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Teorema di Bayes dl

P(X,Y) =P (Y|X)P(X) = P(X|Y)P(Y)

pxyy) - PIIXPX)
P(Y)

X = causa Y = effetto

P(Effetto| Causa) P(Causa)
P(Effetto)

P (causaleffetto) =

We usually do not know the statistics of the cause, but we can measure the effect
and , through frequency, build the statistics of the effect or we know it in advance.

A doctor knows P(Symptons|Causa) and wants to determine P(Causa|Symptoms)
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Variabili continue i

Caso discreto: prescrizione della probabilita per ognuno dei finiti valori che la
variabile X pud assumere: P(X).

Caso continuo: i valori che X puo assumere sono infiniti. Devo trovare un modo
per definirne la probabilita. Descrizione analitica mediante la funzione densita di
probabilita.

Valgono le stesse relazioni del caso discreto, dove alla somma si sostituisce
I’integrale.

X+Ax +0
P(X =xe[x,x+Ax]) | [p(x,y)dxdy
p(x,y)=p([x) p(x)=p(x| ) p(») Teorema di Bayes
~ p(y[x) p(x) Problema X = causa
p(xl y) - W Inverso y = effetto
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++ Images are corrupted
by noise...

1) When measurement of some physical
parameter is performed, noise corruption cannot
be avoided.

ii) Each pixel of a digital image measures a
number of photons.

Therefore, from i) and ii)...
...Images are corrupted by noise!

How to go from noisy image to the true one? It
is an inverse problem.
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N
A general framework i
= X={X,Xp,..., Xp}> X € RM e.g. Pixel true luminance
= V={Y, Yoo M} Yk € RN e.g. Pixel measured luminance

= y=Ax+h+n ->determining x is a deblurring problem (the measuring device transforms
the image: scale + offset)

X, y are vectors. The image is represented as a vector with columns (rows) one after the other.

Role of A:
Diagonal elements take into account that the measured signal is the original signal, scaled.

Off-diagonal elements take into account the effect of the measure of one pixel to the
measure of other pixels (blurring). Blurring can be introduced by lenses/sensor in
photographic/ video images. Point Spread Function of the sensor.

Role of h: offset: background radiation.
Role of n: measurement noise.

It is a general framework for measurement systems. It is a linear framework.
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Filtering (denoising) Ai
= X={X,Xp,..., Xp}> X € RM e.g. Pixel true luminance
= V={Y, Vo0 M} Yk € RN e.g. Pixel measured luminance
= y=Ix+n -> determining x is a denoising problem (the measuring device introduces

only measurment error)
Role of I:
Identity matrix. Reproduces the input image, x, in the output y.
Role of h: offset: background radiation has been compensated by calibration.
Role of n: measurement noise.

u y=IX+Il

Determining x is a denoising problem (image is a copy of the real one with the addition of noise)
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Gaussian noise and likelihood

= Images are composed by a set of pixels, x (x is a vector!)

= Let us assume that the noise is Gaussian and that its mean and variance is equal for
all pixels;

= Lety,; be the measured value for the i-th pixel (n = noise);

= Let and x; be the true (noiseless) value for the i-th pixel;

= How can we quantify the probability to measure the image x, given the probability
density function for each pixel?

= Being the pixels independent, the total probability can be written in terms of
product of independent conditional probabilities (conditional likelihood function)

L(yn [ %):

al al al 1 1 Vi =% ’
L = . = . L= —_— _
(yn | X) |i=1| nl |i=1| p(yn,t | xl) |i=1| o (271_ eXp 2 ( J

o

L(y, | x) describes the probability to measure the image y,,, given the noise free
value for each pixel, x. But we do not know these values....
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Do we get anywhere? .

L is the likelihood function of Y,, given the object X.

L(y, | x)= Hp(yn,IX)

Determine {x;} such that L(.) is maximized. Negative log-likelihood is usually considered to
deal with sums: N
fO)==log(L() ==Y n(p(y,, | x,))
i=1

f‘(yn,l’yn,Z““yn,f\';‘xn,l"xl7,.7.““‘xl1,."\';0’ o’ ): ’gln{ 21710' ‘exp{*%[ywo_ﬁx’ ]“:H =>
. . 1 ) = (ATA)I AT
min( £(.))=min In —Ax x = (A'A)'Aly,
(/) { > (Faj S =x) }

ifA=1
X=W

The system has a single solution, that is good. The solution is x; =y, ;, not a great result....

Can we do any better?
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A better approach ﬂ
L(y,|x)= Hp(yn,IX)

We have N pixels, for each plxel we get one measurement.

Let us analyze the probability for each pixel: P(y,,, X ) If we have more measurements for
each pixel, we can write:

M
p(yn,i,l;pn,i,Z;pn,i,B; ~~~~~ Doy |xi): Hp(yn,k,i |x1')

If noise is independent, Gaussian, zero mean, the best estimate of x; is the samples average,
this converges through the distribution mean of the measurement taken in the position i.

But, what happens if we do not have such multiple samples or a few samples?
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Overview :lﬁ

Filtering images

MAP and Regularization

Poisson noise

A-priori and Markov Random Fields

Cost function minimization
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The Bayesian framework :'ﬁ

We assume that the object x is a realization of the “abstract” object X that can be
characterized statistically as a density probability on X. x is extracted randomly from X (a
bit Platonic).

The probability p(y,| x) becomes a conditional probability: J, = p(y,| x = x*)

Under this condition, the probability of observing g, can be written as the joint probability of
observing both y, and x. This is equal to the product of the conditional probability p(y, |x)
by a-priori probability on x, p,:

p(¥n X) =Py, | X) p(x)

As we are interested in determining X, inverse problem, we have to write the conditional
probability of x, having observed (measured) y, : p(x | y,). We apply Bayes theorem:

plxly, )= P, [X)p(x) —L(y, |x p(x)

r(y,) r(y,)
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il
A-priori types ﬁ
= Any statistical information on the distribution of x.
= It can be the structure defined in terms of variations (gradients)

= It can be the amplitude of the signal defined in terms of power.

= It can be a morphable model
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MAP estimate with logarithms 4

— 4

plxly, )= Py, |X)p(x) Ly, | %) p(x)
p(y,) p(v,)

Logarithms help:

s 3PP, ) ),

We maximize the MAP of x | y,, by minimizing:

argmin - {ln(p(y"mp(x)} =argmin —{in(p(y, |x))+In(p(x))- ln%(yn))}

p(y,)

We explicitly observe that the marginal distribution of y, is not dependent on x. It does not
affect the minimization and it can be neglected. It represents the statistical distribution of
the measurements alone.
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MAP estimate with logarithms fﬁ

We maximize the MAP of x | y,, by minimizing:

argmin —{in(p(y, [ x)p(x))}=arg min —{in(p(y, | x))+n(p(x)}

Jo(y,,,i | x) Likelihood =

adherence to the data A-priori

JR(x)

Depending on the shape of the noise (inside the likelihood) and the a-priori distribution
of x(.): Jp(x), we get different solutions.
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116
Gaussian noise on samples lell

x=argmin —{in(p(y, | x)p(x)}=arg min - {n(p(y, | ))+In(p(x))}=

argmin {/,(y, | x)+J,(x)}=

Gaussian noise on the data

Zero mean

Pixels are independent

All measurements have the same variance, 62

2
1
-log (p(y, | X)) (2, | x) = cos tan te + (?) (Z Vi —Ax; ]
Mean squared error

What about Jz(x) = -log(p(x))?
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Gibb's priors :'ﬁ

J ((6)=—1In( x):+ln(Z)+;U(x)

U(x) is also termed potential => J(x) is a linear function of the potential U(x).

1/B describes how fast J;(x) decreases with U(x).
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Ridge regression zi

We choose as a-priori term the squared norm of the function x, weighted by P: U(x) = ||Px?|

_Lip2
p(x) e( ) JR(x)=—1og(p(x))=k+%HPx2H

_1
z

Nel caso del filtraggio: P =1, peso tutti i pixel dell’immagine allo stesso modo

JR(x):k+%Hx2H
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16
Map estimate with U(x) = ||x?|| fﬁ.'.

Vui ™ Ax,

2 . .
DX ] Funzione costo quadratica

2 1
52l

Derivo rispetto a x per calcolare il minimo:

x:A"y, —A"Ax + APTPx =0 = A"y, =(4"4+AP"P)x

xX=argmin [Z

Without A PT P large values of x are obtained when ATA is small. These are reduced by A PT P

What happens when we have a filtering problem?

PA=1 x:y, =+ Al
Do we get anywhere? X, =y, (1+1) per ogni k
A.A. 2016-2017 19/87 http:\\borghese.di.unimi.it\

Which is the most adequate p(x) for g
ien € ir?\aggs';qaep() ° ﬁ‘

We usually ask to images to be smooth (we look at differential properties)
We look at the local gradient of the image: Vx.

One possibility is to use the square of the I-2 norm of the gradient: || Vx ||?

This is another form of Tikhonov regularization.
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Differential Gibbs prior

1
(—U(x)j +o0 —iU(x)
:AL, g Z = Ie b dx

Y4 Lo

2
uw- || Vx|

+ AV |

argmin {(4x-y,)

x: {ZAT (Ax—yn)+2/le}=0

If we apporximate Vx with the finite differences, we get a qudratic cost function in x.
2_ 2
| Vx|I"=(x, = x,,)
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A priori tferm - image gradients (no
P noise% 3 ( %

Al

Py = P(iy) — P(i-1,) Py = P(iy)) — p(iy-1)
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A priori Terrre - lmage gradients %
noise)

i,j-1
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A priori term - norm of image
P gradient I %

NoO noise Noise

In the real image, most of the areas are characterized by an (almost) null gradient norm;

We can_for instance suppose that |[Vx|| is a random variable with Gaussian
distribution, zero mean and variance equal to B2.

[Note that, in the noisy image, the norm of the gradient assume higher values = low |Vx||
means low noise!]
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MAP with A-priori on the derivative%

arg min —{in(p(y, | x)p(x)}=arg min — {in(p(y, | )+ In(p(x))}

X X

J()= J,()+ A (f)|  Jux) = funzione(| Vx|?)

AV |

argmin {(4x-»,)’

x: A7 (Ax—y,)+2AVx}=0

If we apporximate Vx with the fiinite differences: we get a linear system.
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Tikhonov regularization Al

x=arg min (Z Vi —Ax,.H2 +ﬂZPxi2J (cf. Ridge regression)

i

It is a quadratic cost function. We find x minimizing with respect to x the cost
function.

This approach is derived in the domain of mathematics. It leads to the same cost
function of the MAP approach.
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Tikhonov regularization - simulations ﬁ

DEEE [RAame € 0B|sO

Original Iter = 50 - Solution - F = 212974741.5369
Denoising effect - lambda = 0.1p = 2 0
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nlter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model — A = 0.5

A.A.2016-2017

P is the gradient operator
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Tikhonov regularization - panoramic ima%

DEEE hRAaMe € 0B|sO

Original Iter = 20 - Solution - F = 120825433.9031
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Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A =0.5

P is the gradient operator
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(i Tikhonov regularization - endo-oral imag%

DEEE hRAaMe € 0B|sO

Original lter = 20 - Solution - F = 97594715548

Denoising effect - lambda = 0. 1p = 2 x10

w

&
4
0 3
2
1
]

0 2 4 6 8§ 10 12 1 16 18 20
nlter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A =0.1
P is the gradient operator
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Likelihood = A-priori
adherence to the data /
2

Gaussian K(U)z ‘ gn,i

J(f) = J,(N+M ()] o=
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:Non-quadratic a-priori: total variaﬁon%

f=argmin - {n(p(g,| NHp,)}=argmin ~fin(p(g, | /)+n(p, )}
f f

2

Gaussian K(G)zugmi — Afl,

The a-priori term is a

f =arfg min Z(

ient and it is expressed in 1, norm

S0+ 1))

g, —Af| +A,/2 1

The derivative is not linear anymore because of the square root.

Total variation

A.A.2016-2017
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Tikhonov regularization - simulations ¢ f

Iter = 50 - Solution - F = 212974741.5369

Denoising effect - lambda = 0.1p = 2

x
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Edge smoothing effect with Tikhonov-like regularization

Poisson noise model — A = 0.5
P is the gradient operator
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otal variation regularization - simulatio%
dll

eI RS E =

Iter = 50 - Solution - F = 1767624 3724
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No appreciable edge smoothing with total variation
Poisson noise model - A =0.5
P is the gradient operator
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Tikhonov regularization - panoramic ima%

DEEs RAM® [ 1@ =0

Original Iter = 20 - Solution - F = 120825433.9031
e ——
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Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A =0.5

P is the gradient operator
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otal variation regularization - panorami%
images

DEEE hRAaMe € 0B|sO

Original Iter = 20 - Solution - F = 4336075 6946
—

REG
E

DATA

0 2 4 6 8§ 10 12 1 16 18 20
nlter

No appreciable edge smoothing with total variation
Poisson noise model - A =0.5
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P is the gradient operator S
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ikhonov regularization - endo-oral imag%

DEEE hRAaMe € 0B|sO

Original Iter = 20 - Solution - F = 9759471 5548

Denoising effect - lambda = 0.1p = 2

REG

DATA

0 2 4 6 8§ 10 12 1 16 18 20
nlter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A = 0.1

P is the gradient operator
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Total variation - endo-oral images =7

DEEE hRAaMe € 0B|sO

Original Iter = 20 - Solution - F = 1373459 5776

? !

—F

REG

15 F

DATA

No appreciable edge smoothing with total variation
Poisson noise model - A = 0.1
P is the gradient opera3t7c/)8r7
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Tikhonov vs. TV (preview) A

Filtered image Difference

Tikhonov =>

Qriginalimage

8 & & 8 & B B & B8 a
" R
-+ 4

g & 5 @ 8 8 8 8 &8 s

)
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introduced by the regularzation term Jflzi

9 T .
i| =—p=2 (Tikonov)
77| TR SR N — | =—p=1(TV)
| = p=0.5
N i
6+
ey DI
T
14
7. | A (S WS SN, S S
3 k.
al.
1 R b gt A e R
0 3 i i
0 05 1 1.5 2 25 3
[Igrad(g|
Cost increases quadratically with the local gradient in Tikhonov
A.A.2016-2017 39/87 http:\\borghese.di.unimi.it\
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[
Open problems dl
= Better images, but:
Non linear cost functions (non quadratic)
. 2 P 2
f=argmin > ||g,~ 47| +4,> /.
s ‘ P
Minimization does not lead to a function linear in f (because of the square
root) =» It requires non-linear iterative minimization.
Singularity in f=0
A.A.2016-2017 40/87 http:\\borghese.di.unimi.it\
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Role of A :IZ

2 | e

—In{—e
YA

K(0)2 |8, =4,

J(f) = J,(N)+ AT (f)

A incorporates different elements here:

- the standard deviation of the noise in the likelihood

- the “temperature”, that is the decrease in the energy of the configurations with
their cost (B)

- the normalized constant Z.

A has been investigated in the classical regularization theory (Engl et al., 1996),
but not as deep in the Bayesian framework =» A is set experimentally through
cross-validation.

A.A. 2016-2017 41/87 http:\\borghese.di.unimi.it\

. ?
How to set the regularization A
parameteér |

Analysis of the residual after the estimate = Af —g
* The residual should be equal to the noise
distribution

Gaussian case:
* Aisincreased until (r, r) = X2 (||r]? = ¢?)
« Sample covariance is equal to distribution

covariance

A.A.2016-2017 42/87 http:\\borghese.di.unimi.it\

03/11/2016

21



Overview :lﬁ

Filtering images

MAP, Tikhonov and Poisson model of the noise
Poisson noise

A-priori and Markov Random Fields

Cost function minimization
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. . . . P -i'h
Gibbs priors and Regularization :Iﬁ
argmin - {n(p(g, | Np,)}=argmin—{in(p(g, | /))+1n(p, )}
s A ‘\

Likelihood = A-priori

adherence to the data /

Gaussian K(U)zugn,i —

gni
Poisson In| ==+ Af — g .
2; 8. [ T lf; 8,

J(f) = J,(N+M ()] o=
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Non-quadratic a-priori: total variation 2

d|

f=argmin - {n(p(g,| NHp,)}=argmin - {in(p(g, | /)+n(p, )}
S f

Poisson noise model

gni
In L+ Af — .
Zgn,, [A % lf, — g,

The a-priori term is a ient and it is expressed in 1, norm

S0+ 1))

Total variation

. P
f=argmin Y| |g, -4 +4.[> 1,
7 i »

The derivative is not linear anymore because of the square root.
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A-priori 15
P :lzdi

We can insert in the a-priori term all the desirable characteristic of the image: local smoothness,
edges, piece-wise constancy,....

The idea of defining a neighboring system is a natural one:

Neighbor region of S,

Images have a natural neighboring system: the pixels structure. We want to consider the local
properties of the image considering neighboring pixels (in particular differential properties -
our vision system is particularly tuning to gradients both spatial and temporal). Ideas have
been borrowed from physics.
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Neighboring System -

Let P be the set of pixels of the image: P = {p, ps, --- Pp}

The neighboring system defined over P, S, is defined as H= { A/ | p, Vp € P}, that has
the following properties:

An element is not a neighbor of itself: p, ¢ A
Mutuality of the neighboring relationship: p, € M; € > p; € M,

(S, P) constitute a graph where P contains the nodes of the graph and S the links. An
image can be seen also as a graph.

Depending on the distance from p, different neighboring systems can be defined:

(o]

(o]

o

(o]

X

o

o

o

o

First order neighboring System

Second order neighboring System

A 201620 3" NEIGNbOrING System

8-neighboring S¥1stem

47/87 ttp:\\borghese.di.unimi.it\

<L

Clique

Borrowed from phisics.
@ | = 1Y
> 7 71!

6-Neighbors

"Xl

System

single

5 ode by

triple

quadruple

S s l'ilsels

A clique C, for (S, P), is defined as a subset of vertices of S, an undirected graph, such that
every two vertices in the subset are connected by an edge.

10-Neighbors
System

I can consider ordered sets of voxels, that are connected to p through S.
Types of cliques: single-site, pairs of neighboring sites, triples of neighboring sites, ... up to

A theseardinality of Ay 48/87 http:\\borghese.di.unimi.it\
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Markov Random Field ey
dll
Given (S, P) we can define a set of random values, {f,(m)} for each element defined by S,
that is in _’Np Therefore we define a random field , F, over S:
FN) = {fi(m) [m e N } vp
Under the Markovian hypotheses:
P(f(p))= 0 Vp Positivity
P(f(p) | g(P-{p}) =P(f(p)[g(N;)} Markovianity
2 expresses the fact that the probability of p assuming a certain value, f (e.g. a certain
gradient), is the same considering in p all the pixel of P but p, or only the neighbor
pixels, that is the value of f depends only on the value of the pixels in JV, and not in p.
the random field ‘F is named Markov Random Field.
A.A. 2016-2017 49/87 http:\\borghese.di.unimi.it\

Energy in a Markov Random Field fz

A “potential” function, ¢(f), can be defined for a MRF. This is a scalar value that is a
function of the random value associated to the pixels for all the possible elements of
a clique:

D= f(p)

Jjec

If we consider all the possible cliques defined for each element p, we can define a
potential energy function associated to the MRF:

um= Y ¢

ceC

The higher is the potential energy, the lower is the probability that the set of random
values of the elements of the cliques is realized, that is the higher is the penalization
for the associated configuration.

We want to go towards minimum energy.

A.A.2016-2017 50/87 http:\\borghese.di.unimi.it\

25



Gibbs prior 5

“““If we consider all the possible cliques defined for each element p, we can define a
potential energy function associated to the MRF:

Uum=">"¢.(f)

ceC

The higher is the potential energy, the lower is the probability that the set of random
values of the elements of the cliques is realized, that is the higher is the penalization
for the associated configuration.

This is well captured by the Gibbs distribution, that describes the probability of a
certain configuration to occur. It is a function exponentially decreasing of U:

P(f) = l_g%;ua%
Z

P(f) is a Gibbs random field, Hammersley-Clifford theorem (1971). B regulates the
decrease in probability and it is associated with temperature in physics. Z is a
normalization constant. NB to define Gibbs random fields, P(f) > 0, P(f) = 0 U(f)
- oo: there are not configurations with 0 probability.
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Gibbs priors and Regularization fz
argmin - {n(p(g, | Np,)}=argmin—{in(p(g, | /))+1n(p, )}
; .

| N\

Likelihood = A-priori

adherence to the data /

Gaussian K(U)Zugw . f, 2

gni
Poisson E g In|—=+Af, —g .
- n,i [14f‘ f; n’,j

J(f) = J,(N+M ()] o=
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Role of A :IZ

2 | e

—Ins—e

K(0)2 |8, =4,

J(f) = J,(N)+ AT (f)

A incorporates different elements here:

- the standard deviation of the noise in the likelihood

- the “temperature”, that is the decrease in the energy of the configurations with
their cost (B)

- the normalized constant Z.

A has been investigated in the classical regularization theory (Engl et al., 1996),
but not as deep in the Bayesian framework =» A is set experimentally through
cross-validation.
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e 25
How to set the regularization fl
parameter
Analysis of the residual after the estimate = Af —g
» The residual should be equal to the noise distribution
Gaussian case:
* Aisincreased until (r, r) = X2 (||r]? = ¢?)
« Sample covariance is equal to distribution covariance
Poisson case:
+ r,tends to be larger, the larger is g;.
« Aisincreased until [r]2 /g ->1
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"'_c.a

Choice of the Gibbs priors A

We choosed || APf||2 as a quadratic functional, but not specified P.

P is ofted chosen as a smoothing operator. The rationale is that the noise added to the
image is often white (both Gaussian and Poisson) over the image as there is no
correlation between adjacent pixels. Therefore its spatial content is unform and with a
larger bandwidth that the signal.

As a smoothing operator P is often a differential operator, which penalizes edges.

Jo(£)=2 ¢.(d" )

ceC

k is the order of the derivative
¢, can be 1, norm (total variation), squared (Tikhonov)

k = 2 difference of gradients - piecewise linear areas.
k = 3 difference of Hessian = piecewise squared.
Neighbor of order higher than 2.
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Quadratic Priors with k = 0 5

di
k = 0 — No derivative, the same gray level — single site cliques.
k 0 £\2 2
Je(®)= ¢(d" )= (d°f)" = > f(p)
ceC ceC peP
It has been applied to both Poisson and Gaussian noise models
Reduces bright spots and biases the solution to low intensity values.
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Quadratic Priors with k = 1 205

k =1 — First order derivatives — pair-sites cliques.

1= o= Ygaar=y 340w

ceC pePmeN, pePmeN, d( m)

d(p,m) takes into account anisotropies in computing the distance.

Ju0=y 3 [-fm)

pePmeN, d(p’ m)
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If we consider ¢(.) a squared function, we have another form of Tikhonov regularization:

ab

"’_c.a
dll

Quadratic Priors with k =

k =1 — First order derivatives — pair-sites cliques.

0= Y [f©-fm

pePmeN, d(p’ m)

If we consider ¢(.) a squared function, we have another form of Tikhonov regularization:

II Pfl[2
P is the convolution with the Laplacian operator: i \/5 1 \/5 ]
2 2
0 -1 0
D4 ~1 4+242 -1
- B V2 V2
0 -10 R

First order neighboring System

Second order neighboring System
4-neighboring System

8-neighboring System

A.A.2016-2017
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on-quadratic potential functions, k = %

Quadratic functions priors imposes smoothness everywhere. Large true gradients of the
solution are therefore penalized = smoothing sharp edges.

In imaging objects tend to be piecewise smooth, but different pieces of objects are
separated by more or less sharp edges. We want to smooth inside the object but not
the edge. A parallel worthwhile to be investigated is with anisotropic diffusion
(Koenderink, 1987; Perona&Malik, 1990).

We search different potential functions (Geman&McClure, 85; Charbonnier et al.,
1994, 1997; Hebert&Lehay, 1989).
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ab

Non-quadratic potentials ia
(Charbonier et al., 1997) dl

1. ot)>=0 Wt #0)=0 Derives from the definition of potential

2. @()==0 vt Semi-monotone derivatives

3. o(t) = o(-t) Positive and negative gradients are equally
considered

4. ¢(t) e C This is to avoid instability.

Up to now quadratic potentials are OK

5 =Y The potential increase rate should decrease with t.
6. hm(p D _y The potential increase rate should decrease for all
e 2 t (at least for large values of t)
7 ') =cost>0
l,lgl 2t The potential increases at least linearly for t = 0.
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ab

Few non-quadratic functions :
Vicedomini 2008) dll

Regularization Potential Expression of Expression of Convex
name function (t) w(t) = ¢'(t) /2t
Quadratic-Potential Yop t2 1 ves
Geman-McClure 06 Tg . L no
eman f Yo TF a+o7
Hebert-Tleahy PHL log(1 + %) ﬁ no
Hub 2, [t <1 1, [t <1 e
. . s
bt NG R 2| -1, |t =1 e, ltl=1 | °
Hvper-Surface 2vV1+1t2 -2 —l— ves
' ™ Vite :

Asymptotic linear behavior

Asymptotic log-like behavior Why not simply 4 / tz ?
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Results
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dl;
Summary :z,i

MAP estimate can be seen as a statistical version of regularization.

The regularization term can be derived from the potential energy associated to an
adequate neighbor system defined over the object (e.g. over the image).

Under this hypothesis the value assumed by the elements of the object to be
reconstructed (e.g. restored or filtered image) representa MRF.

Different neighbor systems and different potential functions allow defining different
properties of the object.

For quadratic potential functions, Tikhonov regularizer are derived.

The discrepancy term for the data represents the likelihood and can accommodate
different statistical models: Poison, Gaussian or even mixture models.
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Overview :lﬁ

Filtering images

MAP and Regularization

Poisson noise

A-priori and Markov Random Fields

Cost function minimization
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Poisson case ﬁ
Noise, = A £ - g, | |

We know the statistical distribution of the noise -> we now the statistical distribution of the
second term. In case of Poisson noise we have:

—Af; -
For one pixel: p(g,;, f}) = {e(/lfl)}
g

~In(L(g,:/))= —ln(]t[ p(gn,,-;f,-)J = (-4, +g,,In(4/,)~In(g, 1)

=1

To eliminate the factorial term, we normalize the likelihood by L(g,, g,):

1 L(gn > f) _ Y _ .

—In| —————|= —Z (g, In(Af)-In(g, ) +g, - Af)— KL divergence
L(g,8&,) i
_ 8 _ It is not a distance!
B Zilg” h{ Af +Af g,,j It is not linear
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Gibbs priors and Reqularization 25
prios and Regilazafon 3
argmin - {n(p(g, | Np,)}=argmin—{in(p(g, | /))+1n(p, )}
s s \

Likelihood = A-priori

adherence to the data /

Gaussian K(U)Zugm —Afi ’

gni
Poisson E g In|—=+Af, —g .
- n,i [14f‘ f; n’,j

J(f) = J,(N+M ()] o=
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What happens if noise is Poisson? :'ﬁ

f=argmin - {n(p(g,| NHp,)}=argmin ~{in(p(g, | /)+n(p, )}
S f

Poisson noise model
Squared shape for the a-priori term

gni
1 =+ Af. — .
Zgn,, n(A % If; gn,,)

I APf[[2
. 8. 2 .
f:a_rg min Zg” hl(AJ” + Af, — gn’l.] + /lHPfH Regularization
! i
No analytical solution
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Overview :lﬁ

Filtering images

MAP, Tikhonov and Poisson model of the noise
Poisson case

A-priori and Markov Random Fields

Cost function minimization
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Regularization term %

JREG(f): HVf

For q = 1, it has a singularity in the origin for which its derivative cannot be computed.
Solution is one of the potentials functions above, or a numerical solution:

q
2

JREG(J‘,»)=\/%+£+....+5 £=2.22x1016
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Simulated images %

Asiouun ‘jeuibuo
Asiou ‘leuibug
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Gradient Descendent is slow fz

Algorithm

Set u® = {g}

T
Compute vy _ iJ,...,iJ
u Ay

Update
u = 0 _ nvJ

7 is a scalar parameter (damping factor), optimized at each iteration, such
as itis guaranteed that J decreases (line search).

¢ Time expensive: ~ 210s (with Matlab) on 500x500 images

& We can improve the algorithm and / or the gradient computation
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One-step late EM (Green, 1990) fz

We derive it with fixed point optimization. Let us consider the cost function for Poisson
noise:

N N
Hen12)="D g n(g)-g + 2D Vel
i=l

i=1

We suppose all the pixel constant and the variation of each pixel are
accumulated and applied to the next step (one-step late).

g, 5 8 : 5
Ve la) 0 (0 1o )-g l 22 ilg) == 41422 () =0
agk agk agk & agk

This cannot be solved directly, but it can be solved using fixed point iteration:

8 1420 1 (g)=0=5 21000 J (0)> g, =$
8 08 8 8 1+4-—J,(g,)
08,
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=

Expectation Maximization A)i
From emission Tomography (Green, 1990; Panin et al., 1999)
u(new) _ ul(old) Z hi,ij
i old
Db+ iiJREG(u(”M)) 7 2y ™
In our case T Ou, k
H=[h,]=1
The previous formula becomes
l(new) — Zi
1420 T )
A.A. 2016-2017 73/87 http:\\borghese.di.unimi.it\
Observations i ;li

Semi-convergence properties.
Damping of the solution is required.

¢ Damped EM, x*1=(1-t)x*Ht*EM(x¥) (damping, relaxation, reduction of the step lengt
Solutions have been recently proposed for PET images (Mair&Zahnen, 2006).

x10° Gradient VS EM3 - 1 =0.05
-2.2651 :
Gradient
EM
Large increase in 2zl |
speed has been
registered.
-2.2652 - 4
Sensitive to number of
steps. e
-22652 | o
226m)
-2.2654 L L L
/] 10 20 a0 10 50 r

Iterations.
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Centered gradient is bad .

dlll
-1 0 +1 If used centered gradient to computer the a-
priori, we obtain a checkerboard effect
0 +1 O
1]
20
40
.
PCET.L i
2
1.5
1
U[l 20 40 UsEl 20
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Different gradient possibilities :IZ
We consider only two gradients: North-Center + West-Center
va( 19y1 \/gx 19y1) +gy( 19y1) té=

_\/ ”y’ g(xi_l’yi)]2+[g(xi9yi)_g(xi9yi_1)]2+8

4 neighbors gradient

8 neighbors gradient
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Why not to change the norm? :'Z

We consider only two gradients: North-Center + West-Center

yi1+‘g(xiﬂyi)_g(xiﬂyi _1]

+‘gy(xi9yi1 :‘g(xiﬂyi)_g(xi -1

=|g.(

[Velx. v ),

2

N
o3 [Ve(x,,»,
(e 22IVebr)

_ ang(xk’ykNl +[vele, +1,5, ), +[Vele v +1N1] _
g g g

=2 gl )- gl — 1y N +gee ) - gy — 1))+

agk
H xk+1yk xkﬁyk1+‘g(‘xk+19yk)_g(xk+19yk1]+
a
7Hg(xkryk+1)_g(x g(xkryk]]:
k

signlg, (x,,, )+ signlg, (x,., )]~ signlg, (x, + 1,3, )]~ signlg, (x,, v, +1)]

e~ Ly, +1]+‘g(xk9yk +1)_

We do not need ¢ anymore but we do not have continuity in the
origin. May be we can relax Charbonnier et al. conditions....

A.A. 2016-2017 77/87 http:\\borghese.di.unimi.it\

H 2
Experimental results g
714
RMSE
. EM1
) -1,
21 r
& P
4 [l EM7
19 »— Gradient
& . =
~ EM3
17 . : EM2
inc . —¥—EM7
15 51 i EMS Compiled code
¥ Execution Time
13 3
= \(/ / 30
11 T
0.001 0.01 0.02 0.05 0.1 25—
Mo i ) Gradient
WEM1
< . EM3
215 EM2
. WEM?
[I]l.  EM2 - centered gradient 10 s
5
Increase in speed of =~ 5x 0
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Beyond EM ag

il
N N
q
J( n,i i) Z{gntln gl 1}+izuvg1 2
i=1 i=1
is an optimization problem, in which g has two interesting properties:
g(p) 20
Z g(p) =cost Flux conservation (preservation of the
intensity of the image)
Moreover, J(.) is supposed convex. Under these hypotheses, the so
Called Kuhn-Tucker condition for the (unique) minimum should hold:
g"vJ(g% ) =0
g*=0  VJ(@%g9,)=0
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Split gradient (Lanteri, 2002) fz

N N
Jen12)="> 1g..n(g,)-g + 2> Ve
i=1

i=1

Singularity when gradientis 0 and q < 2.
The idea is to obtain a term > 0 strictly at the denominator.

VJ(g; gn) = U(g; gn) + V(g; gn) with U(g; gn) > 0; V(g; gn) >0
Kuhn-Tucker condition becomes:
g*vJ(g*;gn)=0 =>g*(U(g;gn) +V(g;gn))=0

We can write fixed point iteration and obtain:

gt = g(t) U(g; gn) /V(g; gn))
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Split-gradient Algorithm ﬂ

Inizialization. Choose g, that can be coincident with g, and compute the flux, that is
thec=2g,;.

Iteration in two steps: update + normalization.

g_(Hl) =g(t) +a(t)g(t)[U(g;gn)_‘V(g;gn)J
V(g;:g,)

Update:

o = z g(m) (p)
P

Normalization through flux conservation:

+ C A+
g (p) =Wg“ ’(p)
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Relaxed Split-gradient Algorithm 24
plitzgradient Alg B

Inizialization. Choose g, that can be coincident with g, and compute the flux, that is
thec=2g,;.

Iteration in two steps: update + nopmalization.

g0 U(g;gn)—V(g;gn)Jz gm(U(g;gn)J

A+ (1)
g —g +a
Vig:g,)

Update: V(g;g,)

o = z g(m) (p)
P

Normalization through flux conservation:

+ C A+
g (p)= Wg“ "(p)

that has a very attractive multiplicative factor. This is also a Scaled gradient

algorithm (Bertero et al., 2008
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3 . F —i_i-a
Determination of U(.) and V(.) * 2
4 -4
N N
q
J( n,i i) Z{gntln gl i}+ﬂ’zuvgiz_‘]0+MR
i=1 i=1
For the likelihood term: VJ,
u Vv
Gaussian case 29, 2g
2ATg,, 2(A™Ag + b)
Poisson case a./9g 1
A'g,/ (Ag +b)
For the regularization term: VJg the derivatives of the potential function have to
be considered (Bertero et al., in preparation) and grouped into positive and
A.A.201Anictly positive values. 83/87 http:\\borghese.di.unimi.it\

Faster convergence for large number' of g
iterates (fr'gm Bertero g f

EM
= = =EM_MATLAB

0.6

0.5

Error

0.4

0.3

0.2

0.1 1 L
10 10 :
Iterations
Computational time: 54.5s, 7.7s, 4.0s for a 256 x 256 image, in Matlab.
Results obtained only with Jo > EM solution.
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Real-time filtering of panoramic imag%

DEEE hRAaMe € 0B|sO

Original Iter = 20 - Solution - F = 4336075 6946

0 2 4 6 8§ 10 12 1 16 18 20
nlter

No appreciable edge smoothing with total variation
Poisson noise model - A =0.5

A.A.2016-2017

P is the gradient operator S
85/87 http:\\borghese.di.unimi.it\

Application for intensive algebraic methods '%i

Denoising — Bayesian filtering

Deconvolution (tomosynthesis, volumetric reconstruction from limited angle of view)
Deconvolution (CB-CT, FanBeam CT)

Amenable to be implemented on CUDA architectures = Real-time volumetric
reconstruction.
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Overview

Filtering images

MAP, Tikhonov and Poisson model of the noise
Poisson case

A-priori and Markov Random Fields

Cost function minimization
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