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Overview

Filtering images 

MAP and Regularization

Poisson noise

A-priori and Markov Random Fields

Cost function minimization
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Teorema di Bayes
P(X,Y) = P (Y|X)P(X) = P(X|Y)P(Y)

P (X|Y) 
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We usually do not know the statistics of the cause, but we can measure the effect 

and , through frequency, build the statistics of the effect or we know it in advance.

A doctor knows P(Symptons|Causa) and wants to determine P(Causa|Symptoms)
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Graphical models

A graphical model o modello probabilistico su grafo (PGM) è un modello

probabilistico che evidenzia le dipendenze tra le variabili randomiche (può

evolvere eventualmente in un albero). Viene utilizzato nell’inferenza statistica. 
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Variabili continue

Caso discreto: prescrizione della probabilità per ognuno dei finiti valori che la 

variabile X può assumere: P(X).

Caso continuo: i valori che X può assumere sono infiniti. Devo trovare un modo 

per definirne la probabilità. Descrizione analitica mediante la funzione densità di 

probabilità.

Valgono le stesse relazioni del caso discreto, dove alla somma si sostituisce 

l’integrale. 
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x  =  causa

y  =  effetto

Teorema di Bayes

Problema

Inverso
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Images are corrupted
by noise…

i) When measurement of some physical 
parameter is performed, noise corruption cannot 
be avoided.

ii) Each pixel of a digital image measures a 
number of photons.

Therefore, from i) and ii)…

…Images are corrupted by noise!

How to go from noisy image to the true one? It 
is an inverse problem.
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A general framework

 x = {x1, x2,…, xM},     xk  RM e.g.  Pixel true luminance

 y = {y1, y2,…, yM} yk  RN e.g.  Pixel measured luminance

 y = A x + h + n -> determining x is a deblurring problem (the measuring device transforms

the image: scale + offset)

x, y are vectors. The image is represented as a vector with columns (rows) one after the other.

Role of A:

- Diagonal elements take into account that the measured signal is the original signal, scaled.

- Off-diagonal elements take into account the effect of the measure of one pixel to the 

measure of other pixels (blurring). Blurring can be introduced by lenses/sensor in 

photographic / video images. Point Spread Function of the sensor.

Role of h: offset: background radiation.

Role of n: measurement noise.

It is a general framework for measurement systems. It is a linear framework.
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Filtering (denoising)

 x = {x1, x2,…, xM},     xk  RM e.g.  Pixel true luminance

 y = {y1, y2,…, yM} yk  RN e.g.  Pixel measured luminance

 y = I x + n -> determining x is a denoising problem (the measuring device introduces

only measurment error)

Role of I:

- Identity matrix. Reproduces the input image, x, in the output y. 

Role of h: offset: background radiation has been compensated by calibration.

Role of n: measurement noise.

 y = I x+ n 

Determining x is a denoising problem (image is a copy of the real one with the addition of noise)

y x
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Gaussian noise and likelihood

 Images are composed by a set of pixels, x (x is a vector!)

 Let us assume that the noise is Gaussian and that its mean and variance is equal for 

all pixels;

 Let yn.i be the measured value for the i-th pixel (n = noise);

 Let and xi be the true (noiseless) value for the i-th pixel;

 How can we quantify the probability to measure the image x, given the probability 

density function for each pixel?

 Being the pixels independent, the total probability can be written in terms of 

product of independent conditional probabilities (conditional likelihood function) 

L(yn | x):

 L(yn | x) describes the probability to measure the image yn, given the noise free 

value for each pixel, x. But we do not know these values….
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Do we get anywhere?
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L is the likelihood function of Yn, given the object X.

Determine {xi} such that L(.) is maximized. Negative log-likelihood is usually considered to 
deal with sums:

The system has a single solution, that is good. The solution is xi = yn,i, not a great result….

Can we do any better?
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if A = I

x = yn
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A better approach
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We have N pixels, for each pixel we get one measurement. 

Let us analyze the probability for each pixel:                 . If we have more measurements for 

each pixel, we can write:

 iin xyp |,
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If noise is independent, Gaussian, zero mean, the best estimate of xi is the samples average, 

this converges through the distribution mean of the measurement taken in the position i. 

But, what happens if we do not have such multiple samples or a few samples?
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Overview

Filtering images 

MAP and Regularization

Poisson noise

A-priori and Markov Random Fields

Cost function minimization
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The Bayesian framework

We assume that the object x is a realization of the “abstract” object X that can be 

characterized statistically as a density probability on X. x is extracted randomly from X (a 

bit Platonic).

The probability p(yn| x) becomes a conditional probability:  J0 = p(yn| x = x*) 

Under this condition, the probability of observing yn can be written as the joint probability of 

observing both yn and x. This is equal to the product of the conditional probability           

by a-priori probability on x, px:

p(yn, x) =

As we are interested in determining x, inverse problem, we have to write the conditional 

probability of x, having observed (measured) yn : p(x | yn). We apply Bayes theorem:
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A-priori types

 Any statistical information on the distribution of x.

 It can be the structure defined in terms of variations (gradients)

 It can be the amplitude of the signal defined in terms of power.

 It can be a morphable model

 …..
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MAP estimate with logarithms

Logarithms help:
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We maximize the MAP of x | yn, by minimizing: 
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We explicitly observe that the marginal distribution of yn is not dependent on x. It does not 

affect the minimization and it can be neglected. It represents the statistical distribution of 

the measurements alone.
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MAP estimate with logarithms

We maximize the MAP of x | yn, by minimizing: 

       )(ln)|(ln)()|(ln minargminarg xpxypxpxyp n

x

n

x



Likelihood = 

adherence to the data
A-priori

Depending on the shape of the noise (inside the likelihood) and the a-priori distribution

of x(.): JR(x), we get different solutions.

 xyJ in |,0

 xJ R
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Gaussian noise on samples
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Gaussian noise on the data

Zero mean

Pixels are independent

All measurements have the same variance, 2
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-log (p(yn | x)) =  

Mean squared error

What about JR(x) = -log(p(x))? 
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Gibb’s priors

We often define the a-priori term, JR(x), as Gibb’s prior: 
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U(x) is also termed potential => JR(x) is a linear function of the potential U(x).

1/ describes how fast JR(x) decreases with U(x). 
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Ridge regression
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Nel caso del filtraggio: P = I, peso tutti i pixel dell’immagine allo stesso modo

We choose as a-priori term the squared norm of the function x, weighted by P: U(x) = ||Px2||

  21
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Non voglio pixel che “sparino”
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Map estimate with U(x) = ||x2||

What happens when we have a filtering problem?

Do we get anywhere? xk = ynk (1+l) per ogni k 
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Without l PT P large values of x are obtained where ATA is small. These are reduced by l PT P

Funzione costo quadratica

Derivo rispetto a x per calcolare il minimo:
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Which is the most adequate p(x) for 
images?

We usually ask to images to be smooth (we look at differential properties)

We look at the local gradient of the image: x.

One possibility is to use the square of the l-2 norm of the gradient: || x  ||2

This is another form of Tikhonov regularization.
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Definition of priors on groups of 
elements

 Clique is a subset of vertices of an undirected graph such that every two distinct 

vertices in the clique are adjacent; that is, its induced subgraph is complete

(Wikipedia).

 It induces a neighbouring system among elements. 

 For an image, the neighbouring system is trivial: adjacent pixels.

 Markov Random Fields. 

 Definition of probabilities on cliques. 

 Definition of probability of an element as a function of all elements inside a clique.

https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Induced_subgraph
https://en.wikipedia.org/wiki/Complete_graph
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Differential Gibbs prior
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px = p(i,j) – p(i-1,j) py = p(i,j) – p(i,j-1)

A priori term – image gradients (no 
noise)
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A priori term – image gradients 
(noise)

2

,1,1 jiji

row

xx
x

 


2

1,1,  


jiji

col

xx
x

26/89 http:\\borghese.di.unimi.it\A.A. 2017-2018

A priori term – norm of image 
gradient

No noise Noise

In the real image, most of the areas are characterized by an (almost) null gradient norm;

We can for instance suppose that ||x|| is a random variable with Gaussian

distribution, zero mean and variance equal to 2.

[Note that, in the noisy image, the norm of the gradient assume higher values  low ||x||

means low noise!]
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MAP with A-priori on the derivatives
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If we apporximate x with the finite differences: we get a linear system.
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Tikhonov regularization
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It is a quadratic cost function. We find x minimizing with respect to x the cost 

function.

This approach is derived in the domain of mathematics. It leads to the same cost 

function of the MAP approach.
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Tikhonov regularization - simulations

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model – l = 0.5

P is the gradient operator
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Tikhonov regularization – panoramic images

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model - l = 0.5

P is the gradient operator
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Tikhonov regularization - endo-oral images

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model - l = 0.1

P is the gradient operator
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Gibbs priors and Regularization

       fn

f

fn

f

pfgppfgp ln)|(ln)|(ln minargminarg  

Likelihood = 

adherence to the data
A-priori

 
i

iin AfgK
2

,)(Gaussian                                                     














 







 )(

1

1
ln

fU

e
Z



)()()( fJfJfJ Ro l JR(f) = U(f)



26/10/2017

17

33/89 http:\\borghese.di.unimi.it\A.A. 2017-2018

Non-quadratic a-priori: total variation
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Tikhonov regularization - simulations

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model – l = 0.5

P is the gradient operator
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Total variation regularization - simulations

No appreciable edge smoothing with total variation

Poisson noise model - l = 0.5

P is the gradient operator
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Tikhonov regularization – panoramic images

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model - l = 0.5

P is the gradient operator
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Total variation regularization – panoramic 
images

No appreciable edge smoothing with total variation

Poisson noise model - l = 0.5

P is the gradient operator
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Tikhonov regularization - endo-oral images

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model - l = 0.1

P is the gradient operator
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Total variation – endo-oral images

No appreciable edge smoothing with total variation

Poisson noise model - l = 0.1

P is the gradient operator
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Tikhonov vs. TV (preview)

40 / 46

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Tikhonov =>

TV =>

Original image

Filtered image Difference



26/10/2017

21

41/89 http:\\borghese.di.unimi.it\A.A. 2017-2018

Cost introduced by the regularzation term

Cost increases quadratically with the local gradient in Tikhonov 
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Open problems

 Better images, but:

Non linear cost functions (non quadratic) 

Minimization does not lead to a function linear in f (because of the square 

root)  It requires non-linear iterative minimization.

Singularity in f = 0
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Role of l
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l incorporates different elements here:

- the standard deviation of the noise in the likelihood

- the “temperature”, that is the decrease in the energy of the configurations with 

their cost ()

- the normalized constant Z.

l has been investigated in the classical regularization theory (Engl et al., 1996), 

but not as deep in the Bayesian framework  l is set experimentally through 

cross-validation.
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How to set the regularization
parameter

Analysis of the residual after the estimate = Af – g

• The residual should be equal to the noise 

distribution

Gaussian case:

• l is increased until (ri, rj) =  S2 (||r||2 = 2)

• Sample covariance is equal to distribution 

covariance
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Overview

Filtering images

MAP, Tikhonov and Poisson model of the noise

Poisson noise

A-priori and Markov Random Fields

Cost function minimization
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Gibbs priors and Regularization
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Non-quadratic a-priori: total variation
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The a-priori term is a gradient and it is expressed in l2 norm
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The derivative is not linear anymore because of the square root.
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A-priori

We can insert in the a-priori term all the desirable characteristic of the image: local smoothness, 
edges, piece-wise constancy,….

The idea of defining a neighboring system is a natural one:

Images have a natural neighboring system: the pixels structure. We want to consider the local 
properties of the image considering neighboring pixels (in particular differential properties -
our vision system is particularly tuning to gradients both spatial and temporal). Ideas have 
been borrowed from physics.

Neighbor region of Sk
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Neighboring System

Let P be the set of pixels of the image: P = {p1, p2, … pP}

The neighboring system defined over P, S, is defined as H = {Np | p, p  P}, that has 

the following properties:

An element is not a neighbor of itself: pk  Npk

Mutuality of the neighboring relationship: pk  Npj  pj  Npk

(S, P) constitute a graph where P contains the nodes of the graph and S the links. An 

image can be seen also as a graph.

Depending on the distance from p, different neighboring systems can be defined:

o o o

o x o

o o o

Second order neighboring System

8-neighboring System

o

o x o

o

First order neighboring System

4-neighboring System
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Clique
Borrowed from phisics.

A clique C, for (S, P), is defined as a subset of vertices of S, an undirected graph, such that 

every two vertices in the subset are connected by an edge.

I can consider ordered sets of voxels, that are connected to p through S.

Types of cliques: single-site, pairs of neighboring sites, triples of neighboring sites,… up to 

the cardinality of Np



26/10/2017

26

51/89 http:\\borghese.di.unimi.it\A.A. 2017-2018

Markov Random Field

Given (S, P) we can define a set of random values, {fk(m)} for each element defined by S, 

that is in Np. Therefore we define a random field , F, over S:

F(Np) = {fk(m) | m  Np } p

Under the Markovian hypotheses:

P(f(p))  0 p Positivity

P(f(p) | g(P-{p})  = P(f(p) | g(Np)} Markovianity

2 expresses the fact that the probability of p assuming a certain value, f (e.g. a certain 

gradient), is the same considering in p all the pixel of P but p, or only the neighbor 

pixels, that is the value of f depends only on the value of the pixels in Np and not in p.

the random field F is named Markov Random Field.

52/89 http:\\borghese.di.unimi.it\A.A. 2017-2018

Energy in a Markov Random Field

A “potential” function, f(f), can be defined for a MRF. This is a scalar value that is a 

function of the random value associated to the pixels for all the possible elements of 

a clique:

fc(f) = 
cj

jpf )(

If we consider all the possible cliques defined for each element p, we can define a 

potential energy function associated to the MRF:

U(f) =

The higher is the potential energy, the lower is the probability that the set of random 

values of the elements of the cliques is realized, that is the higher is the penalization 

for the associated configuration.

We want to go towards minimum energy.


Cc

(f)cf
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Gibbs prior
If we consider all the possible cliques defined for each element p, we can define a 

potential energy function associated to the MRF:

U(f) =

The higher is the potential energy, the lower is the probability that the set of random 

values of the elements of the cliques is realized, that is the higher is the penalization 

for the associated configuration.

This is well captured by the Gibbs distribution, that describes the probability of a 

certain configuration to occur. It is a function exponentially decreasing of U:

P(f) = 

P(f) is a Gibbs random field, Hammersley-Clifford theorem (1971).  regulates the 

decrease in probability and it is associated with temperature in physics. Z is a 

normalization constant. NB to define Gibbs random fields, P(f) > 0, P(f)  0 U(f) 

 : there are not configurations with 0 probability.
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Gibbs priors and Regularization
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Role of l
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l incorporates different elements here:

- the standard deviation of the noise in the likelihood

- the “temperature”, that is the decrease in the energy of the configurations with 

their cost ()

- the normalized constant Z.

l has been investigated in the classical regularization theory (Engl et al., 1996), 

but not as deep in the Bayesian framework  l is set experimentally through 

cross-validation.
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How to set the regularization
parameter

Analysis of the residual after the estimate = Af – g

• The residual should be equal to the noise distribution

Gaussian case:

• l is increased until (ri, rj) =  S2 (||r||2 = 2)

• Sample covariance is equal to distribution covariance

Poisson case:

• ri tends to be larger, the larger is gi. 

• l is increased until |r|2 / g -> 1
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Choice of the Gibbs priors

We choosed || lPf||2 as a quadratic functional, but not specified P.

P is ofted chosen as a smoothing operator. The rationale is that the noise added to the 

image is often white (both Gaussian and Poisson) over the image as there is no 

correlation between adjacent pixels. Therefore its spatial content is unform and with a 

larger bandwidth that the signal.

As a smoothing operator P is often a differential operator, which penalizes edges.

k = 2 difference of gradients  piecewise linear areas.

k = 3 difference of Hessian  piecewise squared.

Neighbor of order higher than 2.





Cc

RJ )(d)( c
k

c ff f

k is the order of the derivative

fc can be l2 norm (total variation), squared (Tikhonov)
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Quadratic Priors with k = 0





PpCcCc

RJ 22
c

0
c

k p)(d)(d)( )f(fff f

k = 0 – No derivative, the same gray level – single site cliques.

It has been applied to both Poisson and Gaussian noise models

Reduces bright spots and biases the solution to low intensity values.
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Quadratic Priors with k = 1

k = 1 – First order derivatives – pair-sites cliques.

d(p,m) takes into account anisotropies in computing the distance. 

If we consider f(.) a squared function, we have another form of Tikhonov regularization:
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Quadratic Priors with k = 1

k = 1 – First order derivatives – pair-sites cliques.

If we consider f(.) a squared function, we have another form of Tikhonov regularization:
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P is the convolution with the Laplacian operator: 
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Non-quadratic potential functions, k = 1

Quadratic functions priors imposes smoothness everywhere. Large true gradients of the 

solution are therefore penalized  smoothing sharp edges.

In imaging objects tend to be piecewise smooth, but different pieces of objects are 

separated by more or less sharp edges. We want to smooth inside the object but not 

the edge. A parallel worthwhile to be investigated is with anisotropic diffusion 

(Koenderink, 1987; Perona&Malik, 1990).

We search different potential functions (Geman&McClure, 85; Charbonnier et al., 

1994, 1997; Hebert&Lehay, 1989).
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1. f(t)  = 0   t        f(0) = 0       

2. F’(t)  = 0   t

3. f(t) = f(-t)

4. f(t)  C1

5.

6.

7.

Non-quadratic potentials
(Charbonier et al., 1997)

0
2

)('
lim 

 t

t

t



Derives from the definition of potential

Semi-monotone derivatives

Positive and negative gradients are equally 

considered

This is to avoid instability.

Up to now quadratic potentials are OK

The potential increase rate should decrease with t.

The potential increase rate should decrease for all 

t (at least for large values of t)

The potential increases at least linearly for t = 0.
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Few non-quadratic functions 
(Vicedomini 2008)

Asymptotic linear behavior

Asymptotic log-like behavior Why not simply              ? 
2t
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Results
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Summary

MAP estimate can be seen as a statistical version of regularization.

The regularization term can be derived from the potential energy associated to an 
adequate neighbor system defined over the object (e.g. over the image). 

Under this hypothesis the value assumed by the elements of the object to be 
reconstructed (e.g. restored or filtered image) represent a MRF. 

Different neighbor systems and different potential functions allow defining different 
properties of the object.

For quadratic potential functions, Tikhonov regularizer are derived. 

The discrepancy term for the data represents the likelihood and can accommodate 
different statistical models: Poison, Gaussian or even mixture models.
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Overview

Filtering images 

MAP and Regularization

Poisson noise

A-priori and Markov Random Fields

Cost function minimization
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Poisson case

Noisei = ||A f – gni ||

We know the statistical distribution of the noise -> we now the statistical distribution of the 

second term. In case of Poisson noise we have:

For one pixel: p(gni, fi) =
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To eliminate the factorial term, we normalize the likelihood by L(gn, gn):
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It is not a distance!

It is not linear
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Gibbs priors and Regularization
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What happens if noise is Poisson?

       fn

f

fn

f

pfgppfgpf ln)|(ln)|(ln minargminarg 

Poisson noise model

Squared shape for the a-priori term

|| lPf||2
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No analytical solution
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Overview

Filtering images

MAP, Tikhonov and Poisson model of the noise

Poisson case

A-priori and Markov Random Fields

Cost function minimization
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Regularization term

  f
q

REG fJ 
2

   ....
dy

df

dx

df
fJ ii

iREG

For q = 1, it has a singularity in the origin for which its derivative cannot be computed.

Solution is one of the potentials functions above, or a numerical solution:

 = 2.22 x 10-16
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Simulated images
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Gradient Descendent is slow

Algorithm

Set u(0) = {g}

Compute

Update

 Time expensive: ~ 210s (with Matlab) on 500x500 images

 We can improve the algorithm and / or the gradient computation

T

N

J
u

J
u

J 
















,...,

1



u
k1   u

k  J

 is a scalar parameter (damping factor), optimized at each iteration, such 

as it is guaranteed that J decreases (line search).
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One-step late EM (Green, 1990)

We derive it with fixed point optimization. Let us consider the cost function for Poisson 

noise:
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We suppose all the pixel constant and the variation of each pixel are 

accumulated and applied to the next step (one-step late).

 
        01ln

| ,

,

, 


















kR

kk

kn

kR

k

kkkn

kk

kkn gJ
gg

g
gJ

g
ggg

gg

ggJ
ll

   
 kR

k

kn

kkR

kk

kn

kR

kk

kn

gJ
g

g
ggJ

gg

g
gJ

gg

g

















l

ll

1

101 ,,,

This cannot be solved directly, but it can be solved using fixed point iteration:
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Expectation Maximization

From emission Tomography (Green, 1990; Panin et al., 1999)

In our case

The previous formula becomes
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Observations

Semi-convergence properties.

Damping of the solution is required.

 Damped EM, xk+1=(1-t)xk+t*EM(xk)   (damping, relaxation, reduction of the step length)

Solutions have been recently proposed for PET images (Mair&Zahnen, 2006).

Large increase in 

speed has been 

registered.

Sensitive to number of 

steps.
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Centered gradient is bad
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010
If used centered gradient to computer the a-

priori, we obtain a checkerboard effect
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Different gradient possibilities
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We consider only two gradients: North-Center + West-Center

8 neighbors gradient

4 neighbors gradient
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Why not to change the norm?

We consider only two gradients: North-Center + West-Center

             1,,,1,,,,
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We do not need  anymore but we do not have continuity in the 

origin. May be we can relax Charbonnier et al. conditions….
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Experimental results

||.||2   EM1

||  ||1        EM3

||.||2   EM7

||  ||1        EM5

||.||2   EM2 – centered gradient

Increase in speed of ≈ 5x

Compiled code
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Beyond EM
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is an optimization problem, in which g has two interesting properties:

g(p)   0

 
p

tpg cos)( Flux conservation (preservation of the 

intensity of the image)

Moreover, J(.) is supposed convex. Under these hypotheses, the so 

Called Kuhn-Tucker condition for the (unique) minimum should hold:

g*J(g*; gn) = 0 

g*  0       J(g*; gn)  0 
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Split gradient (Lanteri, 2002)
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iiiiniin ggggggJ
1 1

2,, ln| l

Singularity when gradient is 0 and q < 2. 

The idea is to obtain a term > 0 strictly at the denominator.

J(g; gn) = U(g; gn) + V(g; gn)   with  U(g; gn)  0; V(g; gn) > 0

Kuhn-Tucker condition becomes: 

g*J(g*; gn) = 0    g*(U(g; gn) + V(g; gn)) = 0

We can write fixed point iteration and obtain:

g(t+1) = g(t) U(g; gn)  / V(g; gn))
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Split-gradient Algorithm

Inizialization. Choose g(0), that can be coincident with gn and compute the flux, that is 

the c = Sgn,i .

Iteration in two steps: update + normalization.

Update: 
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Relaxed Split-gradient Algorithm
(a = 1)

Inizialization. Choose g(0), that can be coincident with gn and compute the flux, that is 

the c = Sgn,i .

Iteration in two steps: update + normalization.

Update: 
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that has a very attractive multiplicative factor. This is also a Scaled gradient 

algorithm (Bertero et al., 2008)
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Determination of U(.) and V(.)

For the likelihood term: J0

U V

Gaussian case 2gn 2g

2ATgn 2(ATAg + b)

Poisson case gn / g 1

ATgn / (Ag + b)

For the regularization term: JR the derivatives of the potential function have to 

be considered (Bertero et al., in preparation) and grouped into positive and 

strictly positive values.
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Faster convergence for large number of 
iterates (from Bertero et al. 2008)

Computational time: 54.5s, 7.7s, 4.0s for a 256 x 256 image, in Matlab.

Results obtained only with Jo  EM solution.
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Real-time filtering of panoramic images

No appreciable edge smoothing with total variation

Poisson noise model - l = 0.5

P is the gradient operator

88/89 http:\\borghese.di.unimi.it\A.A. 2017-2018

Application for intensive algebraic methods

Denoising – Bayesian filtering

Deconvolution (tomosynthesis, volumetric reconstruction from limited angle of view)

Deconvolution (CB-CT, FanBeam CT)

….

Amenable to be implemented on CUDA architectures  Real-time volumetric 

reconstruction.
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Overview

Filtering images

MAP, Tikhonov and Poisson model of the noise

Poisson case

A-priori and Markov Random Fields

Cost function minimization


