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Brief Papers

Combined Evolution Strategies for Dynamic Calibration of Video-Based
Measurement Systems

P. Cerveri, A. Pedotti, and N. A. Borghese

Abstract—Calibration is a crucial step to obtaining three-dimen-  the 3-D space correctly, the video camera-based stereo system
sional (3-D) measurement using video camera-based stereo sysmust be calibrated, i.e., the parameters that determine its ge-
tems. Approaches based on epipolar geometry are particularly ap- o metry must be determined. Such parameters are the orienta-

pealing as there is no need to know the 3-D position of the control ti dl fi f ith t 1o the oth
points a priori and because the solution is found by solving a set of U0 @nd location o one camera with respect to the other (ex-

linear equations through matrix manipulation. Indeed, all the pa- ternal parameters), and the focal length and the principal point
rameters can be determined except for the pair of principal points, of each camera (internal parameters) [see Fig. 1(a)]. The prin-
which poses a considerable drawback. Whereas in low-accuracy cipal points, defined as the intersection of the optical axis with

systems (two-dimensional measurement errok’ 0.2 pixels) such e image plane, are of particular importance as they are the pa-
points can be assumed to lie at the image center without degrading . . N
rameters involved in the optimization.

the overall 3-D accuracy, in high-accuracy systems their true posi- . ) .
tion must be computed accurately. In this case, all the calibration ~ In the classical calibration approach, the parameters are
parameters (including the principal points) can still be estimated computed from a set of 3-D control points positioned precisely in
through epipolar geometry, butitis necessary to minimize a highly - an external 3-D reference frame [5], [6]. Reliable parameters are
nonlinear cost function. Itis shown here that by combining two evo- - 4pyained by distributing the points throughout the entire working
lutionary optimization strategies this minimization can be carried . -
out, both efficiently (in quasi-real time) and reliably (avoiding local volume, which requires large support strut_:tures: These struc_-
m|n|ma) The resumng Strategy, which we call enhanced evolu- tures must be constructed aCCUrater to achieve h|gh aCCUracy|n
tionary search (EES), allows the full calibration of a stereo system estimating the parameters; thus, this approach is very expensive.
using only a rigid bar; this simplicity is a definite step forward  Moreover, these large structures must be moved and positioned
in stereo-camera calibration. Moreover, EES can be applied to a accurately within the working volume, making calibration
wide range of applications where the cost function contains com- both labori d | T d thi If-calibrati
plex nonlinear relationships among the optimization variables. 0 ,a orious and compiex. 10 avo'_ .'S' Seli-calibration
algorithms have been developed, mainly in photogrammetry
with bundle adjustment [7], [8] and in computer vision with
the structure-from-motion (SfM) approach [9]-[11]. The most
general approach is that of bundle adjustment, both the 3-D
. INTRODUCTION position of the control points and the calibration parameters

Video camera-based stereo systems are used widely in mA§jn9 estimated. This formulation leads to a nonlinear least
different fields, including close-range photogrammetry, robotgduares estimate, which is susceptible to local minima unless
vision, computer-aided design, biomechanics, and virtual rgitialized carefully. Amore appealing solution is that offered by
ality. Two major applications are the measurement of the threefM?; in this case, calibration is reduced to the estimation of the
dimensional (3-D) shape of objects (3-D scanners [1]) and tRe entries of_a33_ matrix, called the fundamental matrix [13],
3-D reconstruction of motion (trackers or motion capture [2]13). The resultis alinear homogeneous system that does not need
The input for most systems is a set of matched features fréfly initialization and can be solved by matrix manipulation.
each of the two camera image streams. Tailored low-level hafdgewever, SfM is limited in that it cannot estimate more than
ware [3] or software processing [4] detects these features d@ht calibration parameters [14], (1), which are the relative
returns their accurate 3-D measurement. To transform a paif@#ation and orientation of one camera with respect to the other

two-dimensional (2-D) features into a feature positioned with@nd the two focal lengths [11], [15], [16]. The principal points
must be determined apart. As a first approximation, they can be

) ) ) assumed to lie at the image center; only when the measurement
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Fig. 1. (a) Geometrical setup and the calibration parameters: relative lo@titn, Y;, Z.), relative orientationR(w, ¢, ), focal lengthf; and f,, and
principal pointse (., , ve, ) @andez(ue,, ve, ). C1 andC' are the intersections of the optical axis with the image planendr, are the optical rays for the
point@. (b) Dots represent the bar extremes in successive frames of the calibration sequence.

estimating the other calibration parameters and, in turn, to poge reframed calibration into an optimization problem, where
3-Dreconstruction accuracy when 2-D measurementerfb?  an adequate cost function [see (4)] is minimized with respect
pixels root-mean-square error (rms). In this case, the posititmall the calibration parameters [15]. However, gradient-based
of the principal points must be determined precisely. To do thiglgorithms fail to compute the global minimum unless initialized
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carefully (Section V-A and Table Ill) and global search algo- Let us now consider the three vectad®’,, C,C., PC,

rithms (that have to work in a 12-fold parameter space) are t{feig. 1). These lie in a single plane; taking into account Eq. (2a)

slow for such an application. and (2b), Eq. (1) can be written as the following homogeneous
This prompted us to derive a cost function where only the twimear system [11]

principal points are the optimization parameters, all the other

calibration parameters being determined by StM [see (5)]. This  p¢, . ¢,.C, A PC]

reduces the optimization space to four dimensions. The price to T T _1 e

be paid is that the resulting cost function is hard to optimize = K, R(TNK p =0=p Fp, =0 (3)

through gradient-descent algorithms, as SfM involves matrix _ ) _ )

We show here that combining two different evolutionary optfion parameters. The nine entriesléfcan be obtained through
mization algorithms generates a reliable and global optimiziiear least squares estimation when at least eight 2-D matched
tion procedure that efficiently solves the calibration problen0ints are available from the two cameras. Fréinwe can
The procedure requires only pairs of matched points and drmpute the focal lengths, the relative orientation, and the rel-
3-D metric information. Thus, the calibration tool we are no@tive location vector (with unit norrff’,, ||T',|| = 1) through
proposing is a simple rigid bar carrying markers at its end®atrix manipulation that includes singular value decomposition
Moving the bar within the working volume [see Fig. 1(b)] col&nd sign checking [11], [14]. The true relative location vector
lects the required calibration points and 3-D metric informatidd’ = #7'.) can be recovered, taking into account that the 3-D
easily [14]. scale factor: is the ratio of the true 3-D distance between two
The paper is arranged as follows: Section Il briefly describ&&libration points to the distance between the 3-D position of
the stereo-camera calibration problem, Section IIl introducli€ same points reconstructed with the estimated parameters
the cost function and the optimization problem, Section IV dél4l, [18]. When the rigid bar is used as the calibration ob-
scribes the enhanced evolutionary search (EES) optimizatift: @ large number of distances (those between the bar ends)
and Section V reports and discusses the results on simulated &/ be collected easily; this facilitates the reliable estimation
real data in terms of computational load, reliability, and 3-D a@f the 3-D scale factor by averaging its value over all the col-

curacy. The conclusions are drawn in Section VI and a full tajgcted bars. Fig. 2(a) shows the flow chart of SfM calibration
onomy is summarized in Appendix A. [10], [14]; the only parameters left at this stage are the principal

points.

Il. CALIBRATION OF A STEREO-CAMERA SYSTEM

The image of a 3-D poin® = [Xp, Yp, Zp, 1]* on the
target of a video-camega = [u,,, v,, 1|7 can be described as
a perspective projection d? on p [see Fig. 1(a)] through the
centerC, expressed in homogenous notation in a single mat
equation [10]

I1l. CALIBRATION THROUGH OPTIMIZATION

The key observation is that any bias in the calibration parame-
ters is reflected in the accuracy of the reconstruction of the 3-D
sition of the bar ends, @ in Fig. 1(a)], and their mutual

distance { in (B7)]. Another geometrical quantity affected by
the calibration error is the distance between the two optical rays
r belonging to the same 3-D point;]; in (B6) andry,andrs in

Uu.
p= Up Fig. 1(a)]. These two geometrical quantities form our cost func-
e tion J
:—f 0 wu 100 0l rp _pr ‘;gp N N /¢2 4 ¢2
¢ — 1 1 intjp intj
=0 —f w||l0o 1 00 [ } r J=a| <> (di—L3?+3 —Z(—)
o o 1||oo 1 oft? 1 le N N 2
] (4)
=KMDP = AP. 1) where

. . . L ) number of surveyed bars;
The matrixA. defines a linear projective mapping model that true distance between the bar edandQ:

is adequate if distortions are sufficiently weak or corrected in ad—dj bar length reconstructed at tirgie
vance [5], [19]. Equation (1) contains the following calibratioRrpg yariables:;,,, . ande;, . are the intersection error for the
parametersi’ = [Xr, Y7, Zr]" is the location of the camera, y0 par ends atljtlipme (ApEanix B) andw and 3 are weight
R = R(w, ¢, k) is the orientation (function of the three index,ctqrs. When: > 3, their values have been shown not to be
pendent orientation angles ¢, k), f is the focal length, and ¢jtica) for convergence [14]. In our experimenisand,3 were
¢ = [u., v.]* is the principal point of the camera. set equal to 1 and 0.1, respectively.

When the 3-D coordinate system is located in the perspectivey search for the calibration parameters that minimize (4)

center of one camera with two axes parallel to those oftheima“g(tlep“eS searching a 12-fold parameter space that is incom-

plane,D = I for that camera, (1) can be rewritten as patible with the time requirements of real video systems.
) The solution was to partition the parameters into a first set
p, =K.:MP  forthe first camera (28) s, (1, fo, k, R, andT), determined in closed form through

p, =K. MDP for the second camera. (2b)SfM from a pair of principal points and matched pairs of
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Fig. 2. Flowchart of the EES optimization algorithm. (a) Closed-form solution for the calibration parametetst(b)-ES is adopted until the amplitude of the
search region goes underthershdlé’¢ = h(®)/2). (c) Solution is then refined withl( A)-ES with covariance matrix adaptation until (16) is satisfied. At this
stage, the best offspring give the position of the principal points. Other paranfetefs k, R, T are those computed with these principal points through SfM
solution.

2-D points § = SfM(e1, e2|/{p1}, {p»}) and a second setthe best population element. EES, a novel algorithm in which
consisting only of the two principal points; ¢, ¢;), which the optimization is carried out in two stages, is proposed here.
have to be determined through evolutionary optimization. In the first stage, al(+ 1)-ES strategy is used to locate the best
this framework, the cost functiorf(.) can be rewritten as search region. In the second stage, the optimal solution is found
J(SIM(S2[{p; }, {p-}), S2l{p1}, {p>}), which is a function of within this smaller search region through a multimembered
only the parameters in,SSuch parameters can be determinegvolutionary search, ory( A)-ES, with covariance matrix

by minimizing J(.) adaptation.
min _J(SIM(So|{p; }, {p2}), S2l{ps }, {p>}) A. Identification of the Search Region with{ 1)-ES.
So=[e1, €2 ] .
_ : J([e1, ’ ) 5 (1 + 1)-ES [20] is used to explore the solution space to es-
SZZIr[lcllrzlcﬂ (ler e2lltp). tp2)) ®) timate a subregiod'/), where the optimum is located [see

Fig. 2(b)]. The algorithm is initialized by randomly generating

Gradient-based techniques are not easily applied to find &€t ofV parents{wﬁco)} inside the initial search region .
minimum of (5), as th&fM(.) solution involves matrix manip- If no information is availablel'® can be as large as the image
ulations (Section I1); we introduced evolution optimization t®lane; if information is available, a smaller region can be de-
accomplish the task. fined, as in Figs. 3(a) and 4(a). At each generatipa set of
N parents{wgf)} is analyzed: SfM calibration is carried out
through the procedure outlined in Section Il for each parent and
fitness is evaluated through (5). Then, through mutation, a set

In the evolutionary framework, the principal points conef N offspring {wgt)}, one for each parent, is generated inside
stitute the elements of the populatiofwle;(ue,, ve,), I'™ as
c2(ue,, ve,)]T'} and the cost functio/(w)|.) the fitness [see
(5)] of the elemeniw. The estimation of the principal points is
reframed as a search in a four-dimensional dom&in<4) for

IV. EES OPTIMIZATION

w) =wl) + 002" subjected tavl) eIV (6)
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Fig. 3. Plots refer to the data of Table I. Search for the true principal points progresses in parallel on the two cameras. (a) It goes first th#oUHES (
optimization that starts inside the regibfi (square with solid perimeter), 100 pixels wid€{ = 50) centered in [512, 512, 512, 512] and ends in the region
R = /2 centered in the element [585, 480, 604, 486). (b) At the last step of the first stage, the best populationelgement [579, 482, 597, 482]
(marked with a cross) is extracted inside this region (cf.Fig. 2); this constitutes the first parent bf X)eES. (c) Evolution path. It is the line connecting the
winning offspring of each step ofl( A)-ES. Global minumum is reached at the individugb96.73, 497.17, 605.27, 479.94]%. (d) Error on both bar length

and ray intersection is reported as evolution progresses.
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Fig.4. (a) Evolution path pertaining to the second stage of the EES along with (b) its associated cost for real data. Region where the EES founiecharocal
is marked with a circle in panel (a). Note the corresponding transients in the cost function in panel (b).

where z§t> is obtained from the Gaussian distributiorated through (5) as for the parents by computihdor each
z = N(0, 1). The fitness of theV offspring {w,@} is evalu- of them.o(*)determines the actual amplitude of the mutation
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[see (6)] and is updated according to the Rechenberg 1/5 rulkere X is the number of offspring. As inl(+ 1)-ES,z§t) is
[20] as extracted from the Gaussian distribution= N(0, 1). After
® mutation, the fittest of the\ offspring is picked as the parent

g< = = otth = o of the next generation and the strategic variat#es andp®

m are updated using thevolutionary paths® [22], [23]. Such a
= ot = 5O (7) path is achieved through a discounted sum of the displacements
of the winning offspring derandomizatiofi21]) in the previous
evolutionary steps
wheregq is the ratio between the number of winning offspring
and winning parents. Setting = 0.85'/P gives a heuristic s = (1 a,)s + auB(”G(”ZEZL- (12)

vaIL_Je resulting in linear prder convergence rates [20]. The qﬁ- The weights:, anda,, balance the effects of past history and
spring are then placed in competition with the correspondifig,ation, smoothing out random deviations that could other-
parent: the one that exhibits higher fitness (lower valuef \ise oreatly disturb adaptation. The weights are chosen so that
survives and becomes the parent in the next generation the variance 06", S® = s (s™)T  is normalized [see also

Jj(cf) <J0 = w%ﬂ) _ wgé) (13)]: a2 4+ (1 —a,)? = 1. By choosingz, = 1/\1/5 (see later),

JO 5 7O o 0D — 4 ® ©® "= (2vD ~1)/D. In the same wayﬁ(“r )is computed

T T e fi s as the discounted sum of the actual covariance matrix of the evo-

At each step, the resolution of the search is increased by f&ion path,S(“’(;) and the covariance matrix computed in the
ducing the search region amplitude according to the followirRj€vious steg
schedule [see Figs. 3(a) and (b) and 4(a) and (b)] HD — (1- aH)H(t) T apSttD. (13)

h(O

[S2 0

if
q=

q>: = Ut = me®

A

<

R+ — 9) Equations (12) and (13) are very similar to the discounted re-

Viog(t +2) ward adopted by reinforcement learning paradigms in machine

The logarithmic function allows a faster reduction in the fird2mMing [24]. Such paradigms ensure that only mutation steps
generations. The reduction is complemented with a translatiBtpving in the same direction and chosen re(%eatedly will be re-
of the search regiofi”), which at each generation, is centerediforced over trme: the mutation distributidi™"” and the evo-
at the fittest element of the previous generation. However, as/H§onary paths® will be elontga}ted in this direction.
information on the topology of the solution space is considered,  N€ role of global variance") is to detect discontinuity in the

the convergence is slow. We arbitrarily stop this first stage wh@# €ction of the evolution path. When there are repe“ated changes

t = 30 (h® ~ h(® /2). The best population element at the ladp Path direction, updating follows the principal: “reasonable

step of this Stagm(f) becomes the parent for the, (\)-ES adaptation has to reduce the difference between the distribution
best ’

- - of the actual evolution path and an evolution path under random
algorithm [see Figs. 2(b), 3(b), and 4(b)]. selection” [22]. At each step, is updated as

B. Local Search Throughl( A)-ES p(H'l) _ p(t)ew(lls?*“ll—a (14)

The key element here is the runtime adaptation of the best (t41) | _ o o
search path in thé-dimensional solution space; this is donavheres, "™ is the normalized path containing pure directional
through an analysis of the population elements and the fitnégrmation [cf. (12) and (15)]
history. For this task, two strategic variables are defined: the co- (t4+1) _ ® ) ()
variance matrixtd ) (D x D) and the global step sizé". H®) s = (1 —as)sy) +auB V2 (15)
learns the local topology of the objective function and detegngz, = (1 — 1/4D + 1/21D?) is the second-order approxi-
mines the actual shape of the search region. Iti3-dimen- 1 ati0n of the expectation value of the length distribution of vec-
sional ellipsoid oriented in the solution space thro@(h? that  {ors extracted frodV (0, T). From (14), it can be seen thaft)

. . + ) . 1
contains the eigenvectors & is decreased when the evolution path direction changes often.

®) _ M r®? p®T When the same direction is chosen repeatedly, the mutation step
HY =BYGY BT (10) is made larger.
G contains the square root of the eigenvalue&éf and At this stage, the parameteasy, a,, and~y h%’fl)to be set
sets the elongation of the ellipsald® in the D principal di- Properly. As the updating gf*) is regulated by, ™, which

rections determined b®, depends orD parametersg, = 1/D could be a possible set-

The valuep™ modulates the amplitude of the ellipsoid: itding choice. However, as the role pf*) is to detect when the
role is to widen the search region rapidly when better fitnessgyolutionary process finds regions where the best direction has
found repeatedly in a certain direction and to restrict it when figthanged or aminimum found, it is safer to give itan even shorter
ness variability increases around a certain element, performfif§e span by choosing, = 1/v/D. To avoid an uncontrolled

a local search at higher resolutidf® andp(® are used in the increase in global step size,should be larger than zero and
mutation process as in [21] smaller than:,. We chosey = 0.1. As far asi ¥ is concerned,

asitis defined by D?/2+ D/2) free parameters, the time scale
wt) = wgf) +pOBOGEDY  i=1 ... A (11) of adaptation is in the ordeP(D?) and a suitable choice of



278

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 3, JUNE 2001

TABLE |

CALIBRATION RESULTS WITH SIMULATED DATA (ZOOM LENSES)

Working volume [m*] 2.5%2.5x2.5
Angle between the cameras ~44 degrees
Bar length [m] 0.5
Target Dimension [pixels] 1,280 x 1,024
Image measurement error [pixels] 0.1 (rms)
# Calibration points 400
. Setup # | # Test bars 200
Stmulated data e . .
Zoom lenses | 1nitial principal points [pixels] [640, 512, 640, 512]
1 side [pixels) ~100
h” side [pixels] ~hOn
o (1+1)-ES [pixels] 15
#Fathers in (1+1)-ES 50
p” (141)-ES [pixels] s
#Sons in (1,A)-ES 5
True parameters Initialization Evolutionary algorithm Gradient-based algorithm
Tx Ty Tz[mm] | -2,802.20 192.25 -1.072.70 | -2,862.99 156.85-1,075.16 | -2,802.61 193.29-1,071.33 | -2,808.01 193.86 -1,065.36
@ ¢ x[deg] 1.28-43.99 0.52 2.02-43.19242 1.24-44.00 0.45 1.26 -44.00 0.47
ter Ver f1 [pixel] 570.00 480.00 1,000.00 640.0 512.0 1,009.08 569.73 479.17 1,000.15 569.83 479.23 999.35
12 veo o [pixel] 605.00 480.00 1,000.00 640.0512.0964.61 605.27 478.94 1,000.73 605.11 479.47 1,001.68
Rlerror [mm] 0.34 0.37 0.36 0.37
BL error [mm] 0.00+0.48 0.05+£10.26 0.00+0.48 -0.06 £ 0.48
o 0.00£0.25 244 £52 0.00+0.42 0.00+£042
T error [nm] 0.00 % 0.20 10722 0.00%0.29 0.00%0.32
T 0.00£0.42 176+ 54 0.00+0.50 0.00+ 0.49
#lterations * 30+ 177 11
Time [s] 0.05 13 5

ay in (13) is2/D?. This guarantees that high-frequency varibars (length, = 0.5 m for the first experiment, = 1 m
ability in the mutation direction disturbs the adaptatiorfﬁf) for the second) were generated randomly inside the working
minimally. As a result of these choicesy is smaller tharz,, volume to emulate the sampling of the bar in motion. The ends
reflecting the different time span on which the two strategic vamf the bars were then projected onto the image planes of the two
ablesH® andp® operate. cameras using the calibration parameters reported in Table s |
Fig. 2 summarizes the overall combined evolution strategand Il (true parameters). The 2-D measurement error was sim-
The algorithm stops when the residual normalized incrementurated by adding a quantity, extracted from the Gaussian dis-
the parameters goes below the threshold tribution = = N(0, 0.1), to each coordinate of the projected
points. Starting from the measured control poifss, } and the

(t+1) (t) bar lengthL, the calibration parameters are estimated through
Z < t+1p ) < Tout (16) EES. Different experiments have shown that the initial value
M ( ) of the parents, chosen at the beginning of the first stage, does

not affect the convergence. The algorithm was implemented in
C and its running time was measured on a personal computer,
MMX-200 MHz Pentium Il central processing unit. The accu-
racy indices are considered to be the statistical distribution of the
error in the reconstruction of the bar length [BL, see (B7)] and
for each point of the mean distance between the optical rays [RI,
The algorithm has been tested on simulated and real data(gg)]. These practical measurements are easily carried outin the
) . field. To evaluate EES with respect to ground truth (GT), the
A. Simulations displacement of the reconstructed bar ends with respect to their
Simulations were carried out to assess the accuracy and refiaminal 3-D position is calculated and reported as GT error (see
bility of the method. Two different camera setups were adoptddbles I-1V). TheX andY” directions are parallel to the axes of
and algorithm performance is reported in Tables | and Il. In thike image plane of the first camera and fhdirection is perpen-
first setup (Table I, Fig. 3), zoom lenses surveyed a workirdjcular to both. For the sake of comparison, we have included
volume of2.5 x 2.5 x 2.5 m?, in the second (Table 1), wide- the results of when the cost functiof{.) in (5) is minimized
angle lenses covered a working volumeitdf x 4.5 x 4.5 m®.  with respect to all the calibration parameters without resorting
The working volume is defined here as the largest parallelepipedSfM for determining some of them. Gradient descent is ini-
volume within the common field of view of the two cameras. Itialized by setting the principal points in the image center, de-
both simulations, the position and orientation of a set of 2@8rmining the other initial parameters through SfM machinery.

wherep?) is the jth calibration parameterd{ = 12); in our
caseyont = 0.001.

V. EXPERIMENTAL RESULTS
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TABLE

CALIBRATION RESULTS WITH SIMULATED DATA (WIDE ANGLE LENSES)
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Setup # 2
Simulated data
Wide angle
lenses

Working volume [m*]

Angle between the cameras

Bar length [m]

Target Dimension [pixels]

Image measurement error [pixels]
# Calibration points

# Test bars

Initial principal points [pixels]
" side [pixels)

| 1 side [pixels]

¢ (1+1)-ES [pixels)
#Fathers in (1+1)-ES

P (1+2)-ES [pixels]
#Sons in (1,A)-ES

45x45%x45
~74 degrees
1.0

1,280 x 1,024
0.1 (rms)

400

200

[640, 512, 640, 512]

~100
~/1((D)/2
s
50
15
5

True parameters

Initialization

Evolutionary algorithm

Gradient-based algorithm

Ty Ty Tz [mm)]
w ¢ K[deg]
e Ver fr [pixel]

-7.664.7 29.2 -7,030.0
5.84 -72.934.56
570.0 480.0 2,000.0
605.0 480.0 2,000.0

-8192.99 -91.33 -7817.59

8.67 -74.68 8.21

512.0 512.0 202591
512.0 512.0 211294

-7665.39 31.08 -7028.74
5.77 -72.95 4.47
569.87 479.20 1999.92
605.72 479.01 2000.3

-7663.24 32.01 -7025.42
576 -72.92 4.46
569.23 480.00 1999.94
604.98 479.22 1999.8

uez Voo f2 [pixel]

RI error [mm] 0.24 0.32 (.29 0.30
BL error [mm)] 0.02+0.31 -0.19+ 1698 0.00 £ 0.31 -0.04 £0.32
GT error [mm] 0.00£0.21 310+ 19.5 0.00£0.25 0.00+0.28
X.V.Z 0.00x0.15 -157 £17.31 0.00£0.15 0.00+0.18
0.00£0.25 -289+57.27 0.00+£0.21 0.00+0.22
#lterations 30 + 264 15
Time [s] 0.05 19 8
TABLE Il

SAME EXPERIMENT AS TABLE |l WITH A DIFFERENT PAIR OF PRINCIPAL POINTS

The same set-up reported in Table [ is used here with the exception of the principal points whose true position is now: [600, 450, 635,510]

Initialisation Evolutionary algorithm Gradient-based algorithm
Tx Ty Tz [mm] -5,284.38 417.65 -2,779.09 -2,802.60 193.14 -1,071.20
w ¢ x[deg] 2.21-58.461.32 1.24 -44.00 0.46
uer vor fr [pixel] 600.0 450.0 1,392.09 569.33 479.33 1,000.54
e ver f> [pixel] 635.0510.0 1,377.37 604.76 479.09 1,000.82 *
Rlerror [mm)] 0.80 036
BL error [mm] 0.66+72.52 0.00£0.48
0.00+0.25
GT error [mm]
XY.Z -654.3£130.5 0.00£0.15
0.00+£0.21
#lterations * 28 +302
Time [s] 0.5 21

As seen from Tables -1V, EES converges to parameter values-ig. 3 shows a typical search for the pair of optimal prin-
and accuracy indices equal to or even better than the gradieipial points. The data correspond to the experiment with setup
descent approach. The GT data show that there is no bias in#ie(Table I). Comparing Fig. 3(a) and (b), it can be seen that
reconstruction of the bar ends and that the standard deviatibe reduced search region in the first stage leads to a denser
is very close to that obtained when reconstructing the bar ersdsnpling of the population space. At the end of the first stage,
with the true parameters. Moreover, although gradient descenEES switches tol(, A)-ES. This switch is highlighted by a tran-

a little faster, the main drawback is that there is no convergersient increase in the cost functidif.) due to the time required
for some geometrical camera arrangements. For example, if tbdearn the local topology of (.) [see Fig. 3(d)]. It should
principal points in the first experiment (Table I) are moved tbe noted that EES “evolves” within particular regions before
the location [600, 450, 635, 510], which is even closer to theeading toward the optimum position. Such regions possibly
image center, gradient descent cannot converge while EES bpve shallow cost functions, local minima, or abrupt changes
timization does. in the decreasing direction of the cost function. This is evident



280 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 3, JUNE 2001

TABLE IV
CALIBRATION RESULTS WITH REAL DATA (ZOOM LENSES)

Working volume [m'z] ~0.4x04x1
Angle between the cameras ~23 degrees
Bar length [mm] 86.0
Target Dimension [pixels] 256x256
Shrinkage factor 0.6766
# Calibration points 400
Setwp#3 | 4 Tegt bars 400
Real data

Zoom lenses

Initial principal points [pixels]

1 side [pixels]

[128, 128, 128, 128]
-25

h" side [pixels] =h02
a? (1+1)-ES [pixels] WS
#Parents in (1+1)-ES 50
p" (142)-ES [pixels] s
#Oftfspring in (1,L)-ES 20
Initialization Evolutionary algorithm Gradient-based algorithm
Ty Ty Tz [mm] 41.25 -865.94 -365.14 45.29 -1283.39 -680.335 46.32 -1281.39 -680.423
o ¢ x[deg] 19.22 1.43 0.83 2299 1.67 0.25 2238 1.70 0.24
e Ver fr 128.0 128.0 1793.69 162.56 150.34 2248.86 164.56 149.98 2247.08
U Vo fo [pixel] 128.0 128.0 1667.12 152.92 128.31 1998.9 153.52 129.23 1999.51
Rlerror [mm] 0.34 0.35 0.35
BL error [mm] -0.23+£3.0 0.00+0.37 0.05+£041
GT error [mm] -0.50 £ 0.87 0.16+0.89 0.20£0.90
(Ex. Ev. E2) -1.08+£0.94 0.17+0.54 0.18 £0.56
) 40.79+ 1.04 0.20£0.81 0.19£0.82
#lterations 30+ 180 21
Time [s] 0.5 38 12

in the plot of the evolution path [see Fig. 3(c)] that is the lingertical error ) if taken vertically, and as depth errar'£) if
connecting the winning offspring at each evolution step. taken perpendicular to the planes. As can be seen from Table 1V,
the obtained accuracy is equivalent to gradient descent (and it is
B. Real Data Experiments also comparable to that obtained when control points of known
We applied EES optimization widely to calibrate motion cagocation are used, i.e., when calibration structures are adopted
ture systems [2] and 3-D scanners [1] equipped with a widl, [6], [17]). The error values confirm that the parameters esti-
range of setups and lenses. The bar length used was apprgigted through EES have no bias and accuracy equal to or better
mately 1/20th to 1/10th of the working volume diagonal and tHan that achieved through gradient descent. It should be noted
bar was moved to cover the entire working volume. During méhat for these cameras and setups, the principal points are, for
tion, the bar is oriented in the depth direction, although nevée first camera, offset by more than 34 pixels horizontally and
perfectly horizontal so as to avoid problems in classifying thé2 vertically and, for the second, 24 pixels horizontally. A typ-
ends. This allows the internal parameters to be determined wigg! evolution path (second stage of optimization) for these data
better confidence [10], [19]. An automatic classification of this reported in Fig. 4. Note how when good direction is found,
bar ends can be achieved through the fundamental matrix c##f algorithm elongates the mutation function rapidly in that
straint [25], the same algorithm allowing the bar, during motioflirection optimizing the speed without being trapped in local
to slip from the field of view of the cameras. Table IV and Fig. fninima. Regions with local minima are small areas character-
show some typical results on real data. In these experiment&Z€f by heavier sampling (denser population), where the algo-
bar that carries two markers 86 mm apart was moved within tH&€hm spends some iterations before finding the way out. For
field of view of two cameras for a working volume of abougxample, a local minimum is found just before the 80th itera-
0.4 x 0.4 x 1 m® [see Fig. 1(b)]. The marker projection ontdion in the circled area [see Fig. 4(a)], where there is a transient
the image plane of the two cameras was measured automatickifease in the cost function [see Fig. 4(b)].
by the Elite system [3] with subpixel accuracy. A total of 1250 This indirect evolution path is typical and is obtained using
bars were collected in 12.5 s; from these, 400 were extractdavide range of setups and lenses. The tortuous path is due to
randomly for calibration. In this case, unlike in simulations, thé1e high cost in the region between the image center and the
true 3-D position of the bar extremes is not available, so a difue position of the principal points that discourages any EES
ferent GT accuracy test was introduced. A rectangular grid céfpere. A denser sampling of the image plane in the first stage
rying 30 equally spaced markers (five rows by six columns, withiould provide the second stage with a starting parent closer to
adjacent marker spacing of 50 mm) is surveyed in four paralléle optimum. However, as the region around the optimum is a
positions with 200-mm separation one from the other. The 3A@ry narrow valley, the search for a population element lying
marker position is reconstructed with the calibration parametexsthe bottom of the valley would take much longer. Thus, the
and any error in distance between a marker and the grid cerftggh cost in terms of computational time has discouraged this
is assumed as the horizontal erréx) if taken horizontally, as approach.
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VI. SUMMARY 2) Optimization Parameters:
EES optimization was applied to calibrate motion capture sys-t Generation (iteration step).
tems [3] and 3-D scanners [1] that had a wide range of setups’ Fitness
and lenses. Cumbersome calibration grids [6] were substituted -
by a simple bar that moves within the working volume; this new 1 N2 )
powerful calibration technique has the same accuracy and relia- J=a N—/2 Z(dﬂ - 1)
bility as the grids, but expends much less time and effort. It can =1
be applied in many fields, allowing motion capture systems and 1 N2 o2 42
. . P . mtyp mtjQ
3-D scanner instruments to be calibrated easily in the most vari- + 7 N7 Z < 5 )
able working conditions. The combination of a stochastic search, / j=1
such asthe oneimplemented inthe{(1)-ES and the covariance T . )
w = [ug Ve Ue, Ue,|'. Population element:

matrix-based search in (\)-ES, led to a solution in quasi-real
time and, above all, to the avoidance of local minima, which can
originate from poor initialization. The EES technique is suitable
for all those optimization problems where the cost function con- (1 + 1)-ES Optimization (First Stage)

tains complex nonlinear relationships between the optimizationh(t) Amplitude of the region of search regioh{+1 =
variables. Discovering when and where EES optimization is the 1/ \/log(t + 2).

most, or the least, suitable technique remains for futurework. (5

[ei]ea].
wy, ws; Parents and offspring of the population.

Amplitude of the search region when the first stage is
completedh ") ~ r(® /2 = + = 30.

APPENDIX A I'®  Region of search.
TAXONOMY o) Standard deviation of the mutation function® =
Scalar values are denoted in italics, vectors and matrices in h(0) /5.
bold italics. The parameters are subdivided into calibration andm ~ Empirical value for updating [see (7)]:m = 0.851/ P
optimization and into parameters to be set by the user or auto- [19].
matically set internal parameters. q Ratio between winning offspring and winning parents.
A. Parameters to be Set by the User (1, A)-ES Optimization (Second Stage)
L True distance between the bar extremes (bars™ Global step sizep® = r{H) /5.
length). HY Covariance matrix of the mutation func-
¢u X q,  Target dimension. tion: H® = I.
D Dimension of the search domai(= 4 for e Matrix containing the square root of the
camera calibration). eigenvalues o .
R(O) Initial dimension of the search region B® Matrix containing the eigenvectors of
for (1 + 1)-ES algorithm (1st stage). H®.
h(® = min(q, /10, ¢,/10) in our case. s Evolution path at step.
sff) Normalized evolution path at steép
B. Parameters Internal to EES s Covariance matrix of the evolution path
1) Calibration Parameters: at iteration step.
P=[Xp,Yp, Zp, 1]* 3-D point. ap €]0, 1] Determines the tiLne of averaging the
C; =[X¢,, Ye,, Zc,|¥ 3-D coordinates of the point distribution:s®s®")" ap = 2/D?.
perspective cente€; of the ith as €]0, 1] Determines the decay constant for the
camera. evolution paths®a, = 1/v/D > ay.
p; = [Uup,, vp,|” 2-D point on the image plane of the a, = /a;(2 — a;) Normalizes the variance o&® by
ith camera. solving1 = (1 — a,)? + &2. For
F Fundamental matrix. as = 1/VD, ay = /(2\/5_ 1)/D.
K; Matrix containing the internal pa- Damping of the step size variation be-
rameters of theth camera. tween successive generations= 0.1.
D Matrix containing the external pa- ¢ =vD(1-
rameters. . , . 1/4D +1/21D?) Approximates the expectation of tyg,
T, =1/|Tl Zf)'/a:]"éfnlocat"’” vector with uni- distribution, which is the distribution
k 3-D space scale factof'(= £T,). ?;ntggnlle\?egé?oﬁ;ﬁag(o’ 1) distributed
d; Distance between the bar extremes '
Eﬁf\gulgrr:gtthhe) gcs)g]rrﬁ);::g gééﬁg%ﬁcap Output Parameters (Calibration Parameters)
parameters. ¢; = [ue,, ve,, 11T Principal point of the image plane of the
Eip Intersection error for poinP com- ith camera.

puted at framg'. fi Focal length of théth camera.
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R = R(w, ¢, k) Relative orientation (a function of three
independent rotations!, ¢, ).

T=(Cy—-Cy)=

(X7 Yr Z7|* Relative location (base line).

APPENDIX B
3-D RECONSTRUCTION

When the stereo-camera parameters have been estimated t
3-D position of a poin#” can be determined as the intersection
point of the two optical rays. These are the straight lings [

andr in Fig. 1(a)] through the projection d@?, p, andp, onto

(1]

(2]

(3]

(5]

the image plane of the two cameras and the perspective centers

C; andC5. Due to noise omp; andg;, these two straight lines

generally do not intersect and the 3-D reconstructio#dies

(6]

in the midpoint of the minimal distance segment [6]. The two 7]

straight lines have the following:

(p;, — Cy)
P, =C;+h: 21— =C,+hjl; (B1)
R VY o Lo
where
C; equals zero;
C, equalsT;
l;  director cosines.
Minimizing the 3-D distance;,; betweenP; andP-
et = ||P1 — P (B2)
a linear system is obtained, where
T+ @di)Hdr
]7/1:(1—’_(21})2) (B3a)
1-5LL
T+ omnnr
hoy = % (B3b)
1-5LL
The 3-D reconstruction aP is obtained as
T
p_ hily + (T + hols) (B4)

2
where thd;s are a function of the calibration parameters

R;(p;, — p,,)

| P R
T IRi(p; — Pl

(BS)

whereR; = I for the first camera an®R, = R for the second
camerap; = [up,, vp,, —fi]* [10]. The minimum distance be-

tween the two intersecting rays can be obtained from (B4)
e, = ||hily — (T + holy)]|. (B6)

The distance between two 3-D poirtsand@ is computed as

hily + (T + hols) o halh + (T + hols)
2 ,, 2

d=

Q
(B7)
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