

Algoritmi gerarchici: QTD

- Quad Tree Decomposition;
- Suddivisione gerarchica dello spazio delle feature, mediante splitting dei cluster;
- Criterio di splitting (~distanza tra cluster).

A.A. 2012-2013 3/5

Algoritmi gerarchici: QTD

- Clusterizzazione immagini RGB, 512x512;
- Pattern: pixel (x,y);
- Feature: canali R, G, B.
- Distanza tra due pattern (non euclidea):

```
\begin{aligned} & dist\,(p1,\,p2) = \\ & dist\,([R1\;G1\;B1],\,[R2\;G2\;B2]) = \\ & max\,\,(|R1\text{-}R2|,\,|G1\text{-}G2|,\,|B1\text{-}B2|). \end{aligned}
```

A.A. 2012-2013

4/51

Algoritmi gerarchici: QTD

 $p1 = [0\ 100\ 250]$

 $p2 = [50\ 100\ 200]$

 $p3 = [255 \ 150 \ 50]$

dist (p1, p2) = dist ([R1 G1 B1], [R2 G2 B2]) = max (|R1-R2|, |G1-G2|, |B1-B2|) = max ([50 0 50]) = 50.

dist (p2, p3) = 205.

dist (p3, p1) = 255.

A.A. 2012-2013

5/51

Algoritmi gerarchici: QTD

Criterio di splitting: se due pixel all'interno dello stesso cluster distano più di una determinata soglia, il cluster viene diviso in 4 cluster.

Esempio applicazione: segmentazione immagini, compressione immagini, analisi locale frequenze immagini...

A.A. 2012-2013

6/51

QTD: Risultati

Original

Clusterized

Hierachical Clustering

- In brief, HC algorithms build a whole hierarchy of clustering solutions
 - ◆ Solution at level k is a *refinement* of solution at level k-1
- Two main classes of HC approaches:
 - ◆ Agglomerative: solution at level k is obtained from solution at level k-1 by merging two clusters
 - ◆ Divisive: solution at level k is obtained from solution at level k-1 by splitting a cluster into two parts
 - Less used because of computational load

A.A. 2012-2013

10/51

 $http: \verb|\homes.dsi.unimi.it| \verb|\homes.e|$

Dissimilarity criteria

- Different distances/indices of dissimilarity (*point wise*) ...
 - ◆ E.g. euclidean, city-block, correlation...
- ... and agglomeration criteria: Merge clusters C_i and C_j such that diss(i, j) is minimum (cluster wise)
 - ◆ Single linkage:
 - \neg diss(i,j) = min d(x, y), where x is in C_i, y in cluster C_j
 - ◆ Complete linkage:
 - \neg diss(i,j) = max d(x, y), where x is in cluster i, y in cluster j
 - ◆ Group Average (GA) and Weighted Average (WA) Linkage:

$$- \ \, \operatorname{diss}(\operatorname{i}\operatorname{j}) = \quad \sum_{\mathtt{x} \in C_i} \sum_{y \in C_j} w_i w_j d(x,y) \left/ \sum_{\mathtt{x} \in C_i} \sum_{y \in C_j} w_i w_j \right.$$

GA: $w_i = w_j = 1$ WA: $w_i = n_i$, $w_j = n_j$

A.A. 2012-2013

13/51

http:\\homes.dsi.unimi.it\~borghese\

Cluster wise dissimilarity

- Other agglomeration criteria: Merge clusters C_i and C_j such that diss(i, j) is minimum
 - ◆ Centroid Linkage:
 - $= diss(i, j) = d(\mu_i, \mu_i)$
 - ♦ Median Linkage:
 - # diss(i,j) = d(center_i, center_j), where each center_i is the average of the centers of the clusters composing C_i
 - ♦ Ward's: Method:
 - diss(i, j) = increase in the total error sum of squares (ESS) due to the merging of C_i and C_i
- Single, complete, and average linkage: graph methods
 - ◆ All points in clusters are considered
- Centroid, median, and Ward's linkage: geometric methods
 - ♦ Clusters are summed up by their centers

A.A. 2012-2013

14/51

 $http: \verb|\homes.dsi.unimi.it| \verb|\homese||$

Ward's method

It is also known as minimum variance method.

Each merging step minimizes the increase in the total ESS:

$$ESS_{t} = \sum_{i=0}^{\infty} (x - \mu_{t})^{2}$$

$$ESS = \sum_{i=0}^{\infty} ESS$$

When merging clusters C_i and C_j , the increase in the total ESS is:

$$\Delta ESS = ESS_{i,j} - ESS_i - ESS_j$$

Spherical, compact clusters are obtained.

The solution at each level k is an <u>approximation</u> to the optimal solution for that level (the one minimizing ESS)

A.A. 2012-2013

15/51

http:\\homes.dsi.unimi.it\~borghese\

How HC operates

- HC algorithms operate on a dissimilarity matrix:
 - ◆ For each pair of existant clusters, their dissimilarity value is stored
- When clusters C_i and C_j are merged, only dissimilarities for the new resulting cluster have to be computed
 - ◆ The rest of the matrix is left untouched

A.A. 2012-2013

16/51

 $http: \verb|\homes.dsi.unimi.it| \verb|\homes.e| \\$

The Lance-William recursive formulation

Used for iterative implementation. The dissimilarity value between newly formed cluster $\{C_i, C_j\}$ and every other cluster C_k is computed as:

$$\begin{aligned} diss(k,(i,j)) &= \alpha_i diss(k,i) + \alpha_j diss(k,j) + \beta diss(i,j) + \\ &+ \gamma \big| diss(k,i) - diss(k,j) \big| \end{aligned}$$

Only values already stored in the dissimilarity matrix are used. Different sets of coefficients correspond to different criteria.

Criterion	α_{i}	$\alpha_{\rm j}$	β	γ
Single Link.	1/2	1/2	0	-1/2
Complete Link.	1/2	1/2	0	1/2
Group Avg.	$n_i/(n_i+n_j)$	$n_j/(n_i+n_j)$	0	0
Weighted Avg.	1/2	1/2	0	0
Centroid	$n_i/(n_i+n_j)$	$n_j/(n_i+n_j)$	$-n_i n_j / (n_i + n_j)^2$	0
Median	1/2	1/2	- 1/4	0
Ward	$(n_i+n_k)/(n_i+n_j+n_k)$	$(n_j+n_k)/(n_i+n_j+n_k)$	$-n_k/(n_i+n_j+n_k)$	0

A.A. 2012-2013 http:\\homes.dsi.unimi.it\~borghese\

Characteristics of HC

- Pros:
 - ◆ Indipendence from initialization
 - ◆ No need to specify a desired number of clusters from the beginning
- Cons:
 - ◆ Computational complexity at least O(N²)
 - ◆ Sensitivity to outliers
 - ◆ No reconsideration of possibly misclassified points
 - ♦ Possibility of inversion phenomena and multiple solutions

A.A. 2012-2013

18/51

 $http: \verb|\homes.dsi.unimi.it| \verb|\homes.e| \\$

