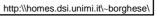


Sistemi Intelligenti Reinforcement Learning: l'apprendimento degli agenti in setting non associativo

Alberto Borghese

Università degli Studi di Milano Laboratorio di Sistemi Intelligenti Applicati (AIS-Lai

Dipartimento di Informatica <u>alberto.borghese@unimi.it</u>



A.A. 2015-2016

1/48

Riassunto

- Gli agenti ed il Reinforcement Learning
- Gli elementi del RL
- Setting non associativo
- La Value function

A.A. 2015-2016

2/48

L'agente

- Inizialmente l'attenzione era concentrata sulla progettazione dei sistemi di "controllo". Valutazione, sintesi...
- L'intelligenza artificiale e la "computational intelligence" hanno consentito di spostare l'attenzione sull'apprendimento delle strategie di controllo e più in generale di comportamento.
- Macchine dotate di meccanismi (algoritmi, SW), per apprendere.

A.A. 2015-2016

3/48

http:\\homes.dsi.unimi.it\~borghese\

Why agents are important?

<u>Agente</u> (software): essere software che svolge servizi per conto di un altro programma, solitamente in modo automatico ed invisibile. Tali software vengono anche detti agenti intelligenti

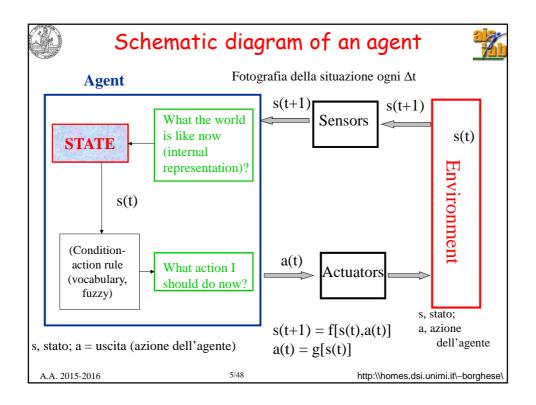
"They are seen as a natural metaphor for conceptualising and building a wide range of complex computer systems (the world contains many passive objects, but it also contains very many *active* components as well);

They cut across a wide range of different technology and application areas, including telecoms, human-computer interfaces, distributed systems, WEB and so on;

They are seen as a natural development in the search for ever-more powerful abstractions with which to build computer systems."

A.A. 2015-2016

4/48



How agents solve a problem

Formulate a problem. Through analysis. State, action, indentification.

Solve the problem (by searching).

Implement the solution (execute).

Evaluate the implemented solution.

- ◆ Success or fail? Adequate or not adequate?
- ◆ How much adequate? How to measure the success or failure of the performance?
- ◆ Optimization of the performance to create better agents.
- Solve a problem = achieve a given goal (= reach a final state or avoid certain states)
- An agent can examine different sequences of actions (deterministic or stochastic response by the environment) and search the best sequence.

A.A. 2015-2016

6/48

Agente

- Può scegliere un'azione sull'ambiente tra un insieme continuo o discreto.
- L'azione dipende dalla situazione. La situazione è riassunta nello **stato** del sistema.
- L'agente monitora continuamente l'ambiente (input); l'ambiente modifica continuamente lo stato.
- La scelta dell'azione è non banale e richiede un certo grado di "intelligenza".
- L'agente ha una memoria "intelligente". Non può tenere in memoria tutto quanto successo nel passato.

A.A. 2015-2016

7/48

http:\\homes.dsi.unimi.it\~borghese\

Reinforcement learning

Spesso si ha a disposizione solamente un'informazione qualitativa (a volte binaria, giusto/sbagliato successo/fallimento), puntuale.

Questa è un'informazione qualitativa.

L'informazione disponibile si chiama **segnale di rinforzo**. Non dà alcuna informazione su come aggiornare il comportamento dell'agente (e.g. i pesi). Non è possibile definire una funzione costo o un gradiente.

Obbiettivo: creare degli agenti "intelligenti" che abbiano una "machinery" per apprendere dalla loro esperienza.

A.A. 2015-2016

8/48

 $http: \verb|\homes.dsi.unimi.it| \|\homes.dsi.unimi.it| \|\homes.dsi.unimi.it| \|\homes.dsi.unimi.it| \|\homes.dsi.unimi.it| \|\homes.dsi.unimi.it| \|\homes.dsi.unimi.it| \|\homes.dsi.unimi.it| \|\homes.dsi.unimi.it| \|\homes.dsi.u$

Reinforcement Learning: caratteristiche

- Apprendimento mediante interazione con l'ambiente. Un agente isolato non apprende.
- L'apprendimento è funzione del raggiungimento di uno o più obbiettivi.
- Non è necessariamente prevista una ricompensa ad ogni istante di tempo.
- Le azioni vengono valutate mediante la ricompensa a lungo termine ad esse associata (delayed reward). Il meccanismo di ricerca delle azioni migliori è imparentato con la ricerca euristica: trial-and-error.
- L'agente sente l'input, modifica lo stato e genera un'azione che massimizza la ricompensa a lungo termine.

A.A. 2015-2016

9/48

http:\\homes.dsi.unimi.it\~borghese\

Exploration vs Exploitation

Esplorazione (exploration) dello spazio delle azioni per scoprire le azioni migliori. Un agente che esplora solamente raramente troverà una buona soluzione.

Le azioni migliori vengono scelte ripetutamente (exploitation) perchè garantiscono ricompensa (reward). Se un agente non esplora nuove soluzioni potrebbe venire surclassato da nuovi agenti più dinamici.

Occorre non interrompere l'esplorazione.

Occorre un approccio statistico per valutare le bontà delle azioni.

Exploration ed exploitation vanno bilanciate. Come?

A.A. 2015-2016

10/48

 $http: \verb|\homes.dsi.unimi.it| \homes.dsi.unimi.it| \homes.dsi.unimi.it| \homes.dsi.unimi.it| \homes.dsi.unimi.it| \homes.dsi.unimi.it| \homes.dsi.unimi.it| \ho$

Ambiente

- L'agente ha un comportamento goal-directed ma agisce in un ambiente incerto non noto a priori o parzialmente noto.
- Esempio: planning del movimento di un robot.
- Un agente impara interagendo con l'ambiente. Planning può essere sviluppato mentre si impara a conoscere l'ambiente (mediante le misure operate dall'agente stesso). La strategia è vicina al trial-and-error.
- L'agente impara facendo. Deve selezionare i comportamenti che ripetutamente risultano favorevoli a lungo termine.

A.A. 2015-2016

11/48

http:\\homes.dsi.unimi.it\~borghese\

Esempi

Un giocatore di scacchi. Per ogni mossa ha informazione sulle configurazioni di pezzi che può creare e sulle possibili contro-mosse dell'avversario.

Una gazzella in 6 ore impara ad alzarsi e correre a 40km/h.

Come fa un robot veramente autonomo ad imparare a muoversi in una stanza per uscirne? (cf. competizione Robocare@home).

Come impostare i parametri di una raffineria (pressione petrolio, portata....) in tempo reale, in modo da ottenere il massimo rendimento o la massima qualità?

A.A. 2015-2016

12/48

Caratteristiche degli esempi

Parole chiave:

- Interazione con l'ambiente. L'agente impara dalla propria esperienza.
- Obbiettivo dell'agente.
- Incertezza o conoscenza parziale dell'ambiente.

Osservazioni:

- Le azioni modificano lo stato (la situazione), cambiano le possibilità di scelta in futuro (delayed reward).
- L'effetto di un'azione non si può prevedere completamente.
- L'agente ha a disposizione una valutazione globale del suo comportamento. Deve sfruttare questa informazione per migliorare le sue scelte. Le scelte migliorano con l'esperienza.
- I problemi possono avere orizzonte temporale finito od infinito.

A.A. 2015-2016

13/48

http:\\homes.dsi.unimi.it\~borghese\

Riassunto

- Gli agenti ed il Reinforcement Learning
- Gli elementi del RL
- Setting non associativo
- La Value function

A.A. 2015-2016

14/48

 $http: \verb|\homes.dsi.unimi.it| \verb|\homese||$

I tue tipi di rinforzo

L'agente deve scoprire quale azione (policy) fornisca la ricompensa massima provando le varie azioni (trial-and-error) sull'ambiente.

"Learning is an adaptive change of behavior and that is indeed the reason of its existence in animals and man (K. Lorentz, 1977).

Rinforzo puntuale istante per istante, azione per azione (condizionamento classico).

Rinforzo puntuale "una-tantum" (condizionamento operante), viene rinforzato una catena di azioni, un comportamento.

A.A. 2015-2016

15/48

http:\\homes.dsi.unimi.it\~borghese\

Il Condizionamento classico

L'agente deve imparare una (o più) trasformazione tra input e output. Queste trasformazioni forniscono un comportamento che l'ambiente premia.

Il segnale di rinforzo è sempre lo stesso per ogni coppia input – output: **Reward istantaneo**.

Esempio: risposte riflesse Pavolviane. Campanello (stimolo condizionante) prelude al cibo. Questo induce una risposta (salivazione). La risposta riflessa ad uno stimolo viene evocata da uno stimolo condizionante.

Stimolo-Risposta. Lo stimolo condizionante (campanello = input) induce la salivazione (uscita) in risposta al campanello.

A.A. 2015-2016

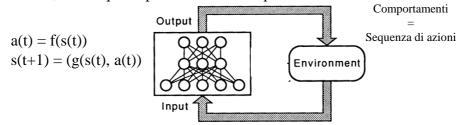
16/48

 $http: \verb|\homes.dsi.unimi.it|-borghese|$

Condizionamento operante

Reinforcement learning (operante).

Interessa un comportamento. Una sequenza di input / output che può essere modificata agendo sui parametri che definiscono il comportamento dell'agente. Il condizionamento arriva in un certo istante di tempo (spesso una-tantum) e deve valutare tutta la sequenza temporale di azioni, anche quelle precedenti nel tempo.



Intreccio di azioni e reazioni dell'ambiente: s_0 , a_0 ; s_1 , a_1 ; s_2 , a_2

A.A. 2015-2016

17/4

http:\\homes.dsi.unimi.it\~borghese\

Gli attori del RL

Policy. Descrive l'azione scelta dall'agente: mapping tra stato (input dall'ambiente) e azioni. Funzione di controllo. Le policy possono avere una componente stocastica. Viene utilizzato un modello adeguato del comportamento dell'agente (e.g. tabella, funzione continua parametrica...).

Reward function. Ricompensa **immediata**. Associata all'azione intrapresa in un certo stato. Può essere data al raggiungimento di un goal (esempio: successo / fallimento). E' uno scalare (può essere associato allo stato e/o input e/o stato prossimo). Rinforzo primario.

Value function. "Cost-to-go". Ricompensa a **lungo termine**. Somma dei reward: costi associati alle azioni scelte istante per istante + costo associato allo stato finale. Orizzonte temporale ampio. Rinforzo secondario. Ricompensa attesa. Cost-to-go per raggiungere il goal.

Ambiente. Descrive tutto quello su cui agisce la policy. Può essere non noto o parzialmente noto. L'agente deve costruirsi una rappresentazione implicita dell'ambiente attraverso la value function (rappresentazione utilitaristica).

- Quale delle due ricompense è più difficile da ottenere?
- L'agente agisce per massimizzare la funzione Value o Reward?

A.A. 2015-2016

18/48

Proprietà del rinforzo

L'ambiente o l'interazione può essere complessa.

Il rinforzo può avvenire solo dopo una più o meno lunga sequenza di azioni (delayed reward).

E.g. agente = giocatore di scacchi.

ambiente = avversario.

Problemi collegati:

temporal credit assignement. structural credit assignement.

L'apprendimento non è più da esempi, ma dall'osservazione del proprio comportamento nell'ambiente.

A.A. 2015-2016

19/48

http:\\homes.dsi.unimi.it\~borghese\

Meccanismo di apprendimento nel RL

Ciclo dell'agente (le tre fasi sono sequenziali):

- 1) Implemento una policy
- 2) Aggiorno la Value function
- 3) Aggiorno la policy.

A.A. 2015-2016

20/48

II RL

- •Reinforcement learning. L'agente viene modificato, rinforzando le azioni che sono risultate buone a lungo termine. E' quindi una classe di algoritmi iterativi.
- •Self-discovery of a successful strategy (it does not need to be optimal!). La strategia (di movimento, di gioco) non è data apriori ma viene appresa attraverso **trial-and-error**.
- •Credit assignement (temporal and structural).
- •Come possiamo procedere in modo efficiente nello scoprire una strategia di successo? Cosa vuol dire modificare l'agente?

A.A. 2015-2016 21/48

Riassunto

 $http: \verb|\homes.dsi.unimi.it| \verb|\homes.dsi.unimi.it||$

- Gli agenti ed il Reinforcement Learning
- Gli elementi del RL
- Setting non associativo
- La Value function

A.A. 2015-2016

22/48

 $http: \verb|\homes.dsi.unimi.it| \verb|\homese||$

Il problema del "n-Armed bandit"

Situazione iniziale costante.

Scelta tra n azioni (azione + reward esaurisce l'episodio)

La richiesta di scegliere viene ripetuta più volte nel tempo.

La ricompensa è stocastica (e.g. slot machine).

Obbiettivo: viene massimizzata la ricompensa a lungo termine.

Soluzione possibile: selezionare l'azione che fornisce la massima ricompensa a lungo termine.

Come?

A.A. 2015-2016

23/48

http:\\homes.dsi.unimi.it\~borghese\

Slot machine stocastica

Il reward della slot machine è completamente definito dalla densità di probabilità associata alla macchina.

Si suppone la densità di probabilità costante nel tempo.

Per semplicità si suppone che la densità di probabilità sia descrivibile da una funzione analitica, ad esempio una Gaussiana. In questo caso la densità di probabilità è definita dai parametri della Gaussiana: media e standard deviation.

Che cosa rappresenta la densità di probabilità?

A.A. 2015-2016

24/48

Come massimizzare la ricompensa

Consento all'agente di avere memoria.

Memorizzo il valore associato alle diverse azioni.

Posso ad un certo punto scegliere SEMPRE l'azione che mi ha dato la RICOMPENSA MAGGIORE.

GREEDY ACTION (Greedy = Goloso).

EXPLOITING KNOWLEDGE.

Perché dovremmo scegliere un'azione che non appare la migliore (NON GREEDY)?

A.A. 2015-2016

25/48

http:\\homes.dsi.unimi.it\~borghese\

Exploration

Perchè esploriamo soluzioni diverse.

La ricompensa non è deterministica. Potremmo ottenere di più con altre azioni.

Quello che conta non è la ricompensa istantanea ma la somma delle ricompense ottenute.

Occorre quindi mantenere un istinto ad esplorare azioni diverse.

Il bilanciamento di "exploration" e di "exploitation" è un compito complesso.

A.A. 2015-2016

26/48

Riassunto

- Gli agenti ed il Reinforcement Learning
- Gli elementi del RL
- Setting non associativo
- La Value function

A.A. 2015-2016

27/48

http:\\homes.dsi.unimi.it\~borghese\

La Value Function e la scelta delle azioni

Posso selezionare n-azioni: $a = a_1...a_n$.

Ciascuna di queste azioni ha un suo valore: $Q^*(a_k) = \text{long-time reward. } Q_t(a) \stackrel{.}{\text{e}} \text{ la funzione valore.}$

Ciascuna di questa azioni ha anche una stima del suo valore a lungo termine (VALUE): $Q_t(a_k). \ Supponiamo \ questa \ stima \ funzione \ del tempo: \ Q_t(a_k) \ -> \ Q^*(a_k)$

Voglio scegliere a_k che massimizza:Q(a).

In caso di exploitation di a_k , posso stimare il "value" all'istante t, come:

$$Q_{t}(a_{k}) = \frac{r_{1} + r_{2} + \dots + r_{N(a_{k})}}{N(a_{k})}$$

Dove r_i è il reward per avere scelto a_k all'istante j.

A.A. 2015-2016

28/48

 $http: \verb|\homes.dsi.unimi.it| \verb|\homese||$

Caratteristiche della Value Function

Value function calcolata come media:

$$Q_t(a_k) \rightarrow Q^*(a_k) \text{ per } k \rightarrow \infty$$

 $Q_t(a_k) = 0$ t = 0. Nessuna stima disponibile.

Prima possibilità di selezione dell'azione che dà all'istante t, la massima VALUE FUNCTION stimata:

$$k: Q_t(a_k) > Q_t(a_j) \ \forall j \neq k.$$

$$a^*: Q_t(a^*) = \max_{a} \{Q_t(a)\}$$

Così viene EXPLOITED la conoscenza accumulata, è una politica GREEDY.

Non vengono esplorate soluzioni alternative.

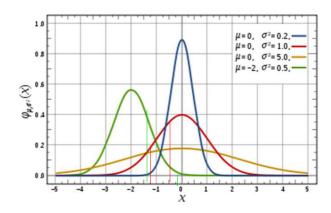
Come si può formalizzare un'alternativa?

A.A. 2015-2016

29/4

http:\\homes.dsi.unimi.it\~borghese\

Esempio di Q(.) non adeguata



Running average of red curve: $-0.5+(-1.25) = -1.75 / 2 = -0.875 = Q_2(red)$ Running average of green curve: $-1.3+(-0.2) = -1.5 / 2 = -0.75 = Q_2(green)$

Less reward using the red action!

A.A. 2015-2016

30/48

Exploitation and Exploration

Suppongo che con probabilità, ϵ , viene scelta un'azione diversa.

Questa azione viene scelta con probabilità uniforme tra le n possibili azioni a disposizione (**\varepsilon-Greedy method**).

$$Q_t(a_k) \rightarrow Q^*(a_k)$$
 $t \rightarrow \infty$

Near-gready action selection. Come funziona?

$$a^*: Q_t(a^*) = \max_{a} \{Q_t(a)\} \qquad P=1-\varepsilon$$

Uniforme sulle altre a

A.A. 2015-2016

31/4

http:\\homes.dsi.unimi.it\~borghese\

Beyond ϵ -greedy: pursuit methods

Dopo ogni episodio, la probabilità di scegliere un'azione viene aggiornata:

- L'azione associata alla value function migliore aumenta la probabilità di essere prescelta.
- La probabilità di scegliere le altre azioni viene decrementata.

$$\pi_{t+1}(a *_{t+1}) = \pi_{t}(a *_{t+1}) + \beta[1 - \pi_{t}(a *_{t+1})]$$

$$\pi_{t+1}(a) = \pi_{t}(a) + \beta[0 - \pi_{t}(a)] \quad for \ a \neq a *_{t+1}$$

The preference for an action is always "**pursuing**" (inseguendo) the action that is greedy according to the current action-value estimate.

A.A. 2015-2016

32/48

Esempio: 10-armed testbed

n-armed bandit problem: n = 10: $a = a_1, a_2 ..., a_k, ... a_{10}$.

Per ogni task, eseguo 1000 volte la scelta dell'azione:

$$\begin{split} t &= t_1,\, t_2\, \dots...\, t_{1000}. \\ a &= a(t_1),\, a(t_2)\, \dots...\, a(t_{1000}) \\ r &= r(a(t_1)),\, r(a(t_2))\, \dots...\, r(a(t_{1000})) \end{split}$$

$$\begin{split} r(a_k) \text{ viene selezionato in modo random da una distribuzione Gaussiana con media } \mu_k, \\ \text{diversa per le diverse azioni, ma costante per tutto il task, e varianza } 1. \ \mu_k = Q^*(a_k) \end{split}$$

Misuro per ogni istante di tempo, t:

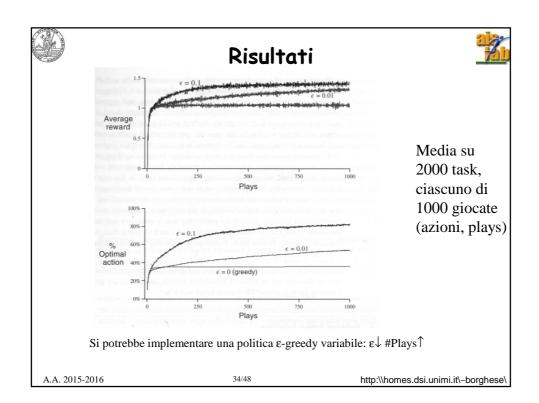
Il reward dell'azione (in questo caso viene dato un reward $\neq 0$ per ogni azione) Calcolo la ricompensa totale (Value Function).

Valuta la performance dopo le 1000 giocate di ogni task.

Quanto vale $\mu_k?$ Per ogni task vario μ_k estraendolo da una distribuzione Gaussiana con media = 0 e varianza = 1.

A.A. 2015-2016

33/4



Domande

Supponiamo che la distribuzione da cui si sceglie il valore medio del reward abbia varianza nulla. Quale metodo funziona meglio: Greedy o ϵ -Greedy?

Supponiamo che la distribuzione da cui si scegli il valore medio del reward abbia varianza maggiore (e.g. = 10). Cosa succede? Quale metodo si comporterebbe meglio?

In quali altre condizioni sarebbe utile avere esplorazione?

A.A. 2015-2016

35/48

http:\\homes.dsi.unimi.it\~borghese\

Problemi di memoria

$$Q_{r}(a_{k}) = \frac{r_{1} + r_{2} + \dots + r_{N(a_{k})}}{N(a_{k})}$$

Occorre scegliere un algoritmo che calcoli $Q_t(.)$ con un piccolo carico computazionale e di memoria.

Supponiamo di Exploit l'azione a_k . Calcoliamo i reward al tempo t (primi t reward) e li chiamiamo $Q_t(a_k)$. $Q_t(a_k)$ coinciderà con la media delle prime $N(a_k)$ ricompense:

$$Q_t(a_k) = \frac{r_1 + r_2 + \dots + r_{N(a_k)}}{N(a_k)}$$

Scegliendo ancora a_k, otteniamo il seguente valore di Q al tempo t+1:

$$Q_{t+1}(a_k) = \frac{r_1 + r_2 + \dots + r_N + r_{N+1}}{N+1}$$

A.A. 2015-2016

36/48

Determinazione ricorsiva di Qk

$$Q_{t}(a_{k}) = \frac{r_{1} + r_{2} + \dots + r_{N}}{N}$$

$$Q_{t+1}(a_{k}) = \frac{r_{1} + r_{2} + \dots + r_{N} + r_{N+1}}{N+1}$$

$$Q_{t+1} = \frac{r_1 + r_2 + \dots + r_N}{N+1} + \frac{r_{N+1}}{N+1} = \frac{Q_N N}{N+1} + \frac{r_{N+1}}{N+1} =$$

$$\frac{Q_{t}(N+1-1)}{N+1} + \frac{r_{N+1}}{N+1} = \frac{Q_{t}(N+1) - Q_{t}}{N+1} + \frac{r_{N+1}}{N+1} = >$$

$$Q_{t+1} = Q_t - \frac{Q_t}{N+1} + \frac{r_{N+1}}{N+1}$$
Dipende da t + 1

$$Q_1 = r_1(a_1)$$
 Q_0 arbitraria

Non dipende da t + 1

http:\\homes.dsi.unimi.it\~borghese\

Osservazioni su Q_k

$$Q_{k+1} = Q_k - \frac{Q_k}{N_{k+1}} + \frac{r_{k+1}}{N_{k+1}} = Q_k + \alpha [r_{k+1} - Q_k]$$

$$\alpha = 1/N_{k+1}$$

Occupazione di memoria minima: Solo Q_k e k.

NB k è il numero di volte in cui è stata scelta a_i, non è necessariamente coincidente con il tempo t!

Questa forma è la base del RL. La sua forma generale è:

NewEstimate = OldEstimate + StepSize [Target - OldEstimate]

NewEstimate = OldEstimate + StepSize * Error.

$$StepSize = \alpha = 1/N_{k+1}$$

A.A. 2015-2016

Esempio

$$Q_{t+1} = Q_t - \frac{Q_t}{N+1} + \frac{r_{N+1}}{N+1} = Q_t + \frac{1}{N+1} (r_{N+1} - Q_t)$$

$$egin{array}{lll} r_1=2, & r_2=3; & r_3=7; & r_4=2 \\ Q_1=2; & Q_2=2,5 & Q_3=4 & Q_3=3,5 \\ \end{array}$$

$$Q_3 = Q_2 + \frac{1}{3} (r_3 - Q_2)$$

$$Q_3 = 2.5 + 1/3 (7 - 2.5) = 2.5 + 1.5 = 4.0$$

A.A. 2015-2016

39/48

http:\\homes.dsi.unimi.it\~borghese\

Caso stazionario

$$Q_{k+1} = \frac{r_1 + r_2 + \dots + r_k + r_{k+1}}{N_{k+1}}$$

$$Q_{k+1} = \sum_{i=1}^{k+1} \frac{r_i}{N_{k+1}}$$

$$Q_{k+1} = Q_k - \frac{Q_k}{N_{k+1}} + \frac{r_{k+1}}{N_{k+1}}$$

$$Q_{k+1} = Q_k + \alpha [r_{k+1} - Q_k]$$

Il peso di ciascun campione è pari a $1/N_{k+1}$.

Ogni nuovo campione viene pesato con $1/N_{k+1}$;

Il peso segue un'iperbole.

Peso decrescente ai nuovi campioni

Cosa succede se il task è non stazionario?

A.A. 2015-2016

40/48

Caso non stazionario

$$Q_{k+1} = Q_k + \alpha [r_{k+1} - Q_k]$$

Al tempo 0, ottengo r_0

Suppongo
$$\alpha = cost \rightarrow \alpha_k = \alpha$$
 $0 \le \alpha \le 1$

$$\begin{aligned} Q_k &= Q_{k-1} + \alpha [r_k - Q_{k-1}] = \\ &= \alpha r_k + (1 - \alpha) Q_{k-1} = \\ &= \alpha r_k + (1 - \alpha) [\alpha r_{k-1} + (1 - \alpha) Q_{k-2}] = \\ &= \alpha r_k + (1 - \alpha) \alpha r_{k-1} + (1 - \alpha)^2 Q_{k-2}] = \end{aligned}$$

$$= \alpha r_k + (1 - \alpha) \alpha r_{k-1} + (1 - \alpha)^2 \alpha r_{k-2} + \dots + (1 - \alpha)^{k-1} \alpha r_1 + (1 - \alpha)^k Q_0 =$$

A.A. 2015-2016

http:\\homes.dsi.unimi.it\~borghese\

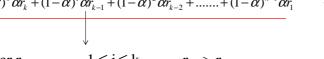
Caso non stazionario

$$Q_{k+1} = Q_k + \alpha [r_{k+1} - Q_k]$$

Al tempo 0, ottengo r_0

Suppongo
$$\alpha = \cos t \rightarrow \alpha_k = \alpha$$
 $0 \le \alpha \le 1$

$$\alpha r_{k} + (1-\alpha)\alpha r_{k-1} + (1-\alpha)^{2}\alpha r_{k-2} + \dots + (1-\alpha)^{k-1}\alpha r_{1} + (1-\alpha)^{k}Q_{0} = (1-\alpha)^{0}\alpha r_{k} + (1-\alpha)^{1}\alpha r_{k-1} + (1-\alpha)^{2}\alpha r_{k-2} + \dots + (1-\alpha)^{k-1}\alpha r_{1} + \dots + (1-\alpha)^{k}Q_{0}$$



Per
$$r_i$$
 $1 \le i \le k$ $r_1 -> r_k$
Per $(1 - \alpha)^{k-i}$ $1 \le i \le k$ $(1 - \alpha)^{k-1}$ -> $(1 - \alpha)^0$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$Q_{k+1} = \sum_{i=1}^k \alpha (1-\alpha)^{k-i} r_i \qquad + (1-\alpha)^k Q_0$$

$$Q_{k+1} = \sum_{i=1}^{k} \alpha (1-\alpha)^{k-i} r_i + (1-\alpha)^k Q_0$$

Osservazioni

$$Q_{k+1} = (1-\alpha)^k Q_0 + \sum_{i=1}^k \alpha (1-\alpha)^{k-i} r_i = (1-\alpha)^k Q_0 + \sum_{i=1}^k w_i r_i$$

$$= (1 - \alpha)^{k} Q_{0} + \sum_{i=1}^{k} w_{i} r_{i}$$

$$w_i = \alpha (1 - \alpha)^{k - i} \qquad \alpha < 1$$

I reward non sono pesati tutti allo stesso modo: weighted average.

Il peso di ciascun campione decresce esponenzialmente.

Exponential, recency-weighted average.

A.A. 2015-2016

http:\\homes.dsi.unimi.it\~borghese\

Somma dei pesi dei reward è unitaria 🍱

$$Q_{k+1} = (1-\alpha)^k Q_0 + \sum_{i=1}^k \alpha (1-\alpha)^{k-i} r_i \qquad i = 1 \rightarrow (1-\alpha)^{k-1}$$
 Riscrivo considerando solamente i coefficienti.
$$i = k \rightarrow (1-\alpha)^0$$

$$i=1 \rightarrow (1-\alpha)^{k-1}$$

$$i = k \rightarrow (1 - \alpha)^0$$

Faccio partire la sommatoria da 0 a k-1

Aggiungo e sottraggo il termine $(1-\alpha)^k$ dentro la sommatoria e

$$1 = \alpha \left(\sum_{i=0}^{k-1} (1 - \alpha)^{i} + (1 - \alpha)^{k} - (1 - \alpha)^{k} \right) + (1 - \alpha)^{k} =$$

$$= \alpha \left(\sum_{i=0}^{k} (1 - \alpha)^{i} - (1 - \alpha)^{k} \right) + (1 - \alpha)^{k} =$$

$$\alpha \left[\frac{(1 - \alpha)^{k+1} - 1}{(1 - \alpha) - 1} - (1 - \alpha)^{k} \right] + (1 - \alpha)^{k} =$$

Somma dei pesi dei reward è unitaria 🍱

$$Q_{k+1} = (1-\alpha)^k Q_0 + \sum_{i=1}^k \alpha (1-\alpha)^{k-i} r_i \qquad i = 1 \rightarrow (1-\alpha)^{k-1}$$
$$i = k \rightarrow (1-\alpha)^0$$

$$i = 1 \rightarrow (1 - \alpha)^{k-1}$$

Riscrivo considerando solamente i coefficienti.

$$1 = \alpha \left[\frac{(1-\alpha)^{k+1} - 1}{(-\alpha)} \right] - \alpha (1-\alpha)^{k} + (1-\alpha)^{k} =$$

$$-(1-\alpha)^{k+1} + 1 - \alpha (1-\alpha)^{k} + (1-\alpha)^{k} =$$

$$-(1-\alpha)^{k+1} + 1 + (1-\alpha)^{k} (1-\alpha)^{k} cvd$$
Raccolgo (1-\alpha)^{k}

A.A. 2015-2016

http:\\homes.dsi.unimi.it\~borghese\

Condizioni iniziali

$$Q_{k+1} = (1-\alpha)^{k} Q_{0} + \sum_{i=1}^{k} \alpha (1-\alpha)^{k-i} r_{i}$$

Metodi ad $\alpha = 1/N_k$, $\dot{Q_0}$ non viene utilizzato se non al primo passo, viene poi sostituito da Q₁.

Metodi ad α costante, Q_0 , conta sempre meno, ma la polarizzazione è permanente ($Q_0 = 0$).

Q₀ può essere utilizzato per fornire della conoscenza a-priori o per favorire l'esplorazione.

Come posso gestire una situazione in cui la slot machine cambia improvvisamente la sua densità di probabilità di reward?

A.A. 2015-2016

```
Pseudo-codice per il calcolo di Qk.
      ###### 1) Definizione delle variabili:
                                                    // epsilon dipende dal grado di greedy che voglio dare all'agente
      N_scelte = m; eps_gready = 0.1;
## Variabili dell'agente
      A = \{1, 2, m\}; \\ Q = \{Q1, Q2 \dots, Qm\} = 0; \\ N\_azioni = \{1, 2, \dots, m\}
                                                    // Azioni possibili
                                                   // Value function per ogni azione
// Numero di volte in cui è scelta l'azione j (e collezionato il reward associato).
                    // Inizializzo i parametri della distribuzione (stazionaria) dei reward per ogni azione
      meanReward = [mean_1, mean_2, ..... mean_m]; stdReward = [mean_1, mean_2, ..... mean_m];
      ###### 2) Ciclo di funzionamento
      while (true)
                    eps = randu([0\ 1]);
                                                                  // Per politica epsilon-greedy
           // Exploitation
                    [a_attuale Q_attuale] = SearchMax(Q);
                                                                // Cerca l'azione ottima secondo Q
          // Exploration: se eps < epsilon_min, allora exploration if (eps < epsilon_gready)
                    // Devo trovare un'azione diversa da a_attuale -> a_ref 
 trovato = false; a_ref = a_attuale;
                                     while (trovato == false)
                                                  a_attuale = randu(A);
if (a_attuale != a_ref)
                                                    \{ \ trovato = true; \ Q\_attuale = Q(a\_attuale); \\
           // Eseguo l'azione a_attuale e misuro il reward ottenuto dalla slot machine
                     r attuale = randg[meanReward(a attuale), stdReward(a attuale)];
           // Update i dati per l'azione a_attuale: il numero di azioni ed il value
                    N\_azioni(a\_attuale)++;

Q(a\_attuale) = Q(a\_attuale) + 1/[N\_azioni(attuale)] * (r\_attuale - Q(a\_attuale));
A.A. 2015-2016
                                                                                                   http:\\homes.dsi.unimi.it\~borghese\
```


Riassunto

- Gli agenti ed il Reinforcement Learning
- Gli elementi del RL
- Setting non associativo
- La Value function

A.A. 2015-2016 48/48

 $http: \verb|\homes.dsi.unimi.it| \verb|\homese||$