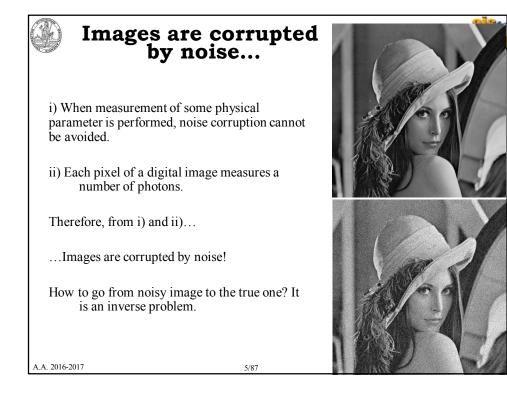
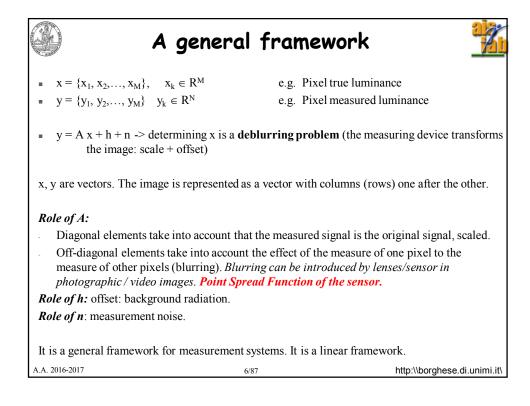
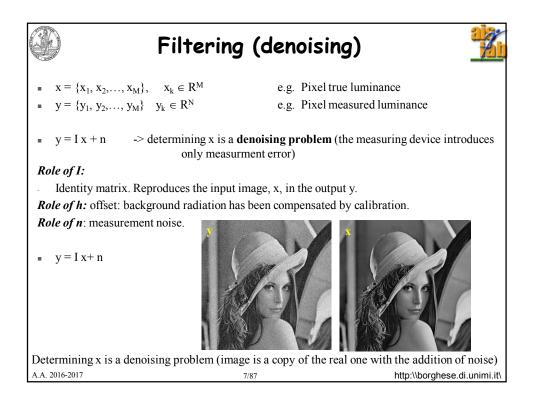
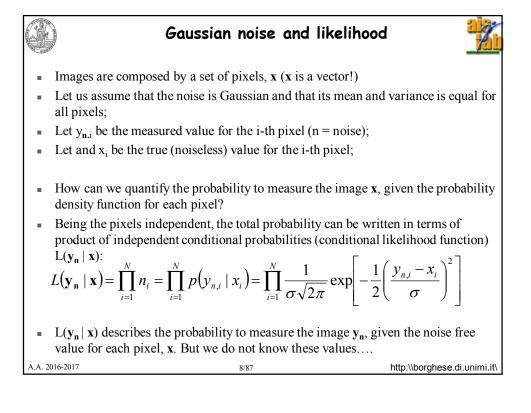


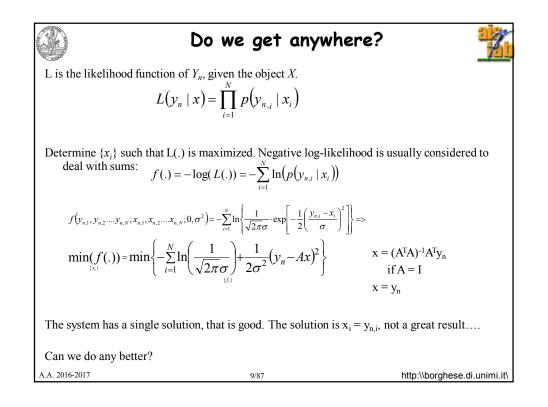
	Variabili c	ontinue		
-	aso discreto: prescrizione della probabilità per ognuno dei finiti valori che la riabile X può assumere: P(X).			
Caso continuo: i valori che X può assumere sono infiniti. Devo trovare un modo per definirne la probabilità. Descrizione analitica mediante la funzione densità di probabilità.				
Valgono le stesse relazioni del caso discreto, dove alla somma si sostituisce l'integrale. $P(X = x \in [\overline{x}, \overline{x} + \Delta x]) \int_{\overline{x}}^{\overline{x} + \Delta x} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) dx dy$				
p(x, y) = p(y x) p(x) = p(x y) p(y)		Teorema di Baye	Teorema di Bayes	
$p(x \mid y) = \frac{p(y \mid x) p(x)}{p(y)}$	Problema Inverso	x = causa y = effetto		
A.A. 2016-2017	4/87		http://borghese.di.unimi.it/	

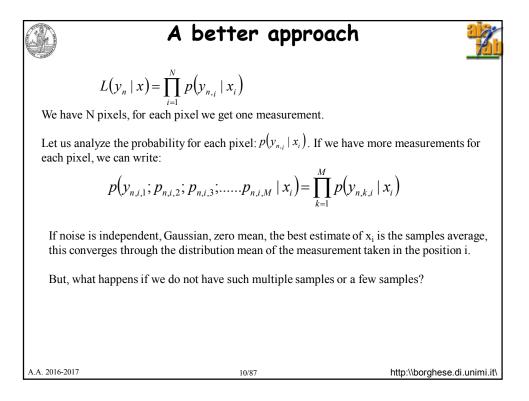


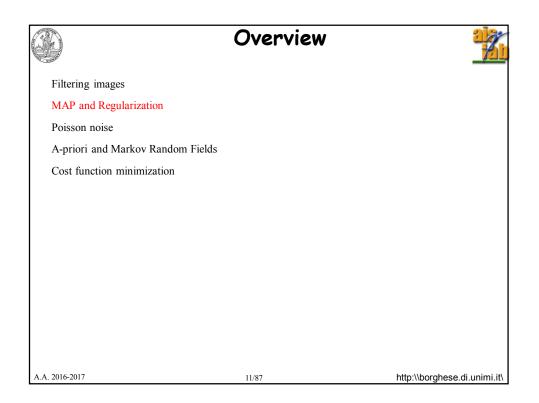


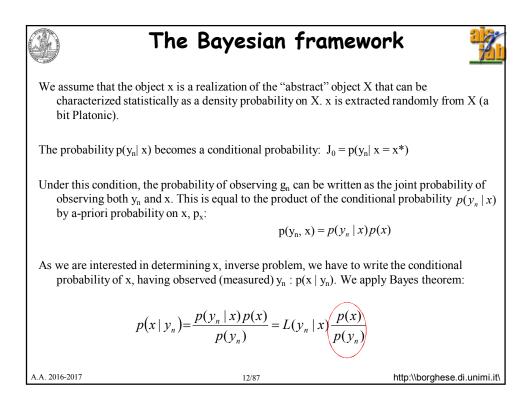


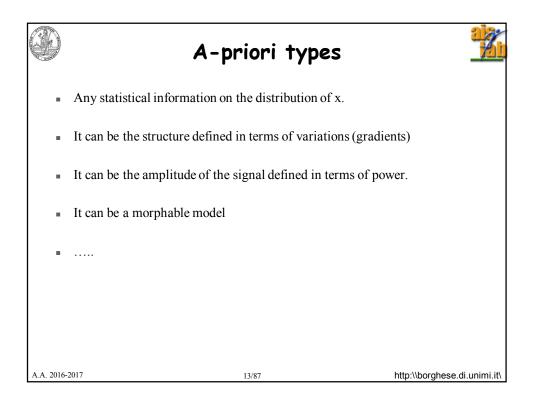


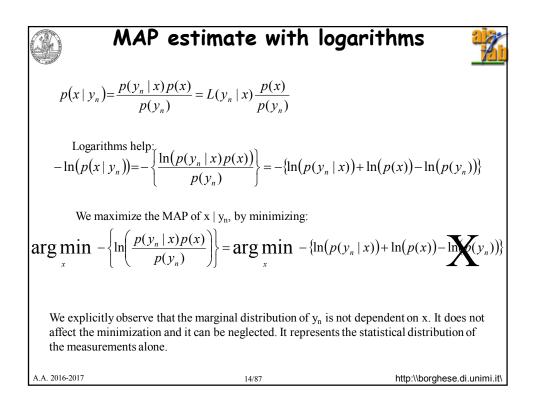


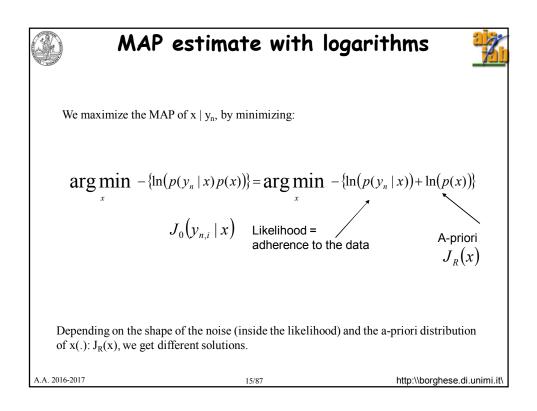


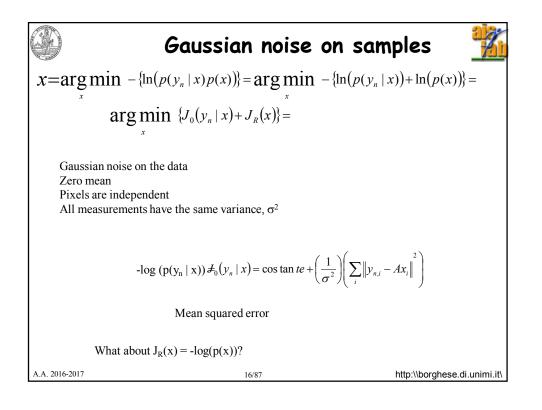


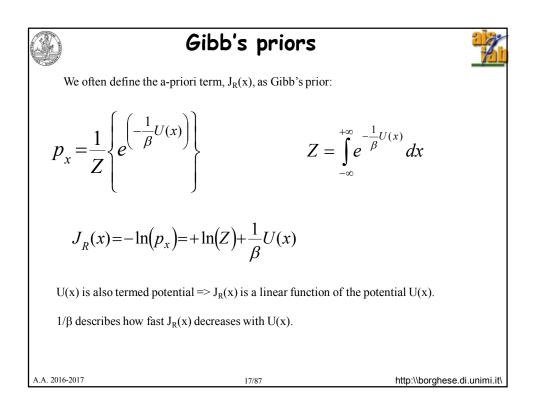


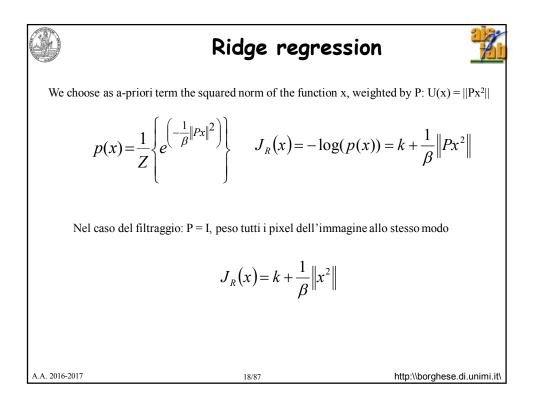


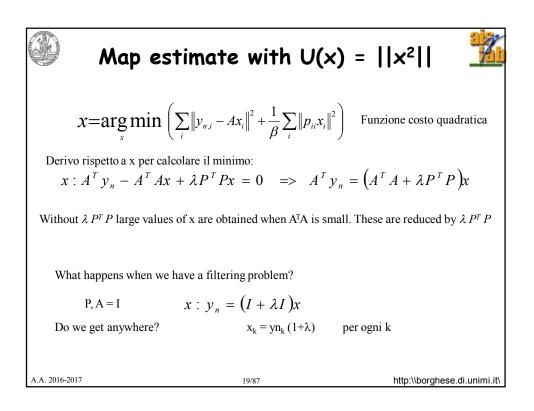


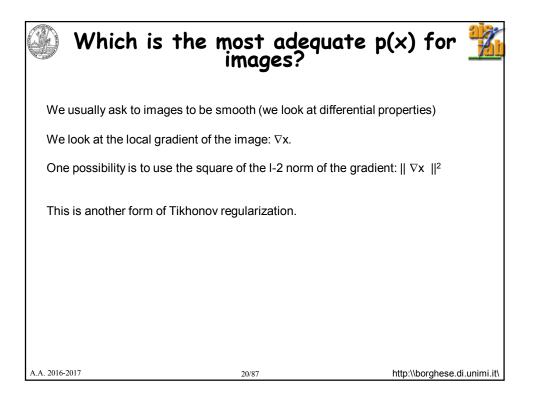


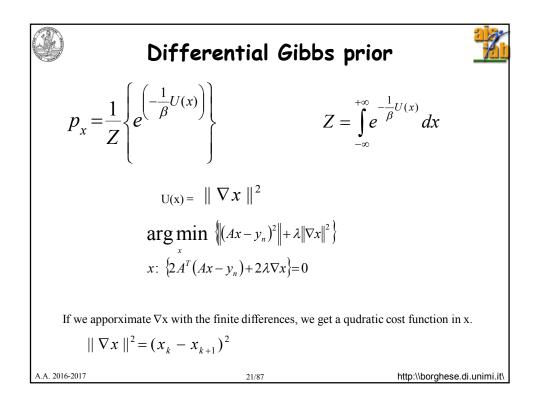


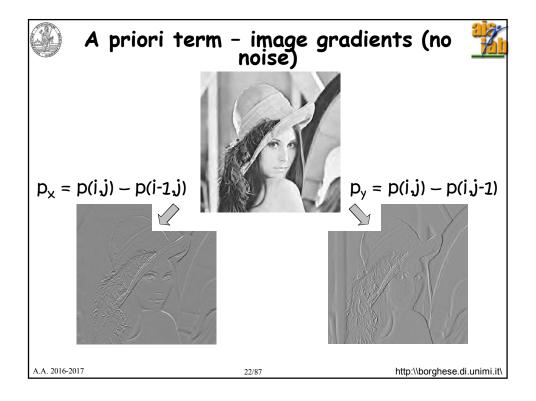


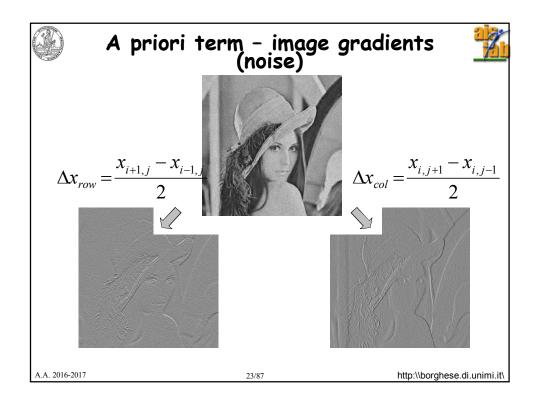


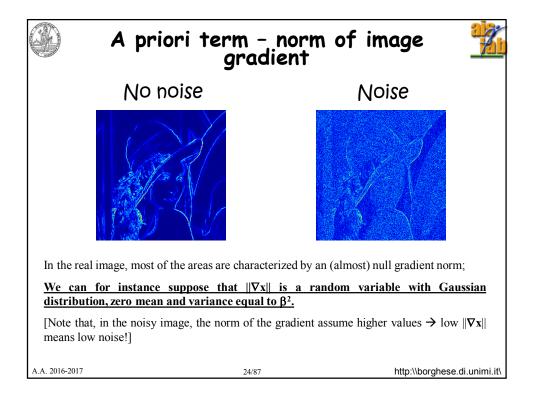


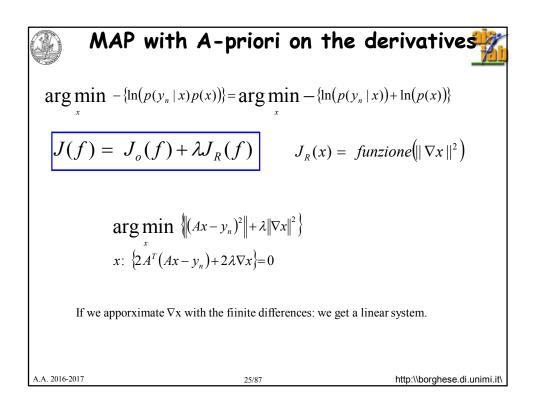




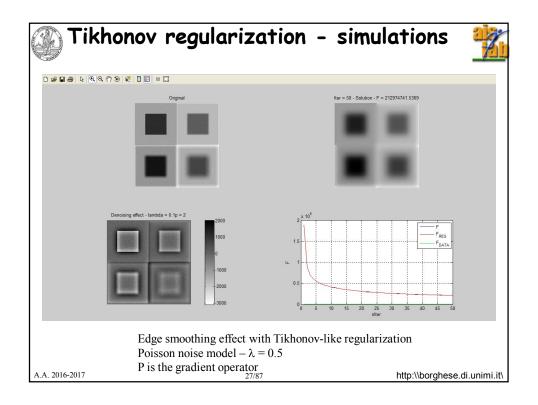


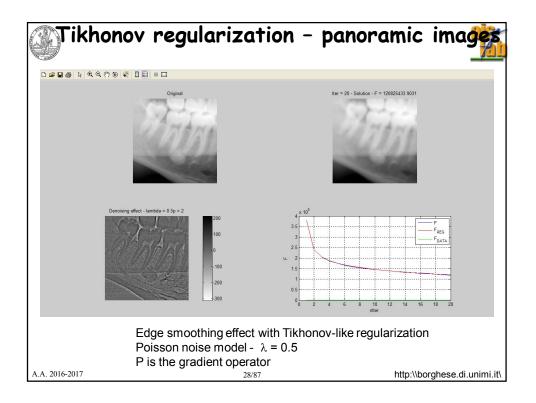


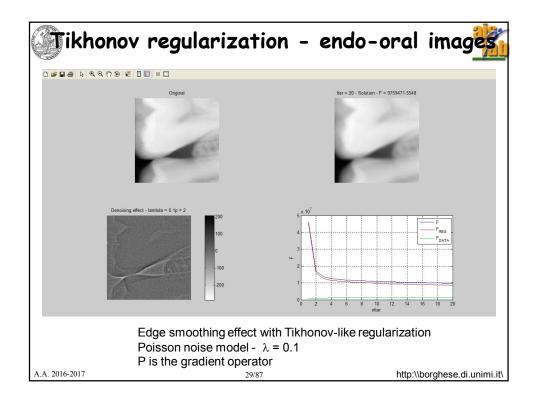


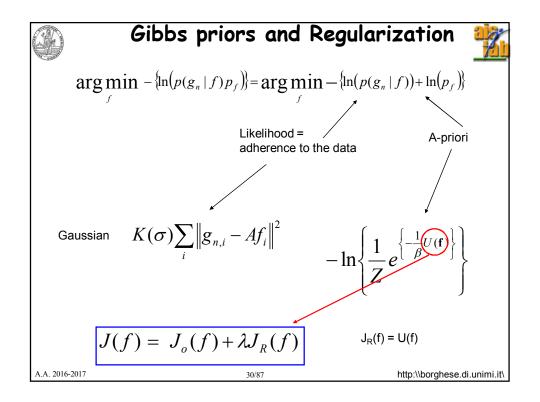


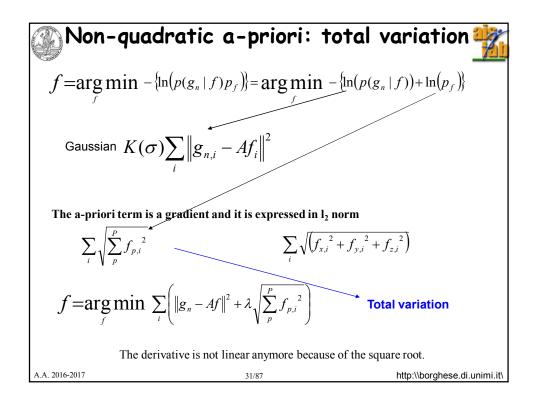
	Tikhonov regularization		
<i>x</i> =	$\underset{x}{\operatorname{argmin}}\left(\sum_{i}\left\ y_{n,i}-Ax_{i}\right\ ^{2}+\lambda\sum_{i}\left\ Px_{i}\right\ ^{2}\right)$	(cf. Ridge regression)	
	a quadratic cost function. We find <i>x</i> minimiz tion.	ing with respect to x the cost	
	approach is derived in the domain of mathe tion of the MAP approach.	ematics. It leads to the same cost	
A.A. 2016-20	7 26/87	http://borghese.di.unimi.it/	

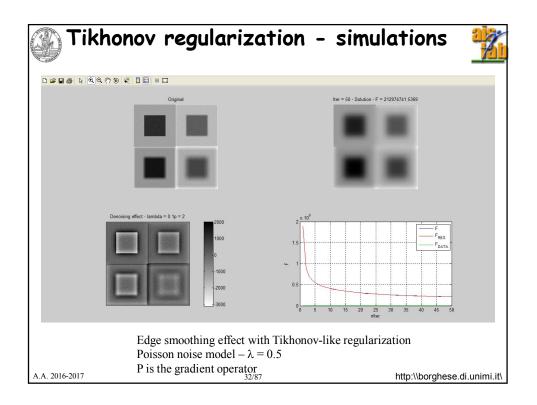


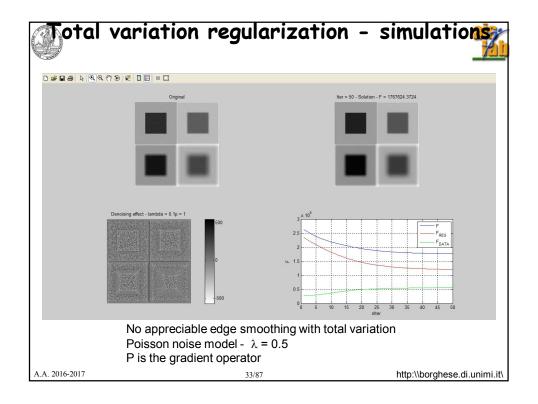


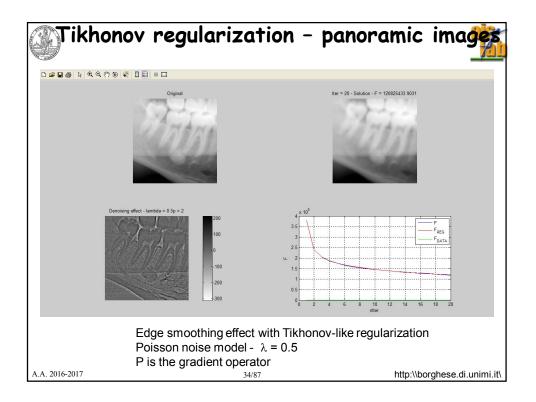


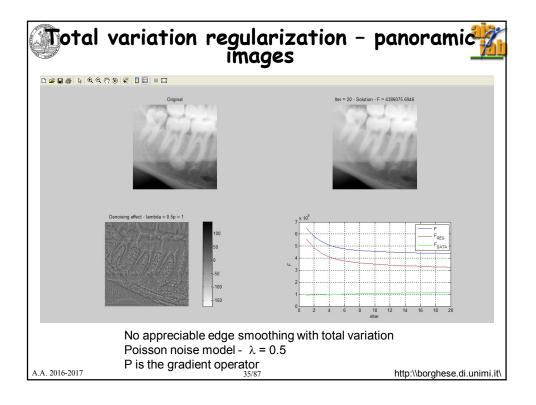


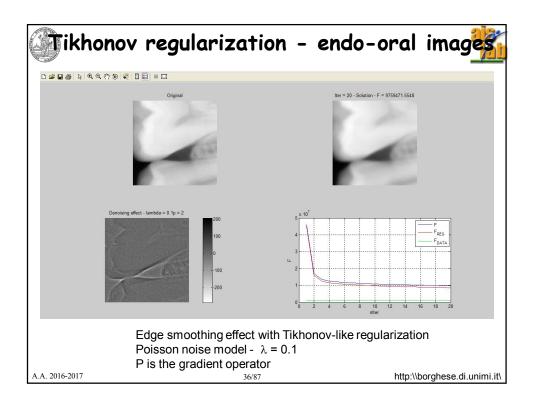


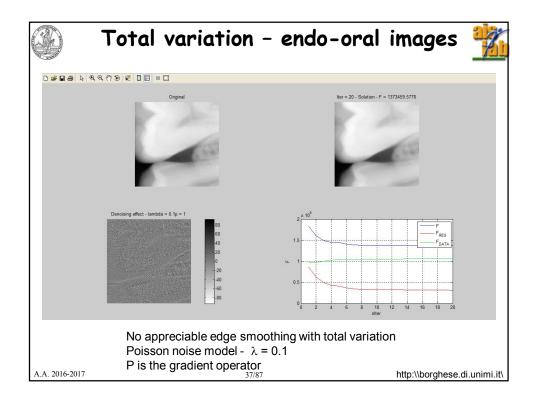


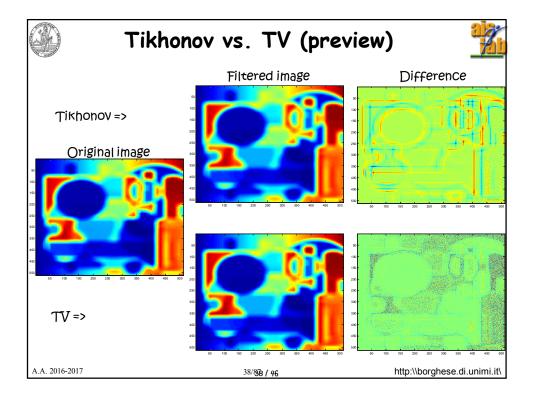


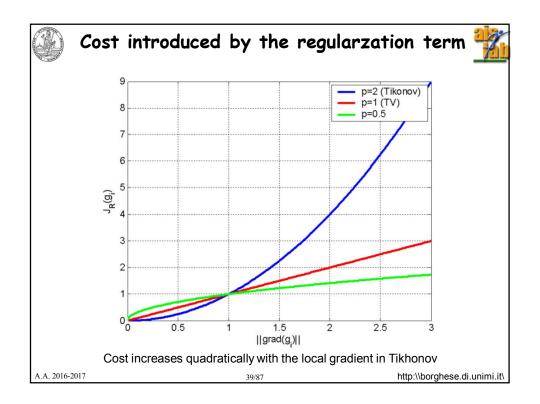


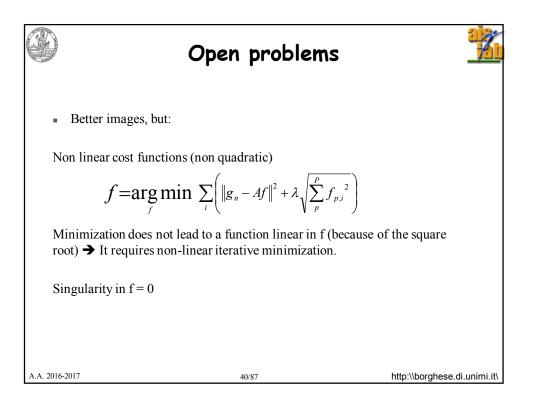


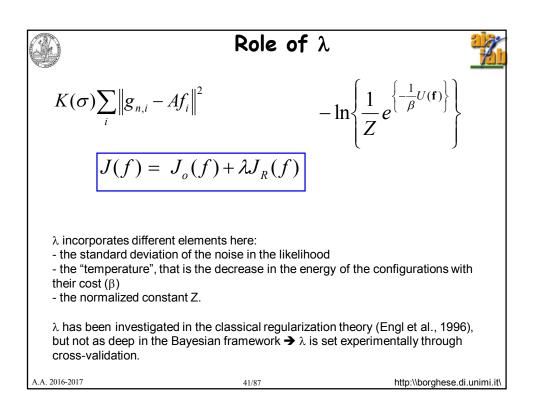


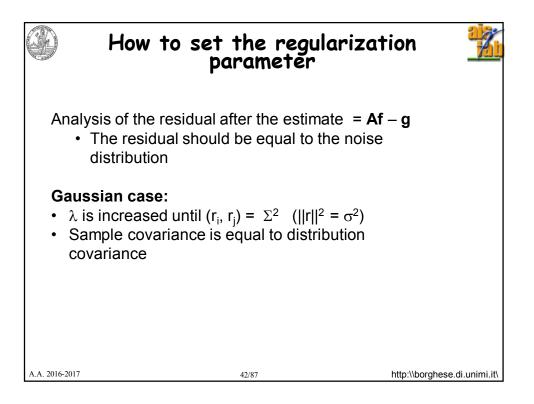


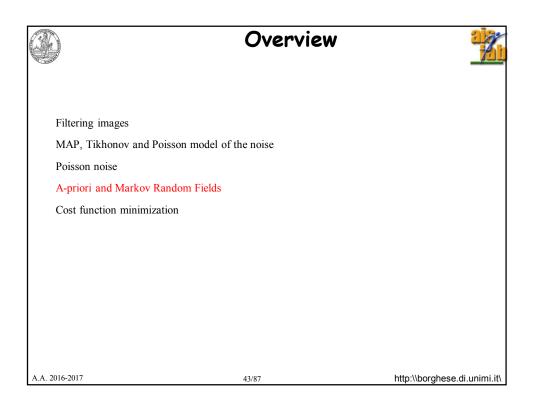


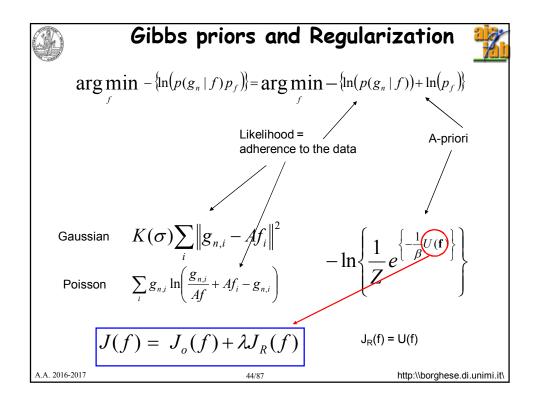


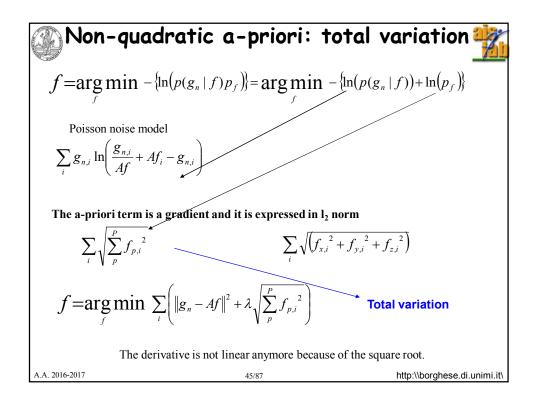


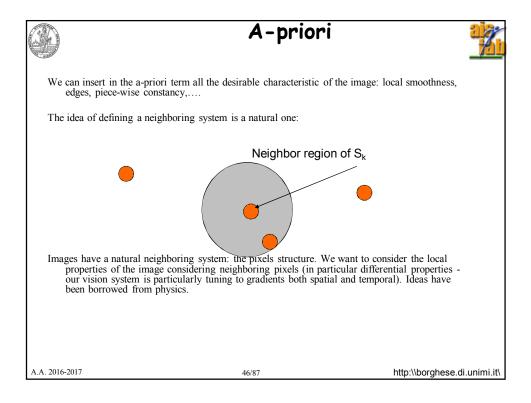


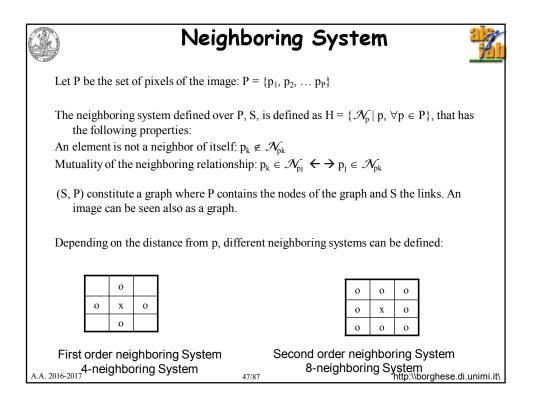


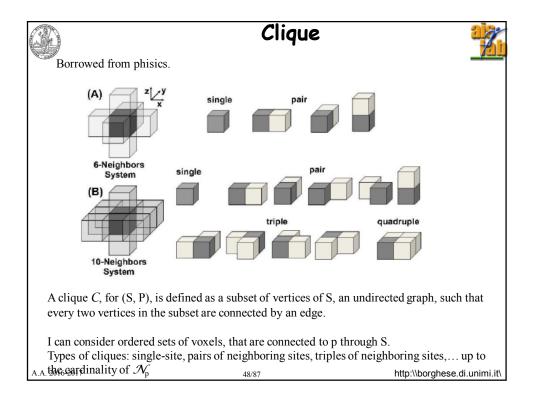




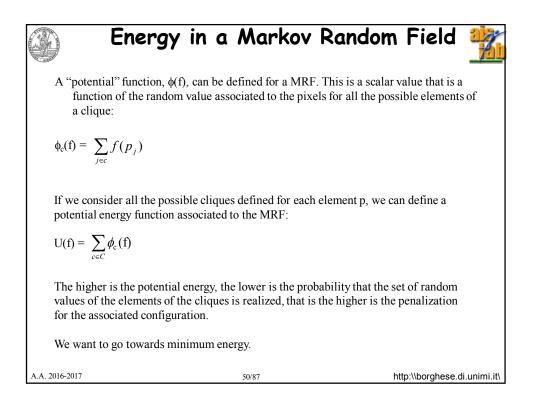


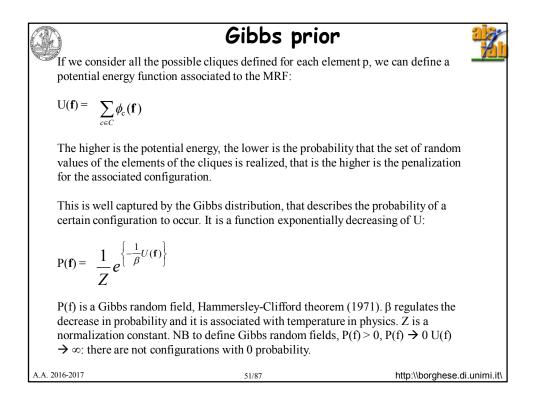


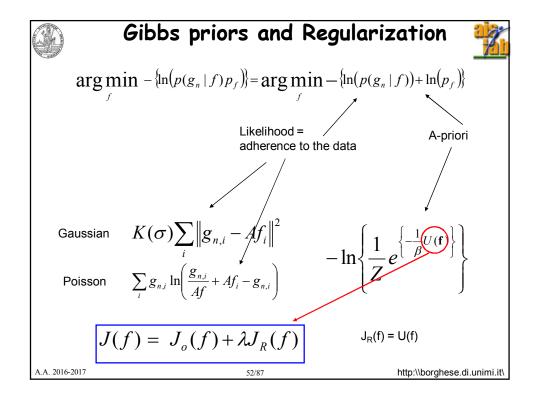


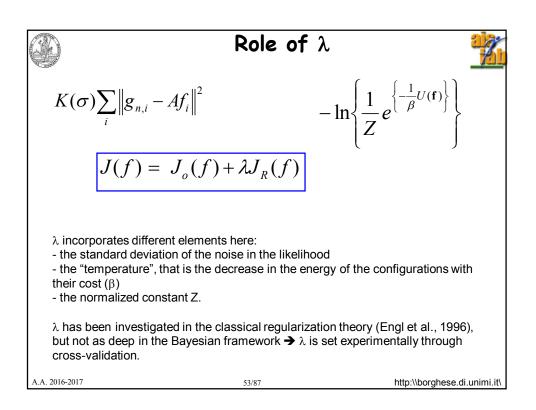


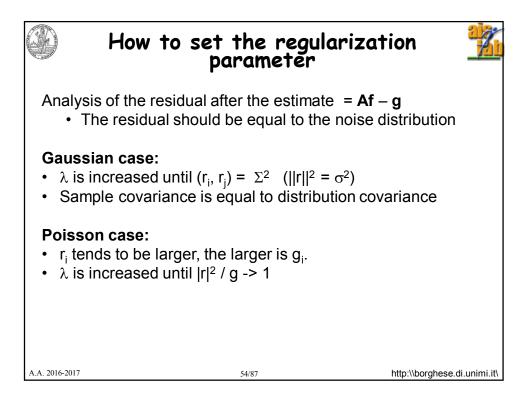
	Markov Ro	andom Field	
Given (S, P) we can define that is in \mathcal{N}_p . Therefore		ues, $\{f_k(m)\}$ for each element <u>n field</u> , \mathcal{F} , over S:	nt defined by S,
$\mathcal{F}(\mathcal{N}_{p}) = \{f_{k}(m) \mid m \in \mathcal{N}_{p}$,}∀p		
Under the Markovian hypo	theses:		
$P(f(p)) \ge 0 \ \forall p$		Positivity	
$P(f(p) g(P-\{p\}) = P(f(p) $	$g(\mathcal{N}_p)$	Markovianity	
gradient), is the same c	onsidering in p all th	uming a certain value, f (e. e pixel of P but p, or only the the value of the pixels in 2	he neighbor
the random field ${\mathcal F}$ is name	ed Markov Random	Field.	
A.A. 2016-2017	49/87	http:	:\\borghese.di.unimi.it\

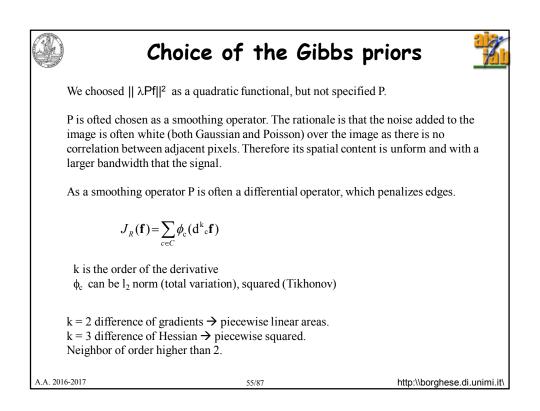


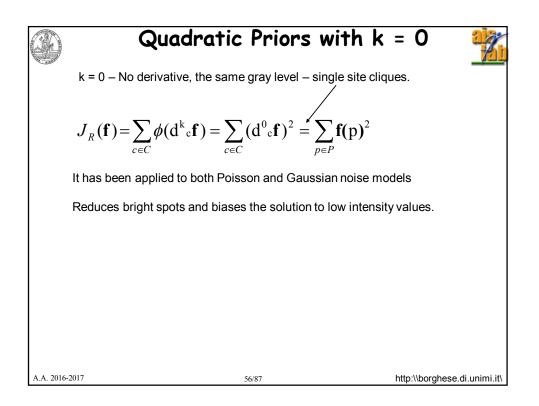




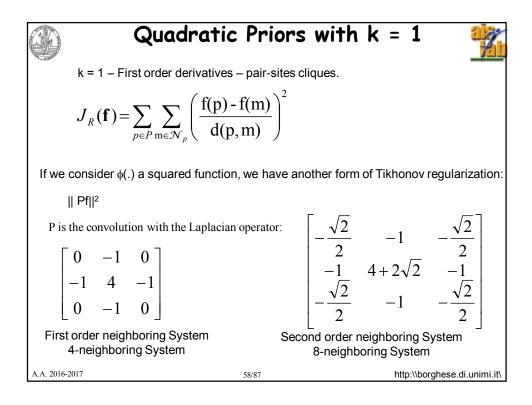


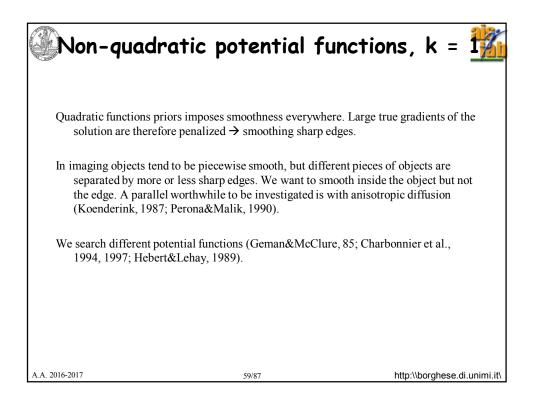




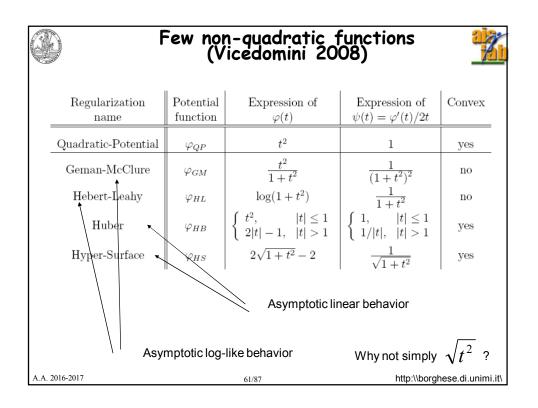


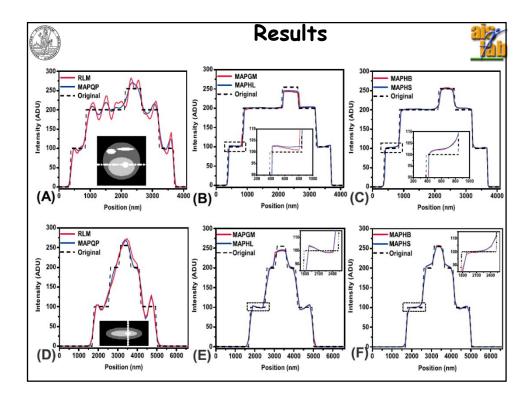




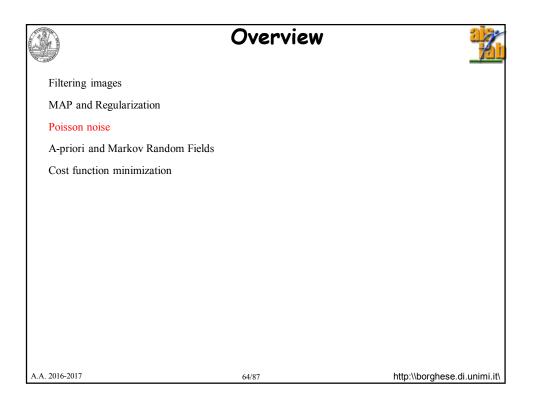


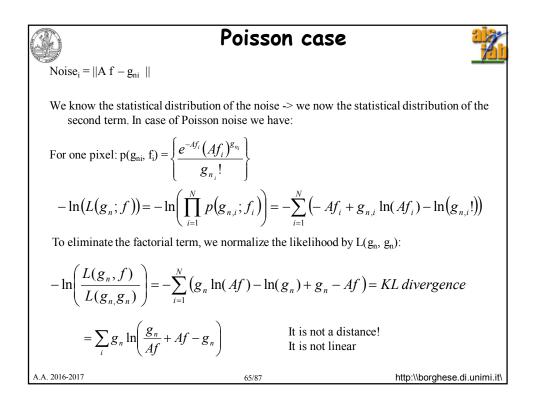
Non-quadratic potentials (Charbonier et al., 1997)		
1. $\phi(t) \ge = 0 \forall t \qquad \phi(0) = 0$	Derives from the definition of potential	
2. $\Phi'(t) \ge = 0 \forall t$	Semi-monotone derivatives	
3. $\phi(t) = \phi(-t)$	Positive and negative gradients are equally considered	
4. $\phi(t) \in C^1$	This is to avoid instability.	
Up to now quadratic potentials are OK		
5. $\frac{\varphi'(t)}{2t}$	The potential increase rate should decrease with t.	
$6. \qquad \lim_{t\to\infty}\frac{\varphi'(t)}{2t}=0$	The potential increase rate should decrease for all t (at least for large values of t)	
7. $\lim_{t \to 0} \frac{\varphi'(t)}{2t} = \cos t > 0$	The potential increases at least linearly for $t = 0$.	
A.A. 2016-2017	60/87 http:\\borghese.di.unimi.it\	

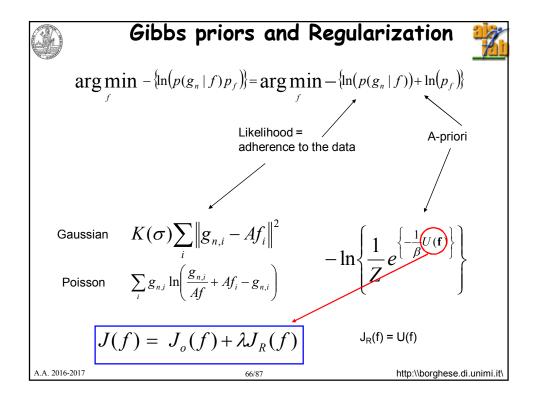


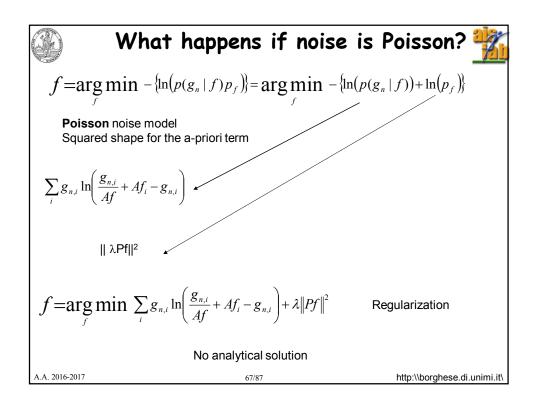


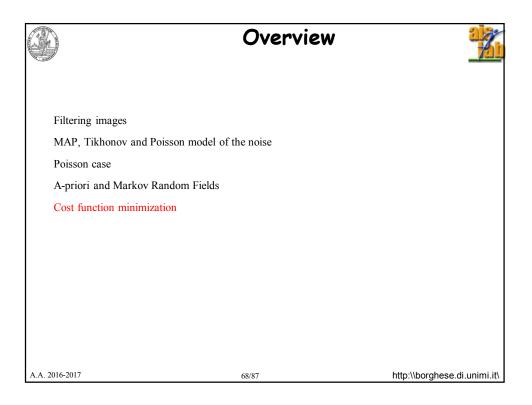
	Summary			
	MAP estimate can be seen as a statistical version of regularization.			
	The regularization term can be derived from the potential energy associated to an adequate neighbor system defined over the object (e.g. over the image).			
	Under this hypothesis the value assumed by the elements of the object to be reconstructed (e.g. restored or filtered image) represent a MRF.			
	Different neighbor systems and different potential functions allow defining different properties of the object.			
	For quadratic potential functions, Tikhonov regularizer are derived.			
The discrepancy term for the data represents the likelihood and can accommodate different statistical models: Poison, Gaussian or even mixture models.				
A.A. 2	016-2017 63/87 http:\\borghese.di	.unimi.it\		

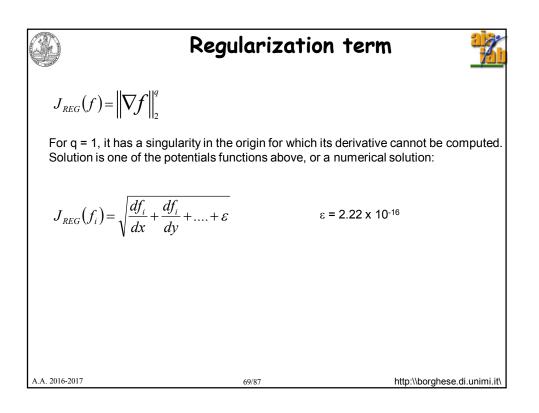


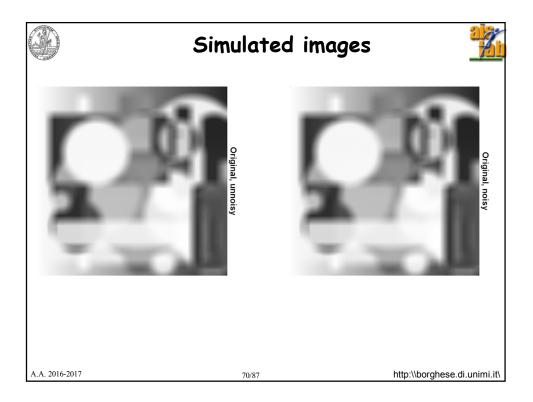


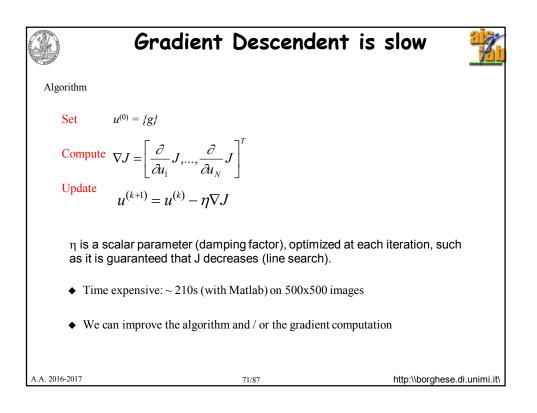


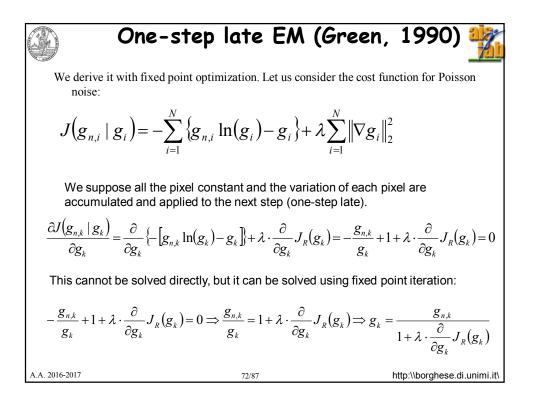


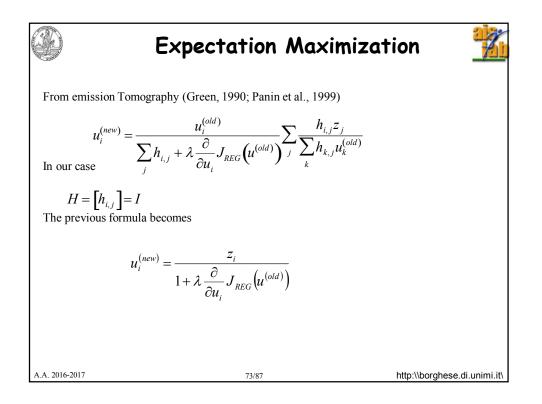


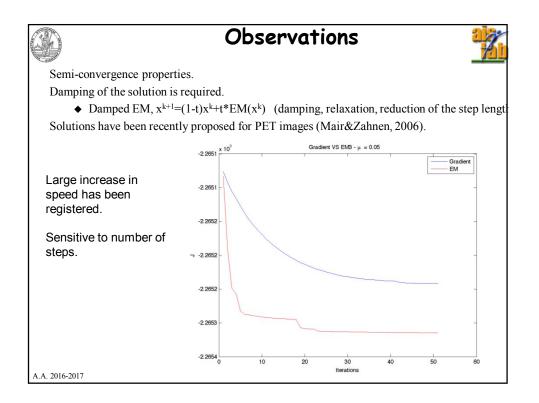


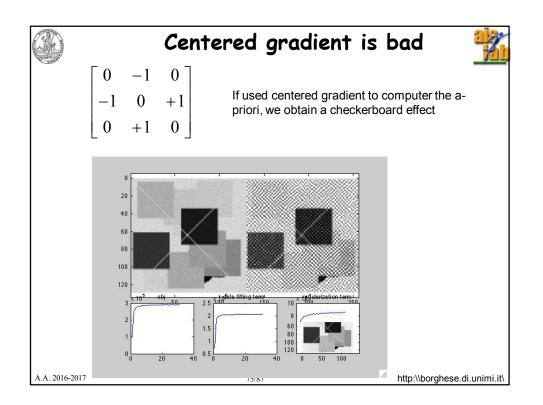


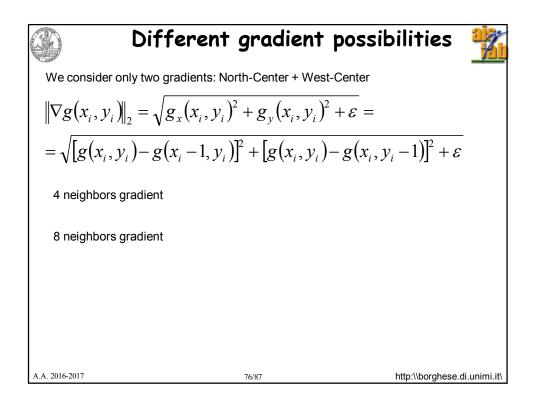


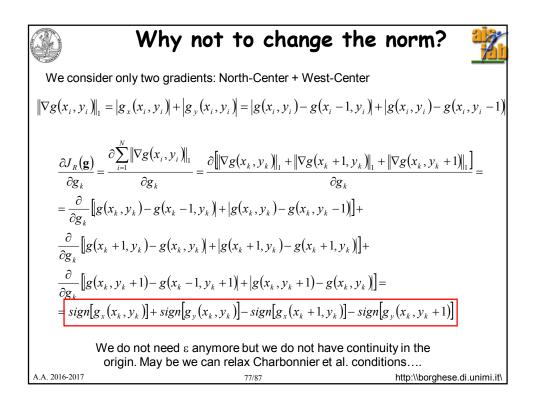


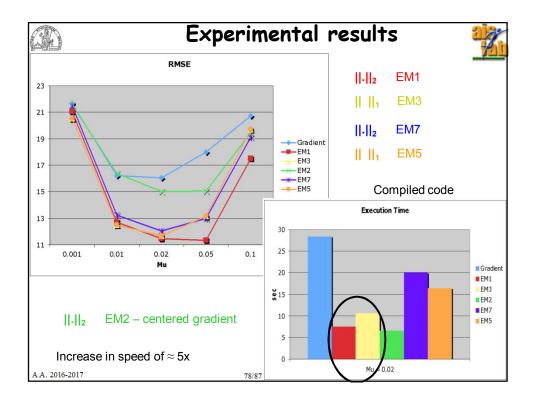




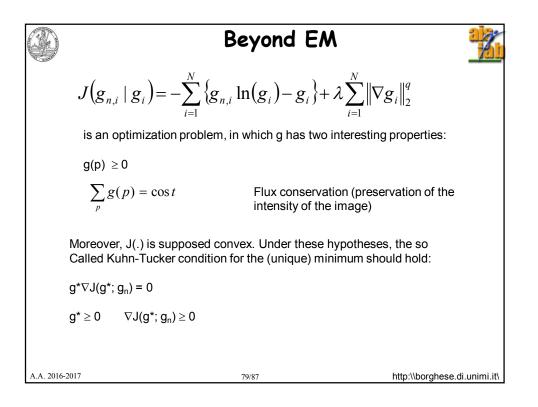


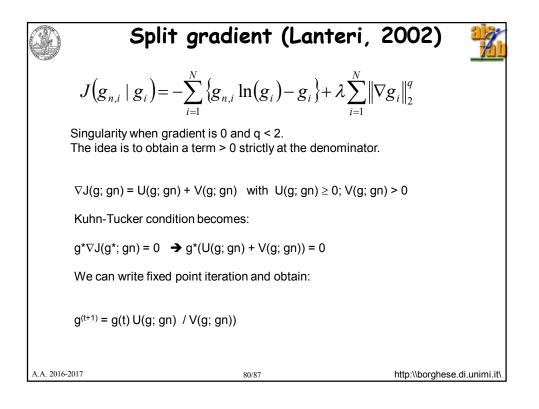


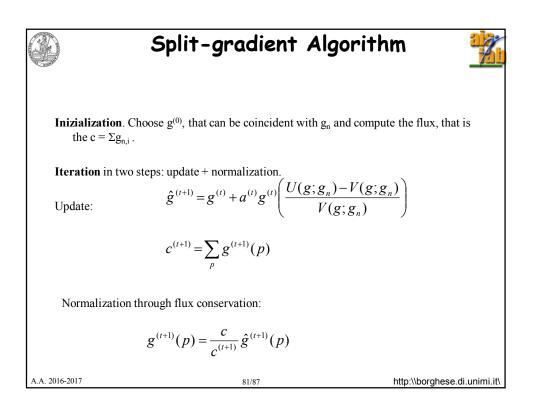


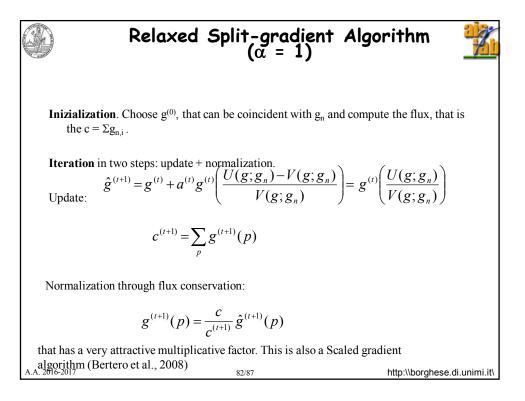


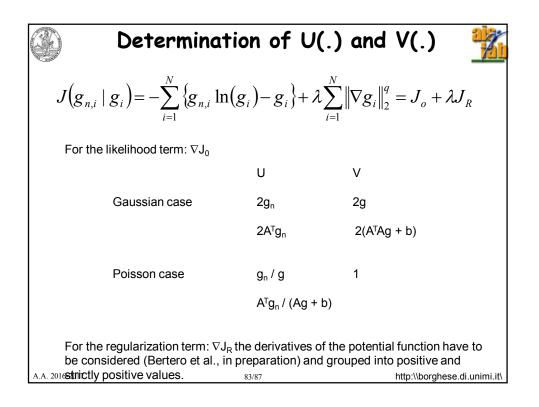
03/11/2016

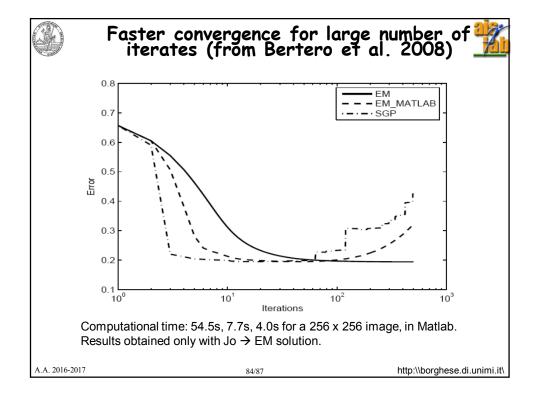


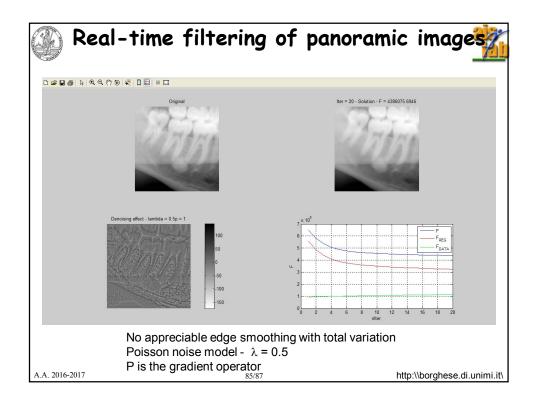












Application fo	or intensive	algebraic methods 🌇
Denoising – Bayesian filterin Deconvolution (tomosynthes Deconvolution (CB-CT, Fan	is, volumetric reconstru	uction from limited angle of view)
Amenable to be implemented reconstruction.	d on CUDA architectur	es → Real-time volumetric
A.A. 2016-2017	86/87	http:\\borghese.di.unimi.it\

