

2 Introduction to the HC paradigm
... forget about partitional methods;)

What HC is

3

- ♠ In brief, HC algorithms build a whole hierarchy of clustering solutions
 - Solution at level k is a refinement of solution at level k-1
- ▲ Two main classes of HC approaches:
 - □ Agglomerative: solution at level k is obtained from solution at level k-1 by merging two clusters
 - Divisive: solution at level k is obtained from solution at level k-1 by splitting a cluster into two parts
 - ▲ Less used because of computational load

Agglomerative HC

4

- 1. At start, each input pattern is assigned to a singleton cluster
- 2. At each step, the two *closest* clusters are merged into one
 - So the number of clusters is decreased by one at each step
- 3. At the last step, only one cluster is obtained

Ward's criterion

- Also known as minimum variance method
- Each merging step minimizes the increase in the total ESS:

$$ESS_{i} = \sum_{x \in C_{i}} (x - \mu_{i})^{2}$$

$$ESS = \sum_{i} ESS$$

 $\hfill \square$ When merging clusters $C_{\it i}$ and $C_{\it j, i}$ the increase in the total ESS is

$$\Delta ESS = ESS_{i,j} - ESS_i - ESS_j$$

- Spherical, compact clusters are obtained
- A The solution at each level k is an <u>approximation</u> to the optimal solution for that level (the one minimizing ESS)

The Lance-Williams formula

- Used for iterative implementation
- ^ The dissimilarity value between newly formed cluster $\{C_i, C_j\}$ and every other cluster C_k is computed as

 $diss(k,(i,j)) = \alpha_i diss(k,i) + \alpha_j diss(k,j) + \beta diss(i,j) + \gamma |diss(k,i) - diss(k,j)|$

- Only values already stored in the dissimilarity matrix are used
- Different sets of coefficients correspond to different criteria

The Lance-Williams formula - coefficients

 $diss(k,(i,j)) = \alpha_i diss(k,i) + \alpha_j diss(k,j) + \beta diss(i,j) + \gamma |diss(k,i) - diss(k,j)|$

12

Criterion	$\alpha_{\rm i}$	$oldsymbol{lpha}_{ m j}$	β	γ
Single Link.	V ₂	1∕2	0	-1/2
Complete Link.	<i>V</i> ₂	<i>Y</i> ₂	0	1/2
Group Avg.	$n_i/(n_i+n_j)$	$n_j/(n_i+n_j)$	0	0
Weighted Avg.	<i>V</i> ₂	<i>V</i> ₂	0	0
Centroid	$n_i/(n_i+n_j)$	$n_j/(n_i+n_j)$	$-n_i n_j / (n_i + n_j)^2$	0
Median	<i>V</i> ₂	<i>V</i> ₂	- 1/4	0
Ward	$(n_i+n_k)/(n_i+n_j+n_k)$	$(n_j+n_k)/(n_i+n_j+n_k)$	$-n_k/(n_i+n_j+n_k)$	0

e.g. for single linkage... diss(k, (i,j) = min(diss(k, i), diss(k,j))

Pros and cons of HC algorithms Pros: Indipendence from initialization No need to specify a desired number of clusters from the beginning Cons: Computational complexity at least O(N²) Sensitivity to outliers No reconsideration of possibly misclassified points Possibility of inversion phenomena and multiple solutions

