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What is this about?

Probabilistic finite state automata

Reinforcement learning
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Affective Computing

@ How?
o Implementation of modules for human emotion recogpnition, based
on physiological parameters or on non-verbal communication
o Design of systems for simulating emotional states, which can
communicate emotions readable by the human user
o Models of emotional dynamics, to explain how human emotional
intelligence works and to reproduce this faculty in machines
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Affective Computing

@ ... and above all: Why?77
o To get truly intelligent machines: emotions are an important part of
our intellective faculties!
o To improve human-machine interaction, making it a bit closer to
human-human interaction

@ Application domains: entertainment (video games, home robots),
health care, social robots
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The basic model

Let us consider a basic scenario where an artificial agent and a human
partner interact.

The model for the agent’s emotional dynamics is given by a four-tuple:
(S.U, P, s(0))
where:
o S ={s1,89,...,sx} is the set of emotional states for the agent
o U ={uj.up,...,up} is the set of input (that is, the user's emotions)
o P ={Fy,P1,...} is the sequence of probabilistic transition functions:

P SxUxS—[0,1]fort=0,1,...
@ 5(0) is the initial state.
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The basic model

Therefore, our model is a Probabilistic Finite State Automaton...

Toy example:

P(S1, U1, $2) = 1
° P(S1, U2, S2) = 0.7
P(S1, U2, $3) = 0.3

The basic model

As we said, our model is a Probabilistic Finite State Automaton...
whose transition probabilities may change at each step.

So, how does it work?

For each step t:
@ The agent receives the user's emotional state (e.g. by analyzing her
facial expression);

@ Based on the agent’s current state and input, P; gives the probability
of entering each possible next state:

@ A new emotional state is chosen by the agent based on these

probabilities;
N.B.. 3o P(s,u,s") =1 for each (s,u) € S x U @ P is (possibly) modified to get Ppiq;
O Gotol.
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The basic model

We now introduce a specific terminology:

@ The initial transition probability function, P, is called personality of
the agent;

@ The current transition probability function, F;, is called attitude of
the agent;

@ The criterion that drives the update of the transition probabilities is
called nature of the agent
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The basic model

We have not mentioned, yet, how transition probabilities are being
changed...

@ Emotional inputs are grouped into K categories ¢, (e.g. “nice’
inputs)

@ Each category has an eligibility trace e¢(cy) associated

@ Each category has a set of target states T'S(c;,) associated

@ When e¢(cy) exceeds a given threshold, the probability of entering the
corresponding target states is incremented:

Prii(s,u,ts) = Pi(s,u,ts) + A Vse SsueUtseTS(cr)
Target states for each category are defined by the agent’s nature.
Example: for an imitative nature, ¢, = joyful inputs, T'S(c;) = {JOYFUL}
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Reminder: Eligibility trace

The eligibility trace in TD() algorithms keeps a history of visited states.

Here, the eligibility trace for each input category ¢ keeps a history of
received inputs:

aei_1(cx) + h(cg.uj) if the current input is

e(cr) = clustered in category ¢},
ey (cx) otherwise

@ « is the decay parameter;

@ hi(cy. u;) represents the affinity between the input and the category
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Human-robot interaction

The basic model was at first implemented in a real human-robot
interaction setting.

@ Robot has 4 emotional states
9 NEUTRAL, JOYFUL, SAD, ANCRY
@ User gives one of 7 emotional states as an input:
o the six basic emotions according to Ekman [2] (JOYFUL, SAD,
SURPRISED, ANGRY, FEARFUL, DISGUSTED), plus the NEUTRAL statt
@ Input is given via facial expressions, which are captured by the robot’
camera and analyzed by basic image processing techniques
o color segmentation, border extraction, block matching... — to get
real-time processing
o the facial expression is coded into a set of Action Units [3]
o detected AUs are then mapped into emotions through a fuzzy-like

scoring system
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Agent-agent emotional interaction

Now, let us consider two synthetic agents interacting... How do we get
there?

Simple! We use two PFSA:
Al = <S7 U,PI,S(O)1> and A% = <S7 U, PQ,S(O)2>, where:

@ the set of emotional states S is the same for both Al and 42
@ the set of possible inputs, U, is coincident with the possible states, S

@ the probabilistic transition functions, P(} and POZ, are different at
start, that is the two agents have different personalities;

@ the initial states s(0)! and s(0)? are different.

In brief: the state of Al is the input for A2, and vice versa.

A.A. 2017-2018
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Learning Attitudes

Adaptation to the partner may be attained through the probabilities
update mechanism described above...

. or, we can assign interaction goals to one agent and apply
reinforcement learning [4]

o Agent Al acts as the environment, whose states
@ are observable by the learning agent
@ can be changed by the learning agent through its own “actions”
o can be either goal or non-goal states
@ Agent A? is the learning agent, and
@ receives positive reward when the environment gets to a goal state
o has to learn a policy to maximize the long-term reward
@ Q-learning [5] is used for optimal policy discovery
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Learning Attitudes Applying Reinforcement Learning: some results

Al and A2 start as “friendly” agents. Goal for A2: making A! frequently

angry
In this framework, Q(s,a) is initialized to Pg.

A1l

@ Goal states =
{ANNOYED,
ANGRY,
FURIOUS }

A2_Neurral

At each step t:

A2_Melancholic

@ the learning agent observes state s and takes action a according to
Q(s,a): i.e., it takes action a, when seeing s, with a probability given

WORRIED

@ Success rate on

by PZ; -
0 . A2_Annoyed this instance of

Q the a_gent.observes the new state s’ and the associated reward (: 1 s e Ariieilion:

only if ¢’ is a goal state); 78%
QQ (= Pf) is updated according to Eq. 1;
0 go to (1) A2_Contempruous\ (REETED

The policy being learned is therefore the agent's attitude.
A2_Contempiuous
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Applying Reinforcement Learning: some results

A and A? start as “friendly” agents. Goal for A%: making A' frequently
surprised

Al

@ Goal states =
{WONDERING,
SURPRISED,
ASTONISHED }

@ Success rate on
this instance of
interaction:
95%

A2_Disiiking

A2_Wondering
ar
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Applying Reinforcement Learning: some results

Let us go back to the 1st example: Al is “friendly”, A2's goal is to make it angry.
A? has learnt the appropriate attitude... but now A''s personality changes!

@ Goal states =
{ANNOYED,
ANCRY,
FURIOUS }

@ Success rate on
this instance of
interaction:
51%
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Quantitative behavior analysis

Problem: how can we evaluate such a model? Which quantitative
measures can we derive?

Solution: Let us resort to Markov chains theory for a description of the
asymptotic behavior of the system!
@ Which states will be the most frequent ones?

@ How long will it take to go from state ¢ to state j?
o ...
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Markov chains [6]

Given:
@ a finite set of states, S;
o a probability distribution 11(?) over S, termed the initial distribution
@ a stochastic matrix P with indexes in S, called the transition matrix
Definition
a finite homogeneous Markov chain is a sequence of random variables
{ X, }nen such that
o for every i € S, Pr(Xo = i) = uV(i)

o for every integer n > 0, i, j € S, and for every n-tuple iy.ij..... Bt
Pr(-"nﬁ»l = jl-\rli = i(l~-YI = G150y X n—-1= ill—]"\'Vl =i)=
Pr(‘\n+l T jll\n = ’)

o foreveryn e Nand i.je S, Pr(X,+1 = j| X, =) = p(i.j)
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Moreover, let us call ™) for every integer 7, the probability distribution
of X,,. Then:
@ Pr(X, =j|Xo=1i)= (Pﬂ)ij — prob. of going from i to j in n steps

-} ,LL;-R) =Pr(X,=j)= (,J,(O)IP”)J- — prob. of being in j at the n-th step

We are particularly interested in primitive Markov chains, that is chains
having transition matrix P such that

P* > 0 for some k € N
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Markov chains

A primitive Markov chain is:

@ irreducible — strongly connected transition graph

@ aperiodic — the greatest common divisor of the lengths of cycles is 1

Question time!

@ Which graph is a strongly connected one?
@ Which one is aperiodic?
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Properties of primitive Markov chains

@ There exists a unique stationary distribution 7 over S:
7 P =a

where 7’ is a left eigenvector of P corresponding to the eigenvalue 1

Q Foreveryi,jel

lim (Pn)i]_ =

n—+00

lim Pr(X, =j) = 7;

n—-+co ( " j) ¥

that is, the limit distribution of X,, is independent from the initial
state of the chain, and is coincident with the unique stationary
distribution
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Properties of primitive Markov chains

The error in the approximation of 1(™) towards 7 can be kept arbitrarily
small by controlling .

@ Foreverys >0
dTv(N(n),ﬂ') < g

for all n € N such that

n > t(1+

o dry is the total variation distance between two probability
- . - . 1
distributions: drv (11,v) = 53,5 [ — Vil
o t is the smallest integer such that P! > 0
o k is the cardinality of S
o m(T') is a coefficient defined over a stochastic matrix 1', such that

m(T) = fmax; jes{d 1es|Tu — Tinl}

logy kb —logg e — 1
— logy m(P?)

where
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Properties of primitive Markov chains - Average waiting

time for first entrance

For every j € S, let 7; be the random variable defined by
7 =min{n > 0| X, =j}

Then, E;(7;) = E(7; | Xo = i) is the mean waiting time for the first
entrance in j starting from state i.
Q Ej(1j) =1/mj for each j € S
@ For i # j, the values E;(7;) can be computed as well...
o Let G(z) be the matrix of polynomials in the variable z given by
G(z)=1- Pz
o Let 74;(2) be the entry of indexes 7, j of the adjunct of G(z):
rij(2) = (—1)"7det(G;;(2)) where Gj;(2) is the matrix obtained from
G(z) by deleting the j-th row and the i-th column

T T —Tig T
) Ei(Tj) B 3 .737‘27- 2 L where Tij = 'I"i]‘(l), Tjj = T‘jj(l), T‘gj = T':j(l)
a7
A
and 7, = r:(1)
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Markov chains and the interaction model

How can all this be related to our model?
Markov chains have no inputs!
Yes, but...

@ We can build one transition matrix, M, for the whole interaction
system
@ M(i,j) gives the probability to go from state i = (a.b) to state

j = (a'.b'), with a, a’ emotional states for agent A', and b, ' states
for A2

@ M(i,j) = Pt(a,b,a’) x P2(b,a', )

.. and so now we have all the ingredients for a Markov chain!
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Markov chains and the interaction model

We have seen that primitive Markov chains have interesting properties, so:
is our M primitive?

No! Because it is generally not irreducible...
Solution: let us reduce it!

@ M not irreducible — the transition graph has more than one strongly
connected component

@ Some of them will be essential components: once entered, they will
never be left

27134
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Quantitative behavior analysis — Limit probability of states

Let us consider again the previously shown interaction systems:

Q@ A! friendly, A% acquired a policy for making the partner angry most
of the time (fig.)

@ M;eq is composed of 15 states

o the most probable states according to 7 are
@ (ANGRY, ANNOYED), with p = 0.5148
9 (ANNOYED, FURIOUS), with p = 0.1548
9 (SAD, DISLIKING), with p = 0.0973

@ A! friendly, A% acquired a policy for making the partner surprised
most of the time (fig.)

9 M;eq is composed of 10 states

o the most probable states according to 7 are
9 (SURPRISED, WONDERING), with p = 0.6286
9 (WONDERING, ASTONISHED), with p = 0.2292
9 (ASTONISHED, DISLIKING), with p = 0.0917
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Quantitative behavior analysis — Limit probability of states

What does this analysis tell us?

@ Probability values provided by the stationary distribution are rather
close to the frequencies observed in the experiments

o the stationary distribution is a suitable descriptor of the actual behavior
of the systems even after a limited amount of steps

o the error in approximation is less than 0.001 just after 38 and 27 steps,
respectively (see Prop. 3)

@ The reinforcement learning process was effective

o the goal states defined for A' are among the most probable states of
the system in each of the considered examples
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Quantitative behavior analysis — Mean entrance times

We can define a set of starting states, SS, and a set of ending states, .S, and
use Prop. 4-5 to compute the mean entrance times for going from states in S.S
to states in £'S.

Natural choice in a learning scenario: 'S coincident with goal states...

Q@ A! friendly, A2 acquired a policy for making the partner angry most
of the time
o ES ={(a.b) | a = {ANNOYED, ANCGRY, FURIOUS}, b € S}
@ 5SS = {(MELANCHOLIC, CONTEMPTUOUS) }
@ a minimum of 5.91 and a maximum of 213.10 steps, on average, for
going from states in S'S to states in E'S (mean 77.98)

Q@ A! friendly, A2 acquired a policy for making the partner surprised
most of the time

o ES ={(a,b) | a = {WONDERING, SURPRISED, ASTONISHED}, b € S}

@ 5SS = {(NEUTRAL, ANGRY)}

@ a minimum of 3.86 and a maximum of 12.43 steps, on average, for
going from states in S'S to states in E'S (mean 7.07)
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Quantitative behavior analysis — Limit probability of states

What does this analysis tell us?

@ Probability values provided by the stationary distribution are rather
close to the frequencies observed in the experiments
o the stationary distribution is a suitable descriptor of the actual behavior
of the systems even after a limited amount of steps

o the error in approximation is less than 0.001 just after 38 and 27 steps,
respectively (see Prop. 3)

@ The reinforcement learning process was effective

o the goal states defined for A are among the most probable states of
the system in each of the considered examples
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Quantitative behavior analysis — Mean entrance times

We can define a set of starting states, SS, and a set of ending states, £'S, and
use Prop. 4-5 to compute the mean entrance times for going from states in S5
to states in E'S.

Natural choice in a learning scenario: E'S coincident with goal states...

Q@ A! friendly, A% acquired a policy for making the partner angry most
of the time
@ ES = {(a,b) | @ = {ANNOYED, ANGRY, FURIOUS}, b & S}
@ S5 = {(MELANCHOLIC, CONTEMPTUOUS)}
@ a minimum of 5.91 and a maximum of 213.10 steps, on average, for
going from states in S5 to states in E'S (mean 77.98)
Q@ A! friendly, A% acquired a policy for making the partner surprised
most of the time
@ ES ={(a,b) | o = {WONDERING, SURPRISED, ASTONISHED}, b € S}
@ 55 = {(NEUTRAL, ANCRY)}
9 a minimum of 3.86 and a maximum of 12.43 steps, on average, for
going from states in S to states in E'S (mean 7.07)
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Quantitative behavior analysis — Mean entrance times

What does this analysis tell us?

@ In the second example, the learned policy is particularly effective in
driving Al's behavior to the given goals

o just 7 steps are required, on average, to reach a goal state!
@ In the first example, the policy is less effective, meaning that about
78 steps are required, on average, to reach a goal state...

o ... however this is mainly due to two particular end states that have
very low entrance probabilities
o the other three goal states can be reached within 30 steps

http:/borghese.di.unimi.it

We proposed an emotional interaction model:

]

]
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for a human-robot, or for an agent-agent interactions scenario
having a probabilistic and time-varying nature, leading to more
life-like interactions

capable of adaptation to the interlocutor, either by the probabilities
update mechanism or by autonomous learning

with a basic structure that can easily be extended (adding/modifying
states, inputs, personalities, .. )

which can be employed, for instance, as a basis for emotional agents
in video games, or in social robotics
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