

	Markov R	andom Field	
Given (S, P) we can d that is in \mathcal{N}_{p} . Then	efine a set of random va refore we define a rando	lues, $\{f_k(m)\}$ for each element defined by <u>om field</u> , \mathcal{F} , over S:	S,
$\mathcal{F}(\mathcal{N}_{p}) = \{f_{k}(m) \mid m \in$	$\in \mathcal{N}_{\mathrm{p}}$ } $orall \mathrm{p}$		
Under the Markovian	hypotheses:		
$P(f(p)) \ge 0 \forall p$		Positivity	
$P(f(p) g(P-\{p\}) = P(p))$	$f(p) \mid g(\mathcal{N}_p)\}$	Markovianity	
2 expresses the fact th gradient), is the sa pixels, that is the v	at the probability of p as me considering in p all t value of f depends only o	ssuming a certain value, f (e.g. a certain the pixel of P but p, or only the neighbor on the value of the pixels in \mathcal{N}_p and not in	ı p.
the random field ${\mathcal F}$ is	named Markov Rando	m Field.	
A A 2017-2018	51/89	http://borabese di u	ınimi it\

	Choice of the Gibbs p	oriors 🌋			
	We choosed $ \lambda Pf ^2$ as a quadratic functional, but not specifie	ed P.			
	P is ofted chosen as a smoothing operator. The rationale is that the noise added to the image is often white (both Gaussian and Poisson) over the image as there is no correlation between adjacent pixels. Therefore its spatial content is unform and with a larger bandwidth that the signal.				
	As a smoothing operator P is often a differential operator, whic	h penalizes edges.			
	$J_{R}(\mathbf{f}) = \sum_{c \in C} \phi_{c}(\mathbf{d}^{k} \cdot \mathbf{f})$				
	k is the order of the derivative ϕ_c can be l_2 norm (total variation), squared (Tikhonov)				
	k = 2 difference of gradients → piecewise linear areas. k = 3 difference of Hessian → piecewise squared. Neighbor of order higher than 2.				
A.A. 2017	7-2018 57/89	http:\\borghese.di.unimi.it\			

29

	Non- (Char	quadratic potentials at a solution and the second s	<u>i</u>	
1.	$\phi(t) \geq = 0 \forall t \qquad \phi(0) = 0$	Derives from the definition of potential		
2.	Φ '(t) \geq = 0 \forall t	Semi-monotone derivatives		
3.	$\phi(t) = \phi(-t)$	Positive and negative gradients are equally considered		
4.	$\phi(t)\inC^1$	This is to avoid instability.		
Up to now quadratic potentials are OK				
5.	$\frac{\varphi'(t)}{2t}$	The potential increase rate should decrease with t.		
6.	$\lim_{t\to\infty}\frac{\varphi'(t)}{2t}=0$	The potential increase rate should decrease for all t (at least for large values of t)		
7.	$\lim_{t \to 0} \frac{\varphi'(t)}{2t} = \cos t > 0$	The potential increases at least linearly for $t = 0$.		
A.A. 20	17-2018	62/89 http:\\borghese.di.unim	ni.it\	

	Summary	
	MAP estimate can be seen as a statistical version of regularization.	
	The regularization term can be derived from the potential energy associated to an adequate neighbor system defined over the object (e.g. over the image).	
	Under this hypothesis the value assumed by the elements of the object to be reconstructed (e.g. restored or filtered image) represent a MRF.	
	Different neighbor systems and different potential functions allow defining different properties of the object.	
	For quadratic potential functions, Tikhonov regularizer are derived.	
	The discrepancy term for the data represents the likelihood and can accommodate different statistical models: Poison, Gaussian or even mixture models.	
A.A. 20	017-2018 65/89 http:\\borghese.d	li.unimi.it\

42

