YRIGHT © 1984 BY SCIENTIFIC AMERICAN, INC. ALL RIGHTS RESERVED

an Article from

MAY,

1984 VOL.

' SCIENTIFIC
AMERICAN

250, NO. 5

4

Turing Machines

At 1ts logical base every digital computer embodies one of these

pencil-and-paper devices invented by the British mathematician

A. M. Turing. The machines mark off the limits of computability

mathematician of his time, chal-

lenged the world of mathematics
with a list of unsolved problems, pre-
sented in Paris before the International
Congress of Mathematicians. The 23rd
problem on the list was to discover a
method for establishing the truth or fal-
sity of any statement in a language of
formal logic called the predicate calcu-
lus. Thirty-six years were to pass before
the problem was settled, and its resolu-
tion marked an extraordinary and un-
expected turn in mathematics. At the
University of Cambridge a young fel-
low of mathematics in King’s College
named Alan Mathison Turing had be-
come familiar with Hilbert’s 23rd prob-
lem through a series of lectures given
by M. H. A. Newman. Turing pondered
the problem during long afternoon runs
in the English countryside, and it was
after one of these runs that the answer
came to him. Hilbert’s problem was im-
possible to solve.

The publication in which Turing an-
nounced his result has had a significance
far beyond the immediate problem it ad-
dressed. In attacking Hilbert’s problem,
Turing was forced to ask how the con-
cept of method might be given a precise
definition. Beginning with the intuitive
idea that a method is an algorithm—a
procedure that can be mechanically car-
ried out without creative intervention—
he showed how the idea can be refined
into a detailed model of the process of
computation in which any algorithm is
broken down into a sequence of sim-
ple, atomic steps. The resulting model
of computation is the logical construct
called a Turing machine.

The simplest way to describe the Tu-
ring machine is in terms of mechanical
parts such as wheels, punched tape and a
scanner that can move back and forth
over the tape. The machinery is not es-
sential—at the most fundamental level
Turing’s device is the embodiment of
a method of mathematical reasoning—
but it would be misleading to dispense
entirely with the mechanical metaphor.
That metaphor was suggestive to Turing

In 1900 David Hilbert, the preeminent

by John E. Hopcroft

himself, who was a pioneer in the devel-
opment of the digital computer. More-
over, the claims of the computer scien-
tist on the Turing machine as a concep-
tual tool are now at least as strong as the
claims of the logician. Its significance
for the theory of computing is funda-
mental: given a large but finite amount
of time, the Turing machine is capable
of any computation that can be done by
any modern digital computer, no matter
how powerful.

The universal capability of the Turing
machine does not imply that it would be
a practical computer. Any real comput-
er can work many times faster than the
Turing machine, because in the design
of the real computer clarity of operation
is willingly sacrificed for speed and effi-
ciency. Nevertheless, for the theoretical
study of the ultimate problem-solving
capacity of the real computer the Turing
machine has become indispensable. For
example, it has enabled mathematicians
and computer scientists to prove there
are many problems in addition to Hil-
bert’s problem that cannot be solved,
no matter how fast or how powerful a
computer is applied to their solution.

Turing Machine Operation

What is a Turing machine and how
does it work? Andrew Hodges, in his re-
cent biography of Turing, compares it to
an ordinary typewriter. Like the type-
writer, the Turing machine incorporates
a movable printing head that prints dis-
crete symbols, drawn from a finite al-
phabet, one at a time on a printing sur-
face. To simplify the movements of the
printing head, the printing surface is as-
sumed to be a tape marked off into dis-
crete frames or segments. The printing
head of the Turing machine therefore
needs to move in only one dimension, to
the left or to the right, and the actions
of the machine need not take account
of such irrelevant complexities as the
length of the printed line or the width of
the space between two lines. Only one
printed symbol is allowed in each frame
of the tape, but there is no limit imposed

on the length of the tape or, consequent-
ly, on the length of the string of symbols
that can be printed on it.

The movable printing head of the Tu-
ring machine can carry out two other
functions as well as printing. Like many
typewriters manufactured in the past
decade, it can remove or erase one sym-
bol at a time from the printing surface.
Unlike the typewriter, the printing head
can also “read,” or register the symbolic
content of each tape frame one frame at
a time. In this way the symbols on the
tape can serve as input to the machine
and play a role in determining its subse-
quent action.

A typewriter can assume one of sever-
al states, or modes of operation, in the
course of its activity. In its “home” state
it prints lowercase letters and numer-
als, whereas in its “shift” state it prints
uppercase letters and special symbols.
Similarly, a Turing machine can assume
any one of a finite number of states.
Each state presumably constitutes a dif-
ferent setup or configuration of the ma-
chine, but because the Turing machine
is arelatively abstract device, usually no
attempt is made to give a more concrete,
mechanical description of the states. It
will suffice to describe each state of the
machine in terms of the effects that state
has on the activity of the machine.

The activity of a Turing machine is
made up entirely of discrete, instanta-
neous steps, and each step is determined
by two initial conditions: the current
state of the machine and the symbol that
occupies the tape frame currently being
scanned. Given some pair of initial con-
ditions, the machine receives a three-
part instruction for its next operating
step. The first part of the instruction des-
ignates the symbol the machine is to
leave in the tape frame being scanned.
For example, if the instruction specifies
that the symbol 1 is to be left in the
frame, the machine prints the symbol if

the frame is blank, leaves the symbol |
alone if a 1 already occupies the frame |
or erases the symbol if it is not a 1 and _

replaces it with a 1.

The second part of the instruction |

o o .

y
'

specifies the next state of the machine.
As with the specification of the symbol
in the first part of the instruction, the
designation of a state may require the
machine to change its state or to remain
in its current one. The third part of the
instruction specifies whether the print-
ing head is to scan one frame to the left
or to the right along the tape.

The entire instruction can be abbrevi-
ated by listing the three values of the
variables—the tape symbol, the machine
state and the motion of the printing
head—in a fixed order. For example, if a
given pair of initial conditions are to
make the machine leave the symbol 1 on
the scanned tape frame, cause the ma-
chine to assume state S, and move the

printing head one frame to the left, the
instruction is abbreviated (1,Sy,L).

The best way to understand how a Tu-
ring machine works is to try to build
one. In this context building a Turing
machine means to construct a table of
instructions that specify the action of
the Turing machine for every possible
pair made up of one state and one tape

1 2
STATE S, STATE S,
1/0(0(0 0(0/0 1/1/1/0/0(0
SYMBOL READ ON TAPE|
STATE A p
Slg 0,S,R O,SZ,R
S,)
1,5R
Si(:::}— HALT HALT Ss_‘j} HALT HALT
@) @ Q » Q
3 4

STATE S,

SYMBOL READ ON TAPE

STATE
0 1
S,
-C]._ 0,5.,R 0,S,R
S,
1,5,R

S;
—L_:]_ HALT HALT

SYMBOL READ ON TAPE

STATE
, 0 1
S,

G 0,S,R |. 0,S,R

1,53R 1,S,,R

<
Si[:} HALT

ADDITION OF 2 AND 3 is accomplished by a Turing machine in
four steps. Each number to be added is represented on a tape in unary
notation: as a string of 1’s bounded by 0’s at both ends. The machine

_ can register the content of one tape frame at a time (colored frames)

by shuttling to the left or to the right across the tape in a series of dis-
crete moves. The goal of the machine is to generate a string of five
consecutive 1’s and halt. The table of instructions, shown in the low-
er part of each machine in the diagram, is a fixed set of moves for all
possible initial conditions and gives a procedure for adding any two
numbers. Following the instructions, the machine removes the 0 sep-
arating two strings of 1°s and shifts the left string one frame to the

right to join the right string. The number of initial conditions available
in the table of instructions must be large enough to meet all the con-
tingencies that might arise on the tape; that number can be increased

- by increasing the number of internal states, or configurations, that are

built into the Turing machine. For every possible combination of tape
symbol and machine state the table of instructions must either halt the
machine or specify three variables. First, it must give the symbol that
is to be left in the frame of the tape currently being registered; sec-
ond, it must specify the state the machirie is to assume before it regis-
ters another tape frame, and third, it must indicate whether the ma-
chine is_to move across the tape one frame to the left or to the right.

symbol. In practice the construction of
the table also means granting enough
possible states to the machine for it to do
the task at hand.

The Adding Machine

Consider how one might go about de-
signing a Turing machine that adds two
numbers and halts. It is customary, al-
though by no means essential, to allow
only two symbols to be printed on the
tape, say 0 and 1. Any given number N
can then be represented on the tape by a
string of N 1’s. If two numbers M and N

are to be printed on the tape, they can be
represented by a string of M 1’s, fol-
lowed on the right by a 0, followed in
turn on the right by a string of N 1.
Assume the Turing machine is in its ini-
tial state S; and its printing head is scan-
ning the leftmost 1 in the string of M 1’s.
To construct a Turing machine that
adds, what one wants is to generate a
table’of instructions that will cause the
Turing machine eventually to print a
string of M+ N 1’s and then halt.

One simple way to accomplish the
task is to shift the leftmost string of M
I’'s one frame to the right. If the shift is

STRINGS OF LENGTH 1: ‘
B SEES SRS
1 2 3 ...26 27 28 ... 36 37 38 39 40 41 42 50
STRINGS OF LENGTH 2:
AIA AIB AIs BIA Bls SIS
1+50 52 ... 100 101 ... 150 ... 50%+50
STRINGS OF LENGTH N: _
AA...A AA.. B LOAD#A/X=A/IF#X<0#DO#23/GO#TO#100 ... <s..I.s
1+R 2+R M+R 50%+R
(R=50+502+ ... +50"%)

CHARACTER STRINGS of any finite length can be paired one for one with the positive in-
tegers, provided each character in the string is selected from some finite set. According to the
definition formulated by the German mathematician Georg Cantor, such a pairing implies the
two sets are equivalent in size, even though both are infinite sets. Any infinite set whose ele-
ments can be paired one for one with the positive integers is called a countable set. Because
every computer program and every possible table of instructions for a Turing machine can be
encoded as a finite string of symbols, the pairing shows that the number of possible computer
programs and the number of possible Turing machines are both countably infinite numbers.

h f: 1 2 3 4 5 &6
1— > 1
t, [1] .8 2 1 7 2
2 2 2 2
/ f, 1 9 1 2 1
3 3 3\1 3 f, 9 2 6 1 6
. 1 8 1 [6] 2 4
f,
— 51 ., 1 1 2 a4 [1] 1
» 5 . 1 7 1 8 9 [6]
3 3

SET OF MATHEMATICAL FUNCTIONS of the positive whole numbers that take integer
values is a noncountable set; that is, there are too many such functions for them to be paired
one for one with the infinite set of whole numbers. Suppose, on the contrary, all the functions
could be named according to their subscripts and then listed in a fixed order. The value of the
function corresponding to each integer could then be given as an infinite row of digits. Since a
function is determined by its infinite row of digits, consider a function constructed by chang-
ing the first digit in the first row, the second digit in the second row and so on. The row of dig-
its that define the constructed function (color) must differ from any row of digits in the orig-
inal list by at least one digit. Hence the supposition that all the functions could be listed leads
to the contradiction that a new function not in the original list can always be constructed.

done properly, the 0 no longer separates
the two strings, and the single string that
results has length M + N. It is not possi-
ble for the Turing machine to shift the
string of 1’s all at once; for example,
the printing head can advance only one
frame at a time. One way to get the re-
sult is to create a series of instructions
for a Turing machine with three states.
In the first state the printing head scans
the tape from left to right, one frame at
a time, until it reaches the leftmost 1. It
changes the 1 to a 0, enters the second
state and continues moving to the right.
In the second state, when the head finds
a 1 in the current frame, it takes no ac-
tion—it does not change either the tape
symbol or the machine state—except to
move one more frame to the right. In
this way the head scans past the M — 1
I’s remaining in the first string. When a
0 is finally found, the instructions cause
the head to change the 0 to a 1 and halt.

The reader is now invited to construct
a Turing machine that will find the prod-
uct of any two given numbers. The con-
ventions for the input are the same as
they were for the machine that adds: the
two integers to be multiplied are repre-
sented by two consecutive strings of 1’s,
separated by a 0. The output, a string of
I’s whose length must be equal to the
product of the first two strings, can be
set off as a third string to the right of the
first two. One working design is given in
the illustration on page 91. It is fair to
say at the outset that the construction is
tricky and requires some careful book-
keeping. It also seems fair to give a hint,
which the puzzle fancier can avoid by
not reading the next paragraph.

Building Complex Programs

Multiplication is much easier to do if
one first develops a routine for copying
a string of 1’s immediately to the right of
some given point. It is always possible
to copy N 1’s with an N-state machine;
the states can effectively count the 1’s in
the string. Since the number of states
must not grow indefinitely large, howev-
er, it is desirable to find a way to copy
the string without counting its elements. {
One way is to send a marker across the |
string from left to right; the markerisa 0
that successively takes the place of each
1 in the string. For each advance of the
marker from one frame to the next the
printing head is instructed to scan past
the right end of the string, skip over a 0
that indicates spacing and then change
the next O it finds to a 1. If the print-
ing head shuttles back and forth once
for each advance of the marker, a new
string of N 1’s is written immediately
to the right of the first string [see illustra-
tion on opposite pagel].

With a little practice one quickly
learns how to build Turing machines
that can run simple computational rou-
tines and how to combine those ma-

L R U ¢ ¢ BN

S— 15
L BREAK
0/o[1]1]1]0]o]o]0]0] 0]o
REGISTERN REGISTERP N
8 16
sg
l0jo]1]1]1]o]o]o]o]0] 0o
L
N P
2 s1 . 17
lojo]1]1]1]o]o]o]o]0] 0o
N P
2 18
oo 0lojo]o] (o]0
P
3 ‘ 19
0[o o/o[o]o] o]0
P -
4 12- 20
[0/ [0[0 0]
5 13 21
0]o 0]o 0joj1]1]0
N
6 14 22
0]o o]0 l0]o]1]1]0 1/1]1]0]
N P
TAPE SAMPLE TAPE SAMPLE
STATE | SYMBOL 0 COMMENT MOVES SYMBOL 1 COMMENT MOVES
Begin with right shift to left end of f -
S; 0,S,,R register N. A, B. 0,S,, R | Mark left end of register N with-0. 1
S, | 0.5,R | Rightshift across break. 4,12, 20 1,8, R | (Ight shift across register N from marker |, 5
S, 1,8, L Copy 1 at right end of register P. 5,14, 23 1,85 R . Right shift across 1's in register P. 13,21, 22
S, 0,S;, L Left shift across break. 6, 16, 26 1,Sa L Left shift across register P. 15, 24, 25
Left shift from break one unit into register
0 marker detected to the immediate left of N. State cannot remain S;; if it did, the
Ss 1,8 L break, indicating that a complete copy of 27 1, S L eventual encounter with the 0 marker would 717
register N has been added to register P. cause the Turing machine to halt
prematurely.
Se 1,S,,R Begin move of 0 marker one unit to right. 9, 18 1, Se, L goa?;i;ye left shift across register N to 0 8
Condition is not encountered, hence any ;
S, dummy instruction or none at all may-be 0,5, R Sgor‘;‘;‘ﬂgéee;%\;i'gf. 0 marker one unit to 10. 19
inserted.
Se 0, ., ng);r:gtlﬁgggoiémpleted; stop or wait for 20 1, S, L Left shift to left end of register N. 28, 29

COPYING TURING MACHINE is a component of more elaborate
devices. Given any string of 1°’s marked on a tape, the machine writes

a second string with the same number of 1’s to the right of the 0 that
marks the end-of the first string. Here the machine copies three 1’.

- chines in order to carry out more com-
. plex calculations. For example, a poly-
~ nomial expression can be evaluated
by combining the routines for adding,
- copying and multiplying. Even more
- versatile are short, elementary rou-
tines for symbol. manipulation, such as
“Move the printing head to the right
until it encounters a 0” and “Move the
marker in the leftmost string of 1’s one
frame to the right.” Variations of these
short routines are exploited both in the

Turing machine that copies a string of
I’s and in the machine that multiplies.

The Universal Turing Machine

If one is inclined to try building, say,
the Turing machine that multiplies, one
soon begins to appreciate the difficul-
ties that must be faced in the design of
a useful computer program. Most small
Turing machines, namely the ones with
only a few possible states, do not carry

out any useful or even sensible task.
Many of them get caught.in infinite
loops and shuttle back and forth on a
tape indefinitely without halting. From
among the machines that do perform
reasonable tasks, one must choose a
combination of machines that work to-
gether efficiently. The initial impression
can be that the simplest tasks are fiend-
ishly difficult and that realistic computa-
tion is hopeless. Such difficulties can be
frustrating, but they are merely techni-

134 139
BREAK , '
g1/1]0[1]1]1]0/0]0]0]0[0]0[0]| |0 0}1'1!1)1 o[1]1]1]o]o]o]o]| [0]1]0 0.1\1 0[1]/1/1/o/o]o]0]
REGIISTERM REGISTERN REGISTERP M L N P B M I N P
102 135 :
185
1]1]1]oJo]o]o]o[o[o]o]| [0 olo 1[1]1]o]1]1]1]0]0]0]0]| |O 1|o|1|1|1 o/1/1]1]1]1]1]0]
N P M J N P M o N P
136 186 ’
[0of¥o[1]1]1]0[0[0[0[0]0]0]0] o[1]1]1]o[1]1]1]o[o]0]0]| |0 Is 11]1]0]1]1]1]1]1]1]0|
M N P M N P M N P
104 137 187
0 0|1!1]1|1oof.o[ololo!olol lo[1{# o[1]1]1]0[1]1]1]0]0]0]0O] 1/o/1]1]1]0]1]1]1]1]1]1]0]
M L N P M 1 N P ‘ M N P
105 138 188
0 0{10'1}100)0]0}0{0\0!0) ‘o/1]oj@{1]1]1]o]1]1]1]o]o[o]o]| {@1]1]0[1]1]1]0]1][1]1][1]1]1]0]
. M W P M N P M N P
TAPE SAMPLE TAPE SAMPLE
STATE | SYMBOL 0 COMMENT MOVES SYMBOL 1 COMMENT MOVES
Sw | 0,SwR - i%gi;‘e‘:";;‘.”gh‘ shift to left end of 101 0,S,,R | Mark left end of register M with 0. 102
Se | os.R T)%'L’dsfégfifé?ﬁ g:;ai:l(Eﬁévﬁi&fﬁg'fs‘?e 104,138 | 1,5, R | Hightshift across register M from marker 103
illustration on page 89). to break.
Ss 0,Sm L ';ﬁg f:gfsfgr",’;s Dreak Sg;";‘igﬂt;gg_‘s'ef N1 134,185 | 1,Ss,L | Leftshifttoleftend of registe‘r N. Nt
Stz 1S, L isr:gir(;%ﬁi';gr;h?ég; %0:: ;x);?sebli?bers 186 1S L tualeencounter with theu(,) marke} would 135
stored in register P, f:rléls; the Turing machine to halt prema-
Sia 1,8,0 R Eri?'tg I:?gt\f of 0 marker in register M one 136 1,8, R ggclt(ig:e left shift across register M to 0 rs\l'?éwn
s Gyt o rone a i e o2 0,8, R | Complete moveof O marker i ogiser | 7
Sis 0, __ CVA:ilttig:c:;i‘cn)lr:r:'gt\;lﬂgteio?mpleted; stop or 188 1, Sy L Left shift to left end of register M. 187

MULTIPLICATION can be done with 2 Turing machine by embed-
ding in it another Turing machine that can copy a string of 1’s. In the
example the machine requires 88 cycles to find the product of 2 and
3; the breaks in the numbering are machine cycles that jump to states

defined for the machine that copies a string of 1°s (see illustration
on page 89). In the last cycle the product of 2 and 3 is displayed
as a string of six 1’s in the section of the tape called the P register,
immediately after the 0 that separates it from the two multipliers.

ONE SYMBOL
1 2 3 9 =

TWO SYMBOLS *
11 99

THREE SYMBOLS
TEN 9+9 3%4 (=3x[3x(3x3)]=34=81)

.

FOUR SYMBOLS 3
;103,638,000,000,000)

FIVE SYMBOLS

3

Y }333 LEVELS)
- }33 LEVELS

58 SYMBOLS

9! (=1x2x3x4x5x6x7x8x9=362,880)

g9° (=9987,420,489.X 4 0369,700,000)

3 27
NINE 10% 3114 (=31[31(313)]=3% =3° =37:625,597:484,987

3 .
EIGHT 31114 (=3M[311(3113)]=311[3113%]=3113°

1 #MORE#THAN#THE#LAHGEST#NUMBER#EXPRYESSIBLE#WITH#SB#SYMBOLS

9° (=387,420,489)

3 3
3% LEVELS

RICHARD PARADOX, named after the French mathematician Jules Richard, arises if one
supposes the positive integers can be ordered, or listed, according to the number of symbols
needed to specify them. Isolated integers of remarkable size can be designated with the help of
special symbols such as the arrow notation introduced by Donald E. Knuth of Stanford Univer-
sity. Nevertheless, according to its own description, the number allegedly specified above with
58 symbols is larger than any number that can be specified with 58 symbols, which is a para-
dox. A similar paradox arises if one tries to find a given Turing machine in a list of Turing ma-
chines arranged according to the length of the string of symbols needed to encode each machine.

cal; with a few well-chosen routines the
power of the Turing machine for solving
problems increases explosively, and one
is struck not by the weakness of the ma-
chine but by its potential. As Turing was
able to show, it is possible to combine
simple Turing machines into a machine
that can carry out any task that can be
explicitly described.

The electronic computer, which in-

part owes its existence to Turing’s con-
ceptual machines, is now probably the
most convincing demonstration of those
machines’ computational power. In the
course of his work Turing pointed out
that any Turing machine M can be en-
coded on a tape as a sequence of 0’s
and 1’s. The fundamental reason the en-
coding can be done is that every Turing
machine is uniquely defined by its table

NUMBER OF STATES M%’g"’,‘,%’}"N.';‘ES"?ER LOWER LIMIT FOR VALUE OF o

3 a(3) 6

4 v o(4) 12

5 o (5) 17

6 o (6) 35

7 o (7) 22,961

8 o (8) 3922 7.9 x 10%

9 o (9) 392 4 1
10 a(10) . ‘ “} }aa

aa"‘ } a?

“BUSY BEAVER” PROBLEM is to find the maximum number of 1’s that can be printed by
an N-state Turing machine that begins its operation on a tape initially filled with 0’s and even-
tually comes to a halt. The number, which depends on N, is the value of a function designated
o(N). In 1962 Tibor Rado of Ohio State University proved the function grows too fast to be
computable. Lower bounds on the function estimated for small values of N are shown. The low-
er bound for 0(10) can be expressed by a number a whose value is approximately v'8; o-(10) is
an exponentiated stack of a’s, where the number of a’s in the stack is expressed by another
stack of a’s. The process of defining the height of one stack by another is carried out 10 times.

of instructions; that table must be fi-
nite in length because both the machine
states and the alphabet of tape symbols
are finite in number.

Turing showed that the operation of
Turing machine M on any sequence of
tape symbols X can be simulated by an-
other Turing machine called the univer-
sal machine. The symbols on the tape
registered by the universal Turing ma-
chine are grouped into two major sec-
tions: at the left is the encoded de-
scription of Turing machine M and at
the right is the sequence of symbols X
that would be encountered by M as it
scanned its own tape. The universal ma-
chine is then constructed so that its
printing head shuttles back and forth be-
tween the left and right sections of the
tape. Through an elaborate system of
markers the universal machine keeps
track of the encoded state of M that is
being consulted. Turing proved that the
effect of the universal machine on the
sequence of symbols X is exactly what
the effect of M would be on the same
sequence of tape symbols.

The successful simulation of Turing
machine M by the universal Turing ma-
chine depends only on the fact that M
is a machine that can be described ex-
haustively by a finite number of sym-
bols. In principle, however, every digital
computer can be described in the same
way. The computer has a large but fi-
nite number of internal states, and its
response to input data is entirely de-
termined by the finite set of statements
that make up its programming. Hence a
complete description of any digital com- |
puter can be encoded on a tape as a se-
quence of 0’s and 1’s, and any input data §
can be encoded on the tape to the right {8
of the description of the computer. By f
alternately consulting the description of
the computer and the string of input f
data on the tape, the universal Turing §
machine can simulate the action of the
computer on the input data step by step. |

Given enough memory to serve asa f
tape for symbol manipulation, any real
computer can play the role of the uni-
versal Turing machine. For example,
if a"home microcomputer were pro-
grammed to function as a universal Tu-
ring machine, and if a description of a
large, “mainframe” computer were en-
coded on its input data, the microcom-
puter would simulate the action of the
large computer on any string of data
symbols. In this sense every digital com-
puter can compute exactly the same
class of mathematical functions, namely
all the functions that are computable by
some Turing machine. The existence of
only one such class of functions strong
ly supports Turing’s formal definition
of computability: A mathematical fun
tion is computable if it can be comput
by some Turing machine. Turing argue
persuasively that his definition is equis
alent to any reasonable interpretationo

0

TOTAL NUMBER

OF STATES PRINT M 15
ON BLANK TAPE
M
SET UP

COPY ROUTINE

M+1 \L

SYMBOL READ ON TAPE
STATE
(] 1
S, 1,5,.R
S, 1,S3,R
SM 1'SM;‘IVL
0 1
Sm+1 0,_.— 1,Sm.1L

CoPY [COPY ROUTINE j
M+9 \ ' ’ , \
e | O AL AT e
N J
P T
M+16
-(1[1]0[1]1]1]...[1[1]o[1]1]...[1]0]
M M M2
\ \
Iﬁgiéé:&?gg Ll] 1 l 0) ITI_[[1 l 0 [1 m STATE SYME;OL READ 0': TAPE
—) T
E e Su+17 0,Sum+12.R 0,Su+18.R
11]..[1]1]0[1]1]....1ToT2T1]... Swets | 0SusisR | 0.SusraR
[1)...[1]1]0[11]...[1]0[1]1]...[1]0]
H M1 M M2
° SM+19 O-SM+19+1:R OvSuns,R
M+19 |
[0]o]o]o].../o]o]o]o]0]... 00|
%/v/f_—/ ;.7”,_/
\ \ _
COMPUTE o) "."‘ STATE SYMIT)OL READ ij TAPEE
— 7
: m2 Sms19+1 ? ?
M+19+2Z w -~ . N -
|
W Shit9+2 HALT HALTT

PROOF THAT o(V) IS NONCOMPUTABLE begins with an esti-
mate of the number of states needed to generate a string of M2 1’s
on a tape initially filled with 0’s. The Turing machines for copying
and multiplying, shown in the illustrations on pages 89 and 91, are

combined to form a machine that has M + 16 states. Three addition-
al states delete the two leftmost strings of 1°, leaving a string of M2
D’s. It is assumed there is a Z-state machine that, given any string of
N 1’s, will generate a string of o(N) 1’s (type and tables in color).

the intuitive concept of computability.
It is probably worth mentioning, how-
ever, that it is pointless to ask for a rigor-
ous mathematical proof that a formal
definition such as Turing’s fully cap-
tures some originally intuitive notion.

The Hilbert Program

In order to understand why Turing
was so intent on defining computabil-
ity it is necessary to have some sense
of the history of mathematical logic be-
fore 1936. Rigorous mathematics as it is
known today is a relatively recent devel-
opment. The first serious attempt to re-
duce mathematical statements to state-
ments in formal logic was begun by
Gottlob Frege in 1879, with the publica-
tion of his Begriffsschrift (‘““The Notation
of Concepts”). The problem posed by
Hilbert in 1900 was therefore of direct
significance to mathematics: if Frege’s
scheme could be carried to completion
and if a method could be found for de-
termining the truth or falsity of any
statement in formal logic, then that
method could also determine the truth
or falsity of any mathematical state-
ment, no matter how complex. If such
a method could be found, mathemati-
cal conjectures such as Pierre de Fer-
mat’s “last theorem,” which had resisted
proof or disproof for centuries, would
immediately be disposed of. An affirma-
tive answer to Hilbert’s bold challenge
would reduce all mathematics to me-
chanical computation.

Two major developments in logic in
the early decades of this century threw
much of Hilbert’s program into disar-
ray. In 1901 Bertrand Russell discov-
ered an irrefutable paradox in the ele-
mentary theory of sets, a theory that was
essential to Frege’s program of reduc-
ing mathematics to logic. Russell com-
municated his discovery to Frege just
as the second volume of Frege’s last
major work, Grundgesetze der Arithmetic
(“The Fundamental Laws of Arithme-
tic”’), was about to be published. Frege
ended the volume with a dispirited note:
“A scientist can hardly meet with any-
thing more undesirable than to have the
foundation give way just as the work is
finished. I was put in this position by a
letter from Mr. Bertrand Russell when
the work was nearly through the press.”
In spite of the flaws Frege was unable
to remove from his work, Russell and
Alfred North Whitehead were later able
to salvage Frege’s program and circum-
vent the paradox in set theory.

A second major discovery in logic was
made by Kurt Goédel of the Institute for
Advanced Study in Princeton, N.J. Im-
plicit in Hilbert’s program was the as-
sumption that there must exist some
method for distinguishing true state-
ments from false ones in formal log-
ic; the problem was to find the method.
Godel showed that the assumption is

First notice that o is uniformly increasing; that is, if X>Y, ¢(X)> o(Y). No matter how many 1's are
printed by an N-state Turing machine that halts, an (N + 1)-state Turing machine can always be
constructed that will add one 1 to the string of 1's and then halt.

on the opposite page,
o(M+19+2) = o(M?).

o is uniformly increasing.
Then M+19+Z = M+19+M—-20 = 2M - 1.

Since (M—1)2 > 1, M2—1 > M?2— (M -1)2
Hence, because « is uniformly increasing,

computes o(M?) leads to a contradiction.

0[1]1
SYMBOL READ ON TAPE
o(N) STATE - 1
0[1]1]...]1]0 0] Sw 1,5yl | 1,SwR
St HALT HALT
[0]1]1]....1]1]0]
o(N)+1

Suppose there is a Z-state Turing machine that computes «(M?).

By the definition of ¢ and the calculation shown in the illustration

If M is large enough, however, statement (1) contradicts the fact that

To demonstrate this, letM = Z+20,0rZ = M-20.

By elementary algebra 2M =1 = M?—(M—1)?, andso M+19+Z = M2—(M—1)2.
o(M2—1) > o(M2=[M=13) = o(M+19+2) = o(M?).

Since o(M2—1) > o(M?), however, o cannot be uniformly increasing,
and so the supposition that there is a Z-state Turing machine that

(1)

FINAL STEPS IN PROOF that o(N) is noncomputable derive a contradiction from the as-
sumption there is some Z-state Turing machine that, given a string of M2 1’s, computes o-(M2).

unjustified. In 1931 he proved that any
consistent system of formal logic pow-
erful enough to formulate statements in
the theory of numbers must include true
statements that cannot be proved. Be-
cause consistent axiomatic systems such
as the one devised by Russell and White-
head cannot encompass all the true
statements in the subject matter they
seek to formalize, such systems are said
to be incomplete.

The Logic of Computability

Godel’s work effectively put an end
to Hilbert’s program. There can be no
method for deciding whether some arbi-
trary statement in mathematics is true or
false. If there were, the method would
constitute a proof of all the true state-
ments, and Go6del had demonstrated
that within a consistent axiomatic sys-
tem such a proof is impossible. The at-
tention of logicians shifted from the
concept of truth to the concept of prova-
bility. In this context there remained a
simple analogue to Hilbert’s question
that had not been settled: Does a sin-
gle method exist whereby all the prov-
able statements in mathematics can be
proved from a set of logical axioms?

The preeminent investigator of the
logic of provability in the years immedi-
ately following Godel’s proof was Alon-

zo Church of Princeton University.
Church and two of his students, Stephen
C. Kleene and J. Barkley Rosser, de-
veloped a consistent formal language
called the lambda calculus; it is useful
for reasoning about mathematical func-
tions, such as the square root, the loga-
rithm and any more complicated func-
tions that might be defined. (Lambda,
the Greek letter corresponding to the
Roman letter L, was chosen by Church
to suggest that his formal system is a
language.) The modern language for
computer programming called Lisp (for
list processing) is modeled on the lamb-
da calculus. Kleene showed that large
classes of mathematical functions, in-
cluding all the functions employed by
Godel in his proof, could be expressed
in the lambda calculus.

The next major step in this line of
thought was taken by Church. He ar-
gued that if a mathematical function can
be computed at all—meaning that it can
be evaluated for every number in its do-
main of definition—then the function
can be defined in the lambda calculus.
Church’s work showed that if there were
such a thing as a mathematical function
expressible in the lambda calculus that
is not computable, there would be no
method for determining whether or not
a given mathematical statement is prov-
able, let alone true. The final surviving

hypothesis in Hilbert’s program would
be disproved. In April, 1936, Church
published a logical formula that is not
computable in his system.

Turing, working independently of
Church, had also grasped the technical
connection between Hilbert’s problem
and the idea of a computable function.
In attacking the problem, however, he
proceeded in a far more direct and con-
crete manner than Church. What was
needed was a simple but precise model
of the process of computation, and Tu-
ring’s machines were designed to meet
that need. Once their properties were
specified, however, Turing made a bril-
liant connection between the idea of a
computable function and the results of
mathematical work done some 50 years
earlier by the German mathematician
Georg Cantor. Cantor had argued that
although there is no largest whole num-
ber, any infinite set of objects that can
be counted, or paired with the positive
whole numbers, is a set of the same size
as the set of whole numbers. Since any
Turing machine can be expressed as a
character string of finite length, all pos-
sible Turing machines and with them all
computable functions can be listed in
numerical or alphabetical order; hence
they can be paired one for one with the
whole numbers [see upper illustration on
page 88)]. There is, of course, no fixed
upper limit to the size of a Turing ma-
chine, and so there is no limit to the
number of possible Turing machines.
Nevertheless, Cantor’s analysis shows
that the set of all possible computable
functions is the same size as the set of all
whole numbers; both sets are called
countable sets.

Cantor had also shown there are infi-
nite sets that are not countable; they are
larger than the set of whole numbers in
the sense that they cannot be paired one
for one with the whole numbers. One
example of such a noncountable set is
the set of all the functions of the positive
whole numbers that take on integer val-
ues. A careful analysis shows there must
be more such functions than there are
whole numbers. The implication is that
not all functions are computable: there
are not enough computer programs to
compute every possible function.

The Halting Problem

Which functions are noncomputable?
Unfortunately the proofs by Church
and by Turing do not readily yield
examples of noncomputable functions.
In the past 20 years, however, comput-
er scientists have exploited Turing ma-
chines to construct several such func-
tions. One of the early examples of a
noncomputable function was devised by
Tibor Rado of Ohio State University in
1962. Consider all the Turing machines
that have some fixed number of states N.
Suppose all the machines begin their op-

erations on a blank tape, or in other
words a tape on which a 0 is marked in
every frame. Imagine for the moment
that all the Turing machines that never
halt are excluded from this set. Among
the remainder of the Turing machines,
pick the machine or the group of ma-
chines that print the largest number of
1’s in succession on the blank tape be-
fore they halt. That number of 1’s, for
each value of N, is the value of Rado’s
function; it is usually designated o (N).
The detailed proof that o(N) is not
computable proceeds by assuming it can
be computed and then deriving a con-
tradiction. The argument is straightfor-
ward, but the technical details are rather
intricate; they can be found in the illus-
trations on the preceding two pages.
One might think the construction de-
fective because it assumes the N-state
Turing machines that do not halt can be
sorted out in advance. The objection is
a serious one. Consider, therefore, how
one might attempt to compute o(N) by
brute force. List all the N-state Turing
machines in some numerical order, sim-
ulate each one on a universal Turing
machine and select the machine or the
group of machines that print the most
1’s. Although this method of compu-
tation seems to avoid the objection,
the difficulty with Turing machines that
do not halt reappears in an intractable
form. Some of the N-state machines that
do not halt can be eliminated by sim-
ple algorithms, but there are other ma-
chines for which no such decision can be
made. If one cannot determine that a
particular machine does not halt, the
machine cannot be eliminated from
the list of N-state machines and the sim-
ulation must continue. Since the ma-
chine may actually never halt, there is
no guarantee the computation of o ()
can be carried through to completion.
Although the early impact of the Tu-
ring machine was in logic, it has also

played a dominant role in computer sci-
ence since the early 1960’s. In 1965 Juris
Hartmanis and Richard E. Stearns, then
at the General Electric Research Labo-
ratories in Schenectady, N.Y., showed
that the Turing machine can help to es-
tablish tight bounds on the complexity
of computations. Subsequent investiga-
tors began to classify problems accord-
ing to the way in which the running time,
or equivalently the number of computa-
tional steps, varies with the size of the
problem. For example, suppose some
number of points N are interconnected
by lines to form a graph of vertexes and
lines. The problem is to color the vertex-
es in such a way that no two vertexes
connected by a line have the same color.
Suppose furthermore the fastest method
known for solving the problem requires
a time that varies as some power of N,
say N2, The problem is then said to be in
the class of problems that can be solved
in polynomial time, designated P. The
class P has increased in importance as
many computer scientists have come to
regard all problems that are not in P as
intractable.

Modern Complexity Theory

Note that a problem is assigned to
class P only if no instance of the prob-
lem requires more than polynomial time
to solve. In other words, the method of
solution for the problem is determinis-
tic, in the sense that it guarantees a solu-
tion in a time less than some fixed power
of the size of the problem, N. A nonde-
terministic Turing machine can also be
defined: it is allowed to solve a problem
by guessing the answer and then veri-
fying the guess. For example, to deter-
mine whether an integer is composite,
the nondeterministic machine guesses a
divisor, divides and, if the division is
exact, verifies that the number is com-
posite. The deterministic machine, on

TWO PROBLEMS ARE EQUIVALENT if the solution to one problem immediately gives the
solution to the other. Here the problem of determining the conditions under which a complex
Boolean formula, or logical proposition, is true has been mapped, or transformed, into another
problem, that of coloring the vertexes of a graph with three colors in such a way that no two ver-
texes connected by a line are the same color. The truth or falsity of any Boolean formula de-
pends on the truth or falsity of the atomic, or simple, propositions that make it up and on the
ways the truth values are combined by the connectives “or,” “and” and “not.” For every possi-
ble Boolean formula a simple graph of lines and vertexes can be constructed, which can be col-
ored with three colors if and only if truth values can be given to the atomic propositions in such
a way that the complex formula is true. For example, consider the complex formula P or Q, which
is made up of the atomic proposition P and the atomic proposition Q. The formula P or Q is true
only if proposition P is true, proposition Q is true or both propositions are true. These condi-
tions are reflected in the coloring of the graph at the upper left (a), in which green represents
true and blue represents false. The coloring can be completed in such a way that the rightmost
vertex is green (true) only if either one or both of the labeled vertexes are colored green (b—e).
Similarly, the complex formula P and Q is true only if the atomic propositions P and Q are both
true, and that state of affairs can be reflected in a graph in which the vertex representing P and
the vertex representing Q are both colored green (f). Finally, the formula not-P is true only if
the vertex labeled P is colored blue (g), and the formula P is true only if the vertex labeled not-P
is colored blue (/). At the lower right of the illustration is the graph that corresponds to the
more complex Boolean formula (P or Q) and (not-R); the upper coloring (i) represents the
constraints imposed by the connectives “or,” “and” and “not.” At the bottom (;) one of the four
ways to color the graph is shown; it corresponds to one way of satisfying the Boolean formula.

AND

NOT

(P OR Q) AND (NOT-R)

i

SUPER
FRENCH

NEW SUPER LEARNING
BREAKTHROUGHS TEACH YOU
FRENCH IN 30 DAYS!

New super learning breakthroughs origi-
nally discovered behind the iron curtain let

you learn a foreign language five to ten
times faster than was ever before possible.

They include right-brain/left-brain learn-

ing techniques. .. super memory devel-
opment...subliminal suggestion ...
hypnotic music...deep relaxation. And
they ve launched a language-learning
revolution!
Mental Skills Used By East Germans
& Russians in Languages and Sports
These same mental-skill mastering tech-
nigues have been used to achieve "miracle”
results in languages and Olympic sports.
Now these super language-learning
methods are available for the first time in
America. SUPERLINGUA™ FRENCH
2,000 — a complete course on audio-
cassettes gives you fluency in French with
arich 2,500-word vocabulary in 30 DAYS

or less!
@ Call toll-free
1-800-228-1080 Ext.105 for FREE

SUPERLINGUA™ FRENCH CASSETTE.
Or write us. Superlingua Dept. 105
P.O. Box “M’, Colts Neck, N.J. 07722.

é Animal Lovers

Natural Historians
and all you who take pride in
your mtellectual curiosity. .

NOW-
' Save 50%

—the most important contribution to the
adventure story of animal exploration since
Buffon, Brehm and Lydekker—

available for the first time in sturdy soft
binding at savings of 50%. Includes

© 7,200 pages * Many more thousands of
L black and white drawings

° 13 magnificent volumes 54 plates

© 8,000 color illustrations e Qver 220 contributors

Just mail the coupon for a full descriptive packet
complete with interesting and odd facts and color
illustrations— PLUS AN EXCITING 50% SAVINGS
OFFER, ABSOLUTELY FREE!

Van Nostrand Reinhold, Attn: Ralph Holcomb, Dept. S2
135 W. 50th Street, New York, NY 10020

RUSH ME MY 50% SAVINGS OFFER ON GRZIMEK'S NOW!

Name

Address

State Zip

bny
- o o o e - - - -

~

onGrzimeks
B Ammal Life
Encyclopedia

the other hand, must search systemati-
cally for a divisor.

The time needed for solving a prob-
lem with a nondeterministic machine is
measured by the length of the shortest
computation, and so the nondetermin-
istic machine would seem to have an
enormous advantage over the determin-
istic one. Ordinary experience suggests
itis easier to verify a solution than it is to
find it in the first place. Nevertheless, no
one has been able to prove that the prob-
lems solvable in polynomial time with
a nondeterministic machine—the class
of problems designated NP—are intrin-
sically any more difficult than the prob-
lems in the class P. Whether or not the
class P is distinct from the class NP,
which is called the P-NP problem, has
become one of the major open ques-
tions in mathematics.

Important progress on the P-NP prob-
lem was made in 1970 by Stephen A.
Cook of the University of Toronto.
Cook was investigating the problem of
determining the conditions under which
a complex logical proposition is true.
For example, the complex proposition
formed when two simple propositions
are linked by the word “or” is true if
either one of the simple propositions is
true or if both are true. In general it is
quite difficult to determine the range of
truth conditions for simple propositions
that satisfy a complex proposition, or in
other words make the complex proposi-
tion true. Cook was able to show that the
problem, which is called the satisfiabili-
ty problem, is as difficult as any other
problem in class NP. There is an effi-
cient algorithm for solving the satisfia-
bility problem only if there is an effi-
cient algorithm for solving every other
problem in the class NP. Any problem
having this property with respect to an
entire class of problems is said to be
complete for that class.

A year went by before most investiga-
tors grasped the significance of Cook’s
result. In 1971 Richard M. Karp of the
University of California at Berkeley be-
gan to ask what other natural problems
might play the same role as the satisfia-
bility problem with respect to the class
NP. Karp discovered that many impor-
tant problems in operations research, in-
cluding the problem of coloring a graph
with three colors, are also as difficult as
any problem that can be assigned to the
class NP, that is, they are NP- complete
It can be shown directly, by mapping
one problem into the domain of the oth-
er, that the graph-coloring problem and
the satisfiability problem are equivalent
[see illustration on preceding page).

It has now been proved in a similar
way that several hundred problems, pre-
viously thought to be distinct, are actu-
ally notational variants of one another.
All these problems are equivalent to
the satisfiability problem and so all are
NP-complete. Several other collections

of such complete problems have been
discovered, both for the class P and
with respect to the classes of intrac-
table problems for which the number of
steps required for a solution on a Turing
machine grows exponentially with the
size of the problem. A direct assault on
the P- NP problem, however, still seems
premature. Some of the difficulty can be
appreciated from recent developments
in the theory of computation.

Relative Computability

The idea that a function is computa-
ble by a Turing machine can be extend-
ed by making computability depend on
strings of symbols the machine may en-
counter on its tape. If a string found on
the tape belongs to a previously speci-
fied set of strings 4, the Turing machine
can be instructed to advance to a spe-
cial state that continues to compute the
function in question. If the string does
not belong to the set 4, the machine de-
livers the decision that the function is
not computable. The function is said to
be computable relative to the set 4. If
the set 4 were made up of all the strings
encoding Turing machines that eventu-
ally halt when they are given a blank
tape as input, Rado’s function o(N)
would be computable relative to A.

In 1974 Theodore P. Baker of Cor-
nell University, John Gill of Stanford
University and Robert M. Solovay of
Berkeley asked whether the nonequiva-
lence of class P and class NP could be
proved for relative computations. In the
course of this work they made a startling
discovery. They could specify two sets,
Aand B, for which the relations between
class P and class NP are contradictory.
In other words, for computations rela-
tive to set 4, both P and NP are equiva-
lent, whereas for computations relative
to set B, P and NP are not equivalent
classes. Moreover, it was discovered
that for any formal system there are rel-
ative computations for which one can
assume either that Pand NP are equiva-
lent or that they are not, without detri-
ment to the consistency of the system.
Other investigators have since found
that many other problems can be rela-
tivized in such a way that either of two
possible outcomes is true.

This perplexing state of affairs is ob-
viously unsatisfactory as it stands. No
problem that has been relativized in two
conflicting ways has yet been solved,
and this fact is generally taken as evi-
dence that solutions to such problems
are beyond the current state of mathe-
matics. Nevertheless, one must remem-
ber that the mere formulation of these
seemingly intractable problems is made
possible by the simple solution to an im-
penetrable problem of an earlier genera-
tion. The next major advance may seem
as simple in retrospect as A. M. Turing’s
imaginative machines.

