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Teorema di Bayes al

P(X)Y) = P (Y|X)P(X) = P(X]|Y)P(Y)

b oxy) < POYIXOP(X)
P(Y)

X = causa Y = effetto

P(Effetto| Causa) P(Causa)
P(Effetto)

P (causa|effettoy

We usually do not know the statistics of the cause, but we camuraghe effect
and , through frequency, build the statistics of the effect or we Kriovadvance.

A doctor knows P(Symptons|Causa) and wants to determine P(Causaj@gimpt
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Variabili continue yedll

Caso discreto: prescrizione della probabilita ggrumo dei finiti valori che la
variabile X puo assumere: P(X).

Caso continuo: i valori che X puo assumere sonaoitnfDevo trovare un modo
per definirne la probabilita. Descrizioanalitica mediante la funzione densita di

probabilita.

Valgono le stesse relazioni del caso discreto, @élaesomma si sostituisce
I'integrale.

X+AX +o0
P(X =x0[%,x+4) | [ p(x y)xdy
p(%,Y) = P(YIX) PO = P(XI Y) P(Y) Teorema di Bayes
_ pCy[x) p(x) Problema X = causa
p(x|y) = (y) | nver so y = effetto

A.A. 2015-2016 4/83 http:\\borghese.di.unimi.it\



Images are corrupted
by noise...

1) When measurement of some physical
parameter is performed, noise corruption cannot
be avoided.

i) Each pixel of a digital image measures a
number of photons.

Therefore, from i) and ii)...
...Images are corrupted by noise!

How to go from noisy image to the true one? It
IS an inverse problem.
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A general framework A
s X={Xy, X0y Xy} X ORM e.g. Pixel true luminance
= V={Yy, Yoy Y} Y ORN e.g. Pixel measured luminance

= Y=AX+h+n->determining x is@eblurring problem (the measuring device transforms
the image: scale + offset)

X, y are vectors. The image is represented as a vector with coluows Ene after the other.

Role of A:
Diagonal elements take into account that the measured signal is the osigmal| scaled.

Off-diagonal elements take into account the effect of the measure of>aid¢@the
measure of other pixels (blurring}lurring can be introduced by lenses/sensor in
photographic / video images.

Role of h: offset: background radiation.
Role of n: measurement noise.

It is a general framework for measurement syste. It is a linaarework.
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Filtering (denoising)

s X={Xy, X0y Xy} X ORM e.g. Pixel true luminance
= V={Yy, Yoy Y} Y ORN e.g. Pixel measured luminance
= y=Ix+n -> determining X is denoising problem (the measuring device introduces

only measurment error)
Roleof I:
|dentity matrix. Reproduces the input image, X, in the output y.
Role of h: offset: background radiation has been compensated by calibration.
Role of n: measurement noise

n y:|X+n

Determining x is a denoising problem (image is a copy of the real onelvataddition of noise)
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. . . . s
Gaussian noise and likelihood 2

= Images are composed by a set of pixels, is a vector!)

= Let us assume that the noise is Gaussian andd¢hmatean and variance is equal for
all pixels;

= Lety,; be the measured value for the i-th pixel (n = ngise)
= Let and xbe the true (noiseless) value for the i-th pixel;

= How can we quantify the probability to measureithagex, given the probability
density function for each pixel?

= Being the pixels independent, the total probabddy be written in terms of
product of independent conditional probabilitiesrn(ditional likelihood function)

PN - AR | 1y -x )
L(ynlx):uni:up(yn,ilxi):ua_mexp _E( n’la j

L(y, | X) describes the probability to measure the imagegiven the noise free
value for each pixek. But we do not know these values....
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Do we get anywhere? .

L is the likelihood function o¥,, given the objecX.

L(y, %)= ﬁ ply,, 1%)

Determine §} such that L(.) is maximized. Negative log-likelihood is usually abered to
deal with sums: N
f () ==log(L()) ==Y In(p(y,, %))
i=1

N 1 10 Yai =% i
f(yn,]_syn,2""yn,N;Xn,l'xn,Z""Xn,N;O'Jz):_zln{ @x;{_zty, K] }} =>

i 2710 o
min(f ()=min —%In( 1 )+ 12(yn—AX)2 X = (ATA)ATy
(%) i1 \\N27ITO ) 20 if A=
{ fi}
X= Yy

The system has a single solution, that is good. The solutigr ig,x not a great result....

Can we do any better?
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A better approach al

Ly, 1X)= plyn, 1%)

We have N pixels, for each pixel we get one measurement.

Let us analyze the probability for each pixl’sl‘ﬁyn,i |>§) f wd have more measurements for
each pixel, we can write:

If noise is independent, Gaussian, zero mean, the best estimate thiexsamples average,
this converges through the distribution mean of the measurement taken in ti@nposi

But, what happens if we do not have such multiple samples or a few samples?
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The Bayesian framework : 'TLU

We assume that the object x is a realization of the “absivagttt X that can be
characterized statistically as a density probability on .extracted randomly from X (a
bit Platonic).

The probability p(y] X) becomes a conditional probability; =Jp(y,| X = X*)

Under this condition, the probability of observingcgn be written as the joint probability of
observing both yand x. This is equal to the product of the conditional probalplity, | x)
by a-priori probability on X, p

P(Y,, X) =P(Y, [ X) p(X)

As we are interested in determining X, inverse problem, we hawvetéothe conditional
probability of x, having observed (measured) g(x | y,). We apply Bayes theorem:

plxly,)= PO IIPOI = (y

P(Yn)
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MAP estimate with logarithms dl 7

PO 0PM) _ | 1 PO
p(x|y,) ) (¥a |X) )

Logarithms help:
-In(p(x| yn))=—%ln(

p()I;n(lyxg p(X))} _ _{|n(p(yn | X))+ In(p(x))— In(p(yn))}

We maximize the MAP of x | y by minimizing:

argmin —{In( p(yfl‘o '(i))p(x)]} =argmin -{in(p(y, 1)+n(p(x))-In(p(y.))}

We explicitly observe that the marginal distribution pfsynot dependent on x. It does not
affect the minimization and it can be neglected. It represeatstatistical distribution of
the measurements alone.
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4 p-—

MAP estimate with logarithms e

We maximize the MAP of x |y by minimizing:

arcmin -{in(p(y, [ p())} =arc min -{in(p(y, %) +In(p(x))}

Jo(yn,i |x) Likelihood =

adherence to the data A-priori

3,4

Depending on the shape of the noise (inside the likelihood) and the a-priobutish
of X(.): k(x), we get different solutions.
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Gaussian noise on samples A1)
x=argmin -{Iin(p(y, 1x) p())}} =argmin -{in(p(y, [%))+In(p(x))} =

argmin {3,(y, 1)+ x(x)} =

Gaussian noise on the data

Zero mean

Pixels are independent

All measurements have the same variaiee,

-log (p(y; | X)) & (Y, | X) = costante + (lej(z Yo ~ A J

Mean squared error

What about J(x) = -log(p(x))?
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Gibb's priors -

We often define the a-priori termg(X), as Gibb’s prior:

-

1 A
(_U (X)j +00 U (X)
e p 7 = j e’?  dx

JR(X):—In(pX):+In(Z)+;U (%)

U(x) is also termed potential =%X) is a linear function of the potential U(x).

1/3 describes how fast(x) decreases with U(x).
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= p-—

Ridge regression i)

We choose as a-priori term the squared norm of the function x, weightedXx)RP: ||PX||

A.A. 2015-2016

1
p(X)—Z

r

1 A
(-2iee?)
e

J

1
J(x) = cost +EHPX2H

Nel caso del filtraggio: P = |

1
J(x) = cost +EHX2H
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Map estimate with U(x) = ||x?|] yedll

x=argmin  lo,, -+l

x:ATy, —ATAX+APTPx=0 => ATy =(ATA+APTP)x

Large values of x are obtained whel®As small. These are reduced hy' P

What happens when we have a filtering problem?

PA=I x:y, = (I +A1)x

Do we get anywhere?
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Which is the most ade uate p(x) for i
e 160 for %

We usually ask to images to be smooth (we look at differential properties)
We look at the local gradient of the image: [Ix.

One possibility is to use the square of the I-2 norm of the gradient: || Ox ||?

This is another form of Tikhonov regularization.
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Differential Gibbs prior ydll

4 1 3
_1) /o) F00
px—z<e > Z= Ie dx
u = |10x][7
argmin {(ax-y, )7 +A|ox

X
X: {2AT (Ax- yn)+2/le}:O
If we apporximatdIx with the finite differences, we get a linear system in x.

A.A. 2015-2016 20/83 http:\\borghese.di.unimi.it\



e
'.-515"

ix) A priori term - image gradients (no ﬁ
noise
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A priori term - image gradients
(noise)
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AW
A priori term - norm of image A
gradient ﬁ

No noise Noise

In the real image, most of the areas are characterized by an (almoggyauiknt norm;

We can for instance suppose that |[[Ix]] is a random variable with Gaussian
distribution, zero mean and variance eqgual to 32

[Note that, in the noisy image, the norm of the gradient assume higher valdew ||Lx||
means low noise!]
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MAP with A-priori on the derivative%

arcmin -{in(p(y, [ p(x))} =arc min—{in(p(y, 1) +In(p(x))}

I(F)= I,(F)+AIo(F)|  9.00 = funzioneljjrix|p)

argmin {|(ax-y, |+ Ajox’}

X: {2AT (Ax- yn)+2/le}:O

If we apporximatd_x with the fiinite differences: we get a linear system.
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4 p-—

Tikhonov regularization A

Yoi — AX H2 +/lZPxi2] (cf. Ridge regression)

X=argmin (Z

It is a quadratic cost function. We find x minimizing with respect to x the cost
function.

This approach is derived in the domain of mathematics. It leads to the same cost
function of the MAP approach.
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Original lter = 50 - Solution - F = 2129747415369

Denvising effect - lambda=01p=2

-2000

niter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise modelx= 0.5

P is the gradient operator
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77/ Tikhonov regularization - panoramic ima s

DeE& k|RAN® €[00

Original Iter = 20 - Sclution - F = 120825433.9031

Denvising effect - lambda=05p=2

-300 0 i i i i i i i i i

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A =0.5

P is the gradient operator
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_iTikhonov regularization - endo-oral imag%

DeE& k|RAN® €[00

Original lter = 20 - Solution - F = 9759471 .5548

Denvising effect - lambda=01p=2

100

0

| N f :
znu : :
bl ———

I 1 I I I I I
0 Z 4 6 8 10 12 14 16 18 20
nlter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A =0.1

P is the gradient operator
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Role of A db

— In%r L e{_;U (f)}L

J(F) = 3,(F)+ A3 (F)

A incorporates different elements here:
- the standard deviation of the noise in the likelihood

- the “temperature”, that is the decrease in the energy of the configurations with
their cost ()

- the normalized constant Z.

A has been investigated in the classical regularization theory (Engl et al., 1996),

but not as deep in the Bayesian framework =» A is set experimentally through
cross-validation.
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How to set the regularization A
parametér '

Analysis of the residual after the estimate = Af —g
* The residual should be equal to the noise
distribution

Gaussian case:

e Aisincreased until (r, r) = 22 (||r||? = 02)

« Sample covariance is equal to distribution
covariance
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Poisson case dl

Noisg = ||AT — g ||

We know the statistical distribution of the noise -> we now thesstal distribution of the
second term. In case of Poisson noise we have:

For one pixel: p(g, f;) :{eAf (Afi )gq }
O, '

N

in(Lg: 1)) = —m(lj oo, 1 )] =3 (- Af, +g,, In(Af,) ~In(g, 1)

i=1

To eliminate the factorial term, we normalize the likelihood.{wy, g.):

- In( I_L((%”n’;n)) J = —iZ:‘ (g, In(Af)-In(g,) +g, — Af ) = KL divergence

_ Z g, In( i}, + Af — g”j It is not a distance!

It is not linear
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Gibbs priors and Regularization :lﬁj

arcmin —-{in(p(g, | f)p, }=arcmin—in(p(g, I £))+n(p, }

Likelihood = / _Oriori

adherence to the data

i

Gaussian K(O')Z‘ O.i Afi Hz
| —Ins
Poisson Z.: On,i |n(i}i + Af, - gn,ij /
I = ,(O+A(H)]  =0=u

A.A. 2015-2016 33/83 http:\\borghese.di.unimi.it\



What happens if noise is Poisson? ﬁ

f =arcmin -{n(pg, 1 )p, }=arcmin -{in(p(g, 1 ))+In(p, }

Poisson noise model
Squared shape for the a-priori term

gni
In ~+ Af —q._.
iZgn,. ( A T A gn,.j

|| APA][2

gn,i

+Af, — 0, j + AHPf H2 Regularization

f =argmin >_g,, In[

Af

No analytical solution

A.A. 2015-2016 34/83 http:\\borghese.di.unimi.it\



<&

Overview 4

Filtering images

MAP, Tikhonov and Poisson model of the noise
Poisson noise

A-priori and Markov Random Fields

Cost function minimization

A.A. 2015-2016 35/83 http:\\borghese.di.unimi.it\



Gibbs priors and Regularization :lﬁj

arcmin —-{in(p(g, | f)p, }=arcmin—in(p(g, I £))+n(p, }

Likelihood = / A-priori

adherence to the data /

gn,i -

Gaussian K (O')Z‘

gni
Poi § n| —+ Af. —g..
oisson On,i ( Y | gn,.j

J(f) = J,(f)+AJs(F) Ja(f) = U(H
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77 Non-quadratic a-priori: total variation‘f?'_‘m

f =arcmin -{n(pg, 1 )p, }=arcmin -{in(p(g, 1 ))+In(p, }

Poisson noise model

gni
E In —+ Af. — Q..
i gn,| (Af i gn,l

Thea-priori termisa lent and it isexpressed in |, norm

P

PINDIL Z\/(fx,i2 1,0+ fz,iz)

i p [

f :argmin Z(Mm\ 1/zfp,in Total variation
f | P

The derivative is not linear anymore because of the square root.
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Original lter = 50 - Solution - F = 2129747415369

Denvising effect - lambda=01p=2

-2000

niter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise modelx= 0.5

P is the gradient opesrgtor
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2 = 5
e
L ss

Al

otal variation reqgularization - simula’rio%

DeHa hRame || 0E O

lter = 50 - Solution - F = 1767624 3724

Dennising effect - lambda = 0.1p =1 e 108

No appreciable edge smoothing with total variation
Poisson noise model - A =0.5
P is the gradient operator
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77/ Tikhonov regularization - panoramic ima s

DeE& k|RAN® €[00

Original Iter = 20 - Sclution - F = 120825433.9031

Denvising effect - lambda=05p=2

-300 0 i i i i i i i i i

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A =0.5

P is the gradient operator
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‘Total variation regularization - panorami%

DEESE hRaANs|(E0E O

Original lter = 20 - Solution - F = 43860756946

I

No appreciable edge smoothing with total variation
Poisson noise model - A =0.5

P is the gradient operator .
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_iTikhonov regularization - endo-oral imag%

DeE& k|RAN® €[00

Original lter = 20 - Solution - F = 9759471 .5548

Denvising effect - lambda=01p=2

100

0

| N f :
znu : :
bl ———

I 1 I I I I I
0 Z 4 6 8 10 12 14 16 18 20
nlter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A =0.1

P is the gradient operator
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Total variation - endo-oral images

DeHa heays || lE O

Original lter = 20 - Solution - F = 1373459 5776

|

Denoising effect - lambda=01p=1 x10°

|
0 Z 4 B 8 10 12 14 16 18 20
niter

No appreciable edge smoothing with total variation
Poisson noise model - A =0.1

P is the gradient operator o
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Tikhonov vs. TV (preview)

Filtered image Difference

50

100+

Tikhonhov =>

SRR
4

250 e s

300

Original image

400+

450 —

L L 500 g L L L L L L L L L
250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500

L
50 100 150 200

100~

150

L I
200 250

200+

300+

350

N

TV =>

) h 500 - = i
200 250 50 100 150

S i i E ]
200 250 300 350 400 450 500
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Cost introduced by the regularzation term j\z_lll

9 T T T | !

E ! : | m—p=2 (Tikonov)
(| — =1 (TV)
| = p=0.5

----------------------------------------------------------------------------------------------------------------------

15
|[grad(g))]|
Cost increases quadratically with the local gradient in Tikhonov
A.A. 2015-2016 45/83 http:\\borghese.di.unimi.it\



A-priori g

We can insert in the a-priori term all the desieatiharacteristic of the image: local smoothness,
edges, piece-wise constancy,....

The idea of defining a neighboring system is a rahtone:

Neighbor region of S,

Images have a natural neighboring system: the pstelicture. We want to consider the local
properties of the image considering neighboringlsiXin particular differential properties -
our vision system is particularly tuning to gradgehoth spatial and temporal). Ideas have
been borrowed from physics.
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Neighboring System : L_n f

Let P be the set of pixels of the image: P $ {B, ... p}

The neighboring system defined over P, S, is defined as.AH p,0p U P}, that has
the following properties:

An element is not a neighbor of itself:[p A,
Mutuality of the neighboring relationship; p A, < > p, 0 A,

(S, P) constitute a graph where P contains the nodes of the graphhanthis. An
Image can be seen also as a graph.

Depending on the distance from p, different neighboring systems can ieddefi

0 ol o] o
0] X 0] o X 0
0 ol o] o
First order neighboring System Second order neighboring System

-neighboring System 8-neighboring SYS(erB rghese.diunimiit
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Clique

e

Borrowed from phisics.

(A) zw single

x . jpa'r '— @
G-Neighb-ors

= 5 wese

E |] triple quadruple
/ ’ a

10-Neighbors i ﬁ
A clique C, for (S, P), is defined as a subset of vertices of S, an ehetirgraph, such that

System
every two vertices in the subset are connected by an edge.

—d

p

Y

| can consider ordered sets of voxels, that are connected to p through S.

Types of cligues: single-site, pairs of neighboring sites, trgfl@eighboring sites,... up to
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Markov Random Field é 1:.0

Given (S, P) we can define a set of random valug@nit for each element defined by S,
that is inN,,. Therefore we definef@ndom field , 'F, over S:

FIN;) = {f,(m) | mO N} Op

Under the Markovian hypotheses:
P(f(p))=00p Positivity
P(f(p) | 9(P-{p}) = P(i(p) | 9lV,)} Markovianity

2 expresses the fact that the probability of p assuming a certa@) ¥/&.g. a certain

gradient), is the same considering in p all the pixel of P but p, gitlm@ineighbor
pixels, that is the value of f depends only on the value of the pixéi§ and not in p.

the random fieldf is namedVv arkov Random Field.
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Energy in a Markov Random Field ﬁ

A “potential” function,q(f), can be defined for a MRF. This is a scalar value that is
function of the random value associated to the pixels for all the ppssdrhents of
a clique:

@ (f) = Z f(pj)

jdc

If we consider all the possible cliques defined for each elemeve pan define a
potential energy function associated to the MRF:

u) = > al)

ctC

The higher is the potential energy, the lower is the probabilitythleatet of random
values of the elements of the cliques is realized, that isigher is the penalization
for the associated configuration.

We want to go towards minimum energy.
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Gibbs prior il

““If we consider all the possible cliques defined for each elemeve pan define a
potential energy function associated to the MRF:

U =% a(f)

ctC

The higher is the potential energy, the lower is the probabilitythleatet of random
values of the elements of the cliques is realized, that isigiher is the penalization
for the associated configuration.

This is well captured by the Gibbs distribution, that describeprtitgbility of a
certain configuration to occur. It is a function exponentially deangas U:

P = L e{_%u (f)}
/

P(f) is a Gibbs random field, Hammersley-Clifford theorem (19¥ t@gulates the
decrease in probability and it is associated with temperatyieysics. Z is a
normalization constant. NB to define Gibbs random fields, P(f)f®;> 0 U(f)
—> oo there are not configurations with O probability.
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Gibbs priors and Regularization f,‘_”

arcmin -{in(p(g, 1 )p, } = arcmln —{in(p(g, 1 ))+In(p, }

N\

adherence to the data /
. )

J(f) = J,(f)+AJs(F) Ja(f) = U(H
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Role of A db

— In%r L e{_;U (f)}L

J(F) = 3,(F)+ A3 (F)

A incorporates different elements here:
- the standard deviation of the noise in the likelihood

- the “temperature”, that is the decrease in the energy of the configurations with
their cost ()

- the normalized constant Z.

A has been investigated in the classical regularization theory (Engl et al., 1996),

but not as deep in the Bayesian framework =» A is set experimentally through
cross-validation.
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How to set the regularization 4i)
parametér '

Analysis of the residual after the estimate = Af — g
* The residual should be equal to the noise distribution

Gaussian case:
e Aisincreased until (r, r)= 22 (||r||? = 0?)
o Sample covariance is equal to distribution covariance

Poisson case:

e I, tends to be larger, the larger is g..
e Aisincreased until |r]?/g->1
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Choice of the Gibbs priors A

LY

We choosed| APf||? as a quadratic functional, but not specified P.

P is ofted chosen as a smoothing operator. The rationale is timatiskeadded to the

iImage is often white (both Gaussian and Poisson) over the imageeasthe
correlation between adjacent pixels. Therefore its spatial castenform and with a

larger bandwidth that the signal.

As a smoothing operator P is often a differential operator, whicHipesadges.
Jx(f) :Zqoc(dkcf)
cliC

k is the order of the derivative
@. can beJ norm (total variation), squared (Tikhonov)

k = 2 difference of gradient® piecewise linear areas.
k = 3 difference of Hessia®» piecewise squared.
Neighbor of order higher than 2.
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Quadratic Priors with k = O ! TLU

k = 0 — No derivative, the same gray level — single site cliques.

L

Je(f)=2 gd )= (d°f)* = > f(p)’

cLIC cLIC pLIP
It has been applied to both Poisson and Gaussian noise models

Reduces bright spots and biases the solution to low intensity values.
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Quadratic Priors with k = 1 >

k = 1 — First order derivatives — pair-sites cliques.

J0)=D@d ) => Y ) =) > f(p) - f(m)

cC pUP mUN pUP mUN d(p1m)

d(p,m) takes into account anisotropies in computing the distance.

If we consider @(.) a squared function, we have another form of Tikhonov regularization:

pUP mUN d(p1m)
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Quadratic Priors with k = 1 e

k = 1 — First order derivatives — pair-sites cliques.

pUP mUN d(p’m)

If we consider @(.) a squared function, we have another form of Tikhnonov regularization:

|| PA|[*
P is the convolution with the Laplacian operator: __Q _1 _Q_
0 -1 0 2 2
a1 -1 4+2J2 -1
14 V2o A2
0 -1 0 2 T T2

First order neighboring System

Second order neighboring System
4-neighboring System

8-neighboring System
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on-quadratic potential functions, k = %

Quadratic functions priors imposes smoothness everywhere. Larggddients of the
solution are therefore penalized smoothing sharp edges.

In imaging objects tend to be piecewise smooth, but different piecdgeufts are
separated by more or less sharp edges. We want to smooth insgettdut not
the edge. A parallel worthwhile to be investigated is with anisat@iffusion
(Koenderink, 1987; Perona&Malik, 1990).

We search different potential functions (Geman&McClure, 85; Charboans.,
1994, 1997; Hebert&Lehay, 1989).
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Non-quadratic potentials 5
(Charbonier et al., 1997) ydll

1. @t)==0 [t @®0) =0 Derives from the definition of potential

2. ©(t)==0 0Ot Semi-monotone derivatives

3. @) = @-1) Positive and negative gradients are equally
considered

4. @) OCt This is to avoid instability.

Up to now quadratic potentials are OK

5. o The potential increase rate should decrease with t.
6. |lim LAON, The potential increase rate should decrease for alll
e 2 t (at least for large values of t)
I i 20 _ cost>0
'![‘9 2t The potential increases at least linearly for t = 0.
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Few non-quadratic functions

C
(Vicedomini 2008 Al

Regularization Potential Expression of Expression of | Convex
name function @(t) (t) = @' (t)/2t
Quadratic-Potential ©Yop t? 1 yes
t? 1
Geman-McClure Ve : — no
\ reM 1+ (1+1%)?
Hebert-Tleahy CHL log(1 + t2 _ 1 no
\ PHL o(1 +17) 13 12
Hubedr t, 7 < 1 . =1 ye
oer QY ) ; ‘ 'es
NG 20t — 1, |t|>1 1/, |t| > 1 :
Hyper-Syrtace 2vV1 412 -2 ,1— ves
Y1 AN V1412 A
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Asymptotic log-like behavior

61/83

Asymptotic linear behavior

Why not simply \/tz ?
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Results

<&
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Summary A1)

MAP estimate can be seen as a statistical version of rezgtian.

Theregularization term can be derived from the potential energy associated to an
adequate neighbor system defined over the object (e.g. over the image).

Under this hypothesis the value assumed by the elements of thetoliyect
reconstructed (e.g. restored or filtered image) represent a MRF

Different neighbor systems and different potential functions allowniaef different
properties of the object.

For quadratic potential functions, Tikhonov regularizer are derived.

The discrepancy term for the data represents the likelihood and can accommodate
different statistical models: Poison, Gaussian or even mixturelsaode
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Overview :

Filtering images

MAP, Tikhonov and Poisson model of the noise
Poisson case

A-priori and Markov Random Fields

Cost function minimization
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Regularization term 'Z.U

LY

q

f

2

For g = 1, it has a singularity in the origin for which its derivative cannot be computed.
Solution is one of the potentials functions above, or a numerical solution:

‘JREG(fi):\/((jjfi +(;fi +...+€ £=2.22x101°
X ay
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Simulated images ﬁ

Asiouun ‘leulbLiQ
Asiou ‘jeulbLIO
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Gradient Descendent is slow :lﬁj

Algorithm

Set u©® = {g}
.
Compute 3 = i\],“_’i\]
1 dJN

Update u(k+1) _ u(") _ /7DJ

n is a scalar parameter (damping factor), optimized at each iteration, such
as it is guaranteed that J decreases (line search).

¢ Time expensive: ~ 210s (with Matlab) on 500x500 images

¢ We can improve the algorithm and / or the gradient computation
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One-step late EM (Green, 1990) ﬁ

We derive it with fixed point optimization. Let us consider the Gasttion for Poisson
noise:

(g, 19)=-3{a, Ing)-}+ 130

=1

We suppose all the pixel constant and the variation of each pixel are
accumulated and applied to the next step (one-step late).

(g lg) o 0 Ok 0
K =~ {-1g, In(g)- g +AE—Jx(g) = % +1+ A B— J.(g,) =
og, agk{ [9 K (gk) gk]} 39, R(gk) g 09, R(gk)

This cannot be solved directly, but it can be solved using fixed point iteration:

- 10080 0,(0)=0= P =14 050 0 0) = 0,2 —— 9
9 o9 O 99 1+A0° 3(g.)
Ok
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Expectation Maximization Al

From emission Tomography (Green, 1990; Panin et al., 1999)

ui(old) hi,jzj

0 o . . (old)
Zj:hi,j +/]a—uiJREe(u( Id)) J Zk:hmuk

ui(ne'w) —

In our case

H:[hi,j]:I

The previous formula becomes

new) — y4

e =
1+ ] % Jeea (u(o'd))
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Observations ]

Semi-convergence properties.
Damping of the solution is required.

¢ Damped EM, X'1=(1-t)x+t*EM(x¥) (damping, relaxation, reduction of the step e
Solutions have been recently proposed for PET images (Mair&Zahnen, 2006).

x10 Gradient VS EM3 - u = 0.05
-2.2651 : : ; |
Gradient
\ -EM
Large increase in 1\
22651 \ i
speed has been L%
registered. Y
22652 | \ i
. \ ¥,
Sensitive to number of |
-
steps. - 22652} "\ \ o |
\ R
\“ \'\\__ B
l - l
226521 i
22653 siinnans ]
-2.2654 ! I L 1 1
0 10 20 30 40 50 60
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Centered gradient is bad

-1 0
0 +1
+1 0 |

If used centered gradient to computer the a-
priori, we obtain a checkerboard effect

(1/65
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Different gradient possibilities fﬁj

We consider only two gradients: North-Center + West-Center
[Da(x, v; H Jg (%.y,) +e =

=[o(x. Ly.)] +[g(>ﬁ,yi)-g(>ﬁ,yi 1) +e

4 neighbors gradient

8 neighbors gradient
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Why not to change the norm? fﬁj
We consider only two gradients: North-Center + West-Center

HDQ(wai )H1 :‘gx(xi’yi )‘ +‘gy(xi’yi )‘ :‘g(xi’yi)_ g(xi =1y, )‘ +‘g(xi’yi)_ g(xi’yi _1)‘

N
0 ] Y.
03,(9) _ 2l by _allPgx. v, +I0g(x + 1y ), + 10904 v + 3]
09, 09, g,

d
agk Hg(x yk) ( lyk)‘ ‘g(x yk X Y T ]+

0
El ( Xy +lyk)_g(xk’yk)‘+‘g(xk +lyk)_g(xk +1»Yk)‘]+
K

dr
g Jg(Xk,yk +1)_ g(Xk -1y, +1)‘ +‘g(Xk, Yi +1)— g(xk’yk)‘] —

Sign[gx(xk » Yk )] + Sign[gy(xk » Y )] - Sign[gx(xk +1y, )] - Sign[gy(xk » Y +1)]

We do not need € anymore but we do not have continuity in the

origin. May be we can relax Charbonnier et al. conditions....
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Experimental results

RMSE
i} 1, EML
21
AN\
\ II.ll, EM7
\ ) 2
19 \\ // // —4o—Gradient
—8—EM1
) L e Ill, EMs
N— / o
~— // —¥—EM?7
15 S 4% EMS Compiled code
‘ // Execution Time
13 _ s
= ‘\T‘*~\*?-f*" / 30
11 a .
0.001 0.01 0.02 0.05 0.1 25 1
Mu a4 » Gradient
mEM1
EM3
e WEM2
_ _ mEM7
Il.ll, EM2 — centered gradient 10 EMS
5 n
Increase in speed of = 5x 0-

A A 2015-2016
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Beyond EM 3

N N
— q
J (gn,i |0, ) = _Z{gn,i In(gi )_ ] } t AZHDgi Hz
=1 =1
IS an optimization problem, in which g has two interesting properties:
g(p) 20
Z g(p) = cost Flux conservation (preservation of the
p intensity of the image)

Moreover, J(.) is supposed convex. Under these hypotheses, the so
Called Kuhn-Tucker condition for the (unique) minimum should hold:

g*1J(9* 9,) = 0

g*=0 [1J(g*; 9, 20
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Split gradient (Lanteri, 2002) 43

N

(g, 18)=-3:{a, In(a)-a} +13Icg)|

=1

Singularity when gradient is O and g < 2.
The idea is to obtain a term > O strictly at the denominator.

[J(g; gn) = U(g; gn) +V(g; gn) with U(g; gn) = 0; V(g; gn) >0
Kuhn-Tucker condition becomes:

g*0Jd(g* gn) =0 > g*(U(g; gn) +V(g; gn)) =0

We can write fixed point iteration and obtain:

g™V = g(t) U(g; gn) / V(g; gn))
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Split-gradient Algorithm : 'tn.’u

Inizialization. Choose §, that can be coincident with gnd compute the flux, that is
the ¢ =2g,,;.

|teration in two steps: update + normalization.
g(t+1) — g(t) +a(t)g(t)[u (9;9,) TV(Q, gn)j
V(9;9,)

Update:

C(t+l) — Z g(t+l) ( p)
P

Normalization through flux conservation:

+ C A (t+
9" (P) =y 67 (P)
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Relaxed Spll‘l’( grad )em‘ Algorithm J’.‘;_U

Inizialization. Choose §, that can be coincident with gnd compute the flux, that is

the ¢ =2g,,;.
lteration in two steps: update + pormalization.
g(t+1):g(t)+a(t)g(t)( (9:9.) -V(9; 9, )j (t)(u (gign)j
Update: V(g;9,) V(g;9,)

C(t+1) — Z g(t+l) ( p)
p

Normalization through flux conservation:

+ C ~(t+
9 (P) = 677 (P)

that has a very attractive multiplicative factor. This soa Scaled gradient

91 rlthm (Bertero et al., 2008) o
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-

= p-—

Determination of U(.) and V(.) =

ydlll
N N q
J (gn,i | 0, ) = _Z{gn,i In(gi )_ gi}"'/]ZHDgi Hz =J, +Adg
=1 =1
For the likelihood term: [1J,
U V
Gaussian case 249, 29
2ATg, 2(ATAg + b)
Poisson case 9,/9 1

A'g,/ (Ag + b)

For the regularization term: [1J, the derivatives of the potential function have to
be considered (Bertero et al., in preparation) and grouped into positive and
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Faster convergence for large number of 244
iterates (fr'cg)m Bertero eg al. 2008) ﬁJ

0.8 - -
EM
- - - EM MATLAB
----- SGP -
S
- !
1
r
_— - 7 -
! P
I /
— - -~
— — /
O--'I O P | 1 PR | = 2 2 2 2 2 22 2 3
10 10 107 10

[terations

Computational time: 54.5s, 7.7s, 4.0s for a 256 x 256 image, in Matlab.
Results obtained only with Jo > EM solution.
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Real-time filtering of panoramic image%

DEESE hRaANs|(E0E O

Criginal lter = 20 - Solutien - F = 4386075 6946

Denoising effect - lambda = 0.5p =1

No appreciable edge smoothing with total variation
Poisson noise model - A =0.5

P is the gradient operator .
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135

Application for intensive algebraic methods 12 i)

Denoising — Bayesian filtering
Deconvolution (tomosynthesis, volumetric reconstruction from limited asfgleew)
Deconvolution (CB-CT, FanBeam CT)

Amenable to be implemented on CUDA architectupeReal-time volumetric
reconstruction.
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Overview

Filtering images

MAP, Tikhonov and Poisson model of the noise
Poisson case

A-priori and Markov Random Fields

Cost function minimization
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