model
using only the facial expressions captured in the videos and
the last one using both types of data concatenating them.

Contributions: The following study aims to:

o compare the effectiveness of different types of fea-
tures for the description of emotion;

e use and analyze the accuracy of CNNs to address the
problem of emotion recognition;

o test architectures based on different types of data to
analyze the accuracy of the classification in different
cases.

2 STATE OF THE ART

There are several works that analyze the recognition of
emotions through Neural Networks using audio and video
data, an important source used to face the problem is the
thesis of Salem Bin Saqer AlMarri [1].

To choose the audio features to extract, the paper by K.
Venkataramanan and HR Rajamohan [2], which studies the
recognition of emotions in spoken language, was consid-
ered. For videos it has been useful to analyze the work by
Z. He, T. Jin , A. Basu, J. Soraghan, G. Di Caterina and L.
Petropoulakis [3], which deals with video preprocessing in



this area. The article by C Shorten and T. M. Khoshgoftaar
cite shorten2019survey provided research on video data
augmentation.

3 THEORETICAL MODEL

Artificial neural networks are mathematical models that
are inspired by biological neural networks and are used
to solve Machine Learning problems related to different
technological fields, using a learning method that exploits
mechanisms similar to those of human intelligence.

The basic unit of computation in the neural network is
the neuron and knowledge is stored in the parameters of
the network. Each input to the network has an associated
weight, assigned on the basis of its relative importance with
respect to the other inputs. Each neuron applies a function
to the weighted sum of its inputs. There is also another
parameter b, bias, whose main function is to provide each
node with a constant value to learn. The f function is non-
linear and is called the activation function. The output of
each neuron is sent to the other nodes or to the output of
the network. Indicating with & € R™ the input vector, with
w € R" the weight vector, with y the output of the neuron
and with f the activation function, the basic structure of the
neuron can be formally represented as in Eq. 1:

y(x) = fO_wix; +b) @
im1

The multilayer perceptron (MLP) is a neural network model
that has at least one hidden layer, where the processing of
information received from the input layer takes place, which
is then sent to the output node. For the learning process
the back-propagation algorithm is used, which works in
an iterative way, modifying the weights of the connections
between nodes until the optimal result is achieved. In Fig. 1
the basic architecture of an MLP with a single hidden layer
is shown.
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Input
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Fig. 1: Basic architecture of a neural network with one input
layer, one hidden layer and one output layer.

In classification problems, the input usually consists of a
vector of features and the output is a discrete-value variable
that indicates membership in a class.

3.1 Training

In supervised learning, the dataset is labeled: the network
is supplied with a set of inputs which correspond to known
outputs (labels). The network learns the link between inputs
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and outputs so that it can infer correct associations on
unknown inputs.

The first step in learning in a neural network is the for-
ward step, from the input nodes, through the hidden nodes
to the output nodes. Weights are initially assigned ran-
domly. During the forward-propagation process the CNN
output is observed and compared to the desired (known)
output. The error, which has to be minimized by adjusting
the weights of the connections in the network, is propagated
backwards through the error back-propagation algorithm, to
the previous level. In this process, the gradient of the error
function is calculated, based on the rules of derivation of
complex functions. The gradient shows how much the value
of the weights must change, in a positive or negative direc-
tion, to minimize the error. Once the error is calculated, the
weights are adjusted appropriately. The weight adjustment
at each iteration through the gradient descent algorithm is
defined in Eq. 2, where VE(w") is the gradient of the error
E in the weight vector for the current iteration w* and the
scalar 7 > 0 is the learning rate and defines the step towards
the minimum.

wht = wh — VE(w") )

This process repeats until the error is lower than a certain
threshold. After learning the features in the previous levels
we move on to the classification. The last level of the net-
work is fully connected and can use the Softmax activation
function. The Softmax function, shown in Eq. 3, generates
a vector of size equal to the number of classes between
which the network must discriminate, which contains the
probability of each data to belong to a given class. It
squeezes an input vector x, n-dimensional, of real values
into a vector softmaz(x), n-dimensional, of values in a
range (0, 1) whose sum is 1.
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For a multiclass classification problem it is often used the
Negative Log-Likelihood, which must be minimized, as a
cost function to be optimized. When the algorithm ends the
model has been learned and can be tested on new unknown
outputs.

The whole learning process includes the following steps:

softmaz(x); =

1) inizialize weights with random values;

2) the network receives an input, performs the forward
step and calculates the probabilities of each input to
belong to each class;

3) since you work with the training set in a supervised
way, the correct output is known: the error is cal-
culated as the difference between the correct output
and the output provided by the model;

4) back-propagation of the error to calculate the gra-
dient of the error with respect to the weights in
the network and minimization of the output error
through an optimization algorithm;

5) steps 2-4 are repeated until convergence.

3.2 Regularization

One problem that can arise in a classification model is the
overfitting. This phenomenon occurs when the model fits



the observed data and is unable to generalize to new data

providing low performance on the test set. It can occur when

the number of training examples is limited. Regularization

techniques can be used to reduce this kind of problems.

These techniques operate on the cost function and generally

involve the addition of a penalty factor on the parameters.
Some possible solutions to overfitting:

1) Dropout: at each iteration allows to randomly select
some neurons and exclude them together with their
incoming and outgoing connections. Dropout pre-
vents over-adaptation of neurons. The application
of this technique during learning produces at each
iteration a different reduced network of the start-
ing model, made up of nodes that have not been
temporarily excluded. The probability of choosing
how many nodes to be removed is specified as a
hyperparameter, and is p > 0.

2)  Data augmentation: consists of increasing the size of
the dataset by generating new synthetic data.

3) Early stopping: stops the learning when the model
performance on the validation set starts to deterio-
rate or remains constant.

3.3 Convolutional Neural Networks

CNNs are particularly useful and efficient in learning the
content of an image, video or voice signal through the image
of their waveform.

Like an MLP, a CNN is composed of an input layer, one
or more hidden layers, which perform calculations using
activation functions, and an output block. The difference
is the presence of convolution levels, where the process
is optimized by using convolution filters to extract the
analyzed features. CNN learns and classifies based on these
characteristics.

The most common levels in a CNN are:

e input: to this level is passed the data vector represent-
ing the input;

e convolutional: in these levels each neuron calculates
the product between its weights and the region
to which it is connected with the other neurons.
The convolutional filter activates the features while
preserving the spatial relationships: the filter moves
along the surface of the input producing an activa-
tion map;

e activation: uses a function that introduces a non-
linearity into the network. An example is the ReLU,
represented in Eq.4, which replaces all negative val-
ues in the feature map with zeros and keeps positive
values;

f(x) = max(0, ) 4)

e pooling: the pooling level performs a down-sampling
operation along the spatial dimensions, reducing the
number of parameters that the network must learn
and therefore the computational load;

o fully-connected: level in which all neurons are con-
nected, it operates on the output volume of the
preceding layer and provides a vector useful for the
final classification.

4 SIMULATION AND EXPERIMENTS

The audio and video data are initially manipulated in order
to be given as input to CNNs. Several tests were carried
out to understand which audio features are most useful
for the purpose of emotion recognition. The aim of the
project is to analyze accuracy using three models: a CNN
for audio data, a CNN for video data and a CNN using
both data. After having trained the three models with their
respective training sets, accuracy has been evaluated using
their respective test sets.

4.1 Dataset

The dataset used is the Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS [4]): a multi-modal and
validated database. RAVDESS consists of audio and video
data; 24 professional actors (12 men and 12 women) perform
vocalizations with emotions that include: happiness, sad-
ness, anger, fear, surprise, disgust, calm and neutrality. Each
actor says two sentences for each emotion. These phrases
are in discursive form or in the form of songs and recorded
in different levels of intensity.
Regarding the audio data, we have:

o 1440 speech files;
o 1012 song files.

Regarding the video data, we have:

e 2880 speech files (in audio-video and video only
mode);

e 2024 song files (in audio-video and video only
mode).

The collection contains 7536 files overall.

For the purpose of this project, audio data and video data
without audio were used, with the aim of distinguishing
between eight different emotions.

4.2 System architecture and implementation details

The general and complete structure of the emotion recogni-
tion system is represented in Fig. 2.

Preprocessing e data augmentation: Both types of data were
preprocessed before the training phase: an exploration of
methods for extracting features was carried out. Before
extracting the features, a data augmentation procedure has
been necessary to reduce the problem of overfitting. More
samples were generated via data augmentation because the
classes from the original dataset are unbalanced, in order to
equally distribute the data. The steps taken in analyzing the
audio data are:

e load the file into an array using Librosa (with sam-
pling rate = 44100 Hz), so that each audio lasts 5
seconds;

o data augmentation procedure consisting of three op-
erations: adding noise, changing the pitch, random
shifting. In this way new files were synthetically
generated to add to the dataset;

e class balancing;

o extraction of MFCCs and log-Mel features, which can
be represented as images, as you can see in Fig. 3.
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Fig. 2: General structure of the system.
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Fig. 3: Spectrogram of the MFFCs and log-Mel features
extracted from an audio belonging to the “Angry” class.

The steps taken in the video data analysis are:

load the file and extract 32 consecutive frames from
each video;

face detection in each video using Haar’s algorithm,
which implementation details are discussed in Ap-
pendix A section, and cropping of localized region
to avoid background noise. An example of face de-
tection on 32 extracted frames is presented in Fig. 4;

data augmentation procedure consisting of three op-
erations: adding noise, changing the contrast, chang-
ing the gamma;

class balancing;

feature extraction via pretrained neural network.

Generation of sets: Both datasets were split between train-
ing, validation and test set. For the test set the actors 23 and
24 were used, for the validation set the 21 and 22 and all the
others belong to the training set. This subdivision allows to

obtain more objective results avoiding that the model learns
specific characteristics of an actor. All data were normalized
using mean and standard deviation.

CNN architecture: The CNNs for the different types of
data were chosen with simple architectures and more com-
plex architectures did not show significant improvements.
The two models, one implemented for audio features and
one implemented for video features, were used as the basis
for the final architecture that combines them.

CNN for audio only and video only: the input for
the audio network consists of a vector of dimensions
[32, 1, 128, 216] in the case of features Mel and
a vector of dimensions [32, 1, 30, 216] in the case
of MFCCs, where the dimensions represent [batch
size, channels, Mel bands/MFCCs, audio length].
CNN input for video is a vector of sizes [32, 1, 32,
512], where the sizes represent [batch size, channels,
number of frames, feature space size].

Individual networks built for audio data only and
video data only have the same structure. They con-
sist of a convolutional layer with 16 filters, a size
kernel of size 3, a stride of 1 and zero padding. The
convolutional level is followed by a ReLU activation
function and a 2D max pooling level. For both of
them the dropout was applied with a probability of
0.5 and finally there is a fully-connected level that
provides the output.

Joint model: to ensure the one-to-one mapping be-
tween the two types of data it was necessary a step
in order to obtain for each class the same number
of audio and video features: the audio files were
multiplied so that their number coincides with the
number of video files. The inputs supplied to the
network belong to the same class (if the audio be-
longs to the ”"Sad” class, the corresponding video
also belongs to the “Sad” class). The outputs of the
two CNNs represented above (excluding the fully
connected layer) have been concatenated and the
resulting vector passed into a fully connected layer.

The parameters are shared by all the models: the Adam
algorithm is used for the optimization, the learning rate is
1 x 1075 and the cost function is PyTorch’s CrossEntropy-



Fig. 4: An example of 32 frames extracted from a video belonging to the “Angry” class. For each frame the face was revealed
with the Haar Cascade algorithm, then cropped to obtain the final image.

Loss, which combines Log-Softmax with Negative Log-
Likelihood.

To further counter the problem of overfitting it was
useful to use the Early Stopping technique, as imple-
mented by Bjarten (available at the link: https://github.
com/anshulrai/early-stopping-pytorch), in which the val-
idation loss is tracked during the learning process. A check-
point is saved every time the validation loss decreases. The
network checkpoint is used to evaluate performance on the
test set. The patience argument allows to specify after how
many epochs without improvement of the validation loss
we want to stop the training process. In this case 10.

5 RESULTS

The audio-only and video-only models were initially trained
using only data from the original dataset. The results
showed a strong overfitting problem, which is the reason
why it was decided to use data augmentation and regular-
ization strategies.

The following feature vectors were provided as input at
various times to test the CNN on the single audio data:

¢ MFFCs features for the prediction of the 8 classes;
o log-Mel features for prediction of the 8 classes.

To balance the data and allow the network to learn and
correctly classify in the right way the classes in which the
number of examples provided was smaller (in particular
"Surprise”, "Neutral”, "Disgust”), a further data augmen-
tation was carried out exclusively for the above classes, in
order to obtain 1504 examples for each class. The MFFCs and
log-Mel features were then extracted again on the dataset
with balanced classes and the resulting vectors supplied as
input to CNN. The best result, evaluated on the correspond-
ing test set, is obtained using the log-Mel features on the
balanced dataset: in Fig. 5 the accuracy values of the training
set and of the validation set for different epochs are shown.

The Fig. 7 shows the confusion matrices, normalized
between 0 and 1, obtained by supplying to the model the
various inputs belonging to the test set. These matrices al-
low you to understand in detail how accuracy is distributed
between classes. After balancing the data it can be seen
an improvement in accuracy, particularly in the "Surprise”,
"Disgust” and “Neutral” classes.

The video model was trained with 32 consecutive frames
extracted from each example. Also in this case, the tests
carried out took into consideration the original dataset and
the dataset with the balanced classes through data augmen-
tation (the number of examples present in the “Surprise”,
“Neutral”, “Disgust” classes was lower). The graph in Fig. 8
shows the accuracy of the training set and the validation set
of the best result obtained, evaluated for different epochs.

The normalized confusion matrices, which show the
results achieved using balanced and unbalanced data from
the test set, are represented in Fig. 9.The accuracy evaluated
on the test set shows an increase after the classes have been
balanced, especially in the three classes indicated above.

The Tab. 1 shows the results of the experiments carried
out using only audio data and only video data.

unbalanced | balanced
audio MFCCs 43 47
audio log-Mel 45 49
video 32 frames 51 53

TABLE 1: Percentage of accuracy using different feature vectors
as input for audio-only and video-only CNNSs. In red the best
result for audio and in green the best result for video.

Increasing the depth of both networks by gradually adding
convolutional layers did not show significant improvements
in model performance.
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Fig. 6: Confusion matrices obtained using the MFCCs feature test set with the audio CNN model.
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Fig. 9: Confusion matrices obtained using the test set with video model with 32 consecutive frames.

The selected models with the features that achieved the best
performance were used to build the integrated CNN with
audio-video input. Fig. 10 shows the progress of the learning
process of this architecture. The model with concatenation
of audio and video features reaches an accuracy of 67%
measured on the test data, the resulting confusion matrix
is shown in Fig. 11.

As assumed, it can be seen that providing audio-video
information by combining the data allows the network to
learn better and easily offer predictions on new data, com-
pared to those offered using the two modalities individually.

In all the models we can see a strong discrepancy be-
tween accuracy evaluated on the validation set and accuracy
evaluated on the training set. This difference indicates the
presence of overfitting, revealing the need for a further in-
crease in the size of the dataset and/or more regularization.

6 COMMENTS

From the results obtained we can conclude that, since audio
and video contain different information, concatenating the
feature vectors of the two types of data helps in the goal of
classifying emotions, facilitating the learning process for the
network.

Despite an extensive regularization process all the pre-
sented models show a strong tendency to overfitting. One
question that arises is: are the learned features generic
enough to extend the model to a different dataset? The
dataset used was created using actors who speak exclusively
in English (North American). The model was then trained to
identify specific features of a given language in an unnatural
context. Combining RAVDESS with other datasets with sim-
ilar characteristics could be useful to help in generalization
and further decrease overfitting.
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APPENDIX A
NOTE ON HAAR-CASCADE

This section shows the piece of code related to the Haar-

Cascade classification algorithm offered by OpenCV.

#for each frame img upload the file
#containing the classifier data
face_cascade = cv2.CascadeClassifier(
"haarcascade_frontalface_default.xml’)
#convert the image to grayscale
gray = cv2.cvtColor (img,
#apply the classifier to the image where:
# 1.1 is the scale factor;

cv2.COLOR_BGR2GRAY)

cv2.rectangle (img, (x, vy), (x+w, y+h),
(255, 255, 255), 1)
#crop the face contained in the image
img = img[y:y+h, x:x+w]
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face = face_cascade.detectMultiScale (
gray, 1.1,
# draw the rectangle with coordinates
#x, v,
for (x,

5)

W,

y, w, h) in face:

(4]

h that contains the identified faces

S. B. S. AlMarri, “Real-time facial emotion recognition using fast
r-cnn,” 2019.

K. Venkataramanan and H. R. Rajamohan, “Emotion recognition
from speech,” 2019.

Z. He, T. Jin, A. Basu, ]. Soraghan, G. Di Caterina, and
L. Petropoulakis, “Human emotion recognition in video using sub-
traction pre-processing,” in Proceedings of the 2019 11th International
Conference on Machine Learning and Computing, 2019, pp. 374-379.

S. R. Livingstone and F. A. Russo, “The Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS),” Apr. 2018,
Funding Information Natural Sciences and Engineering Research
Council of Canada: 2012-341583 Hear the world research chair in
music and emotional speech from Phonak. [Online]. Available:
https://doi.org/10.5281/zenodo.1188976



