
Interacting with an artificial partner: modeling the role

of emotional aspects

I. Cattinelli, M. Goldwurm, and N. A. Borghese
cattinelli@dsi.unimi.it

Dept. Computer Science, University of Milan, Italy

Corso di Sistemi Intelligenti - A. A. 2009/10 1 / 38



What is this about?

1 Introduction
History
Background

2 The basic model
Formulation
Implementation

3 The extended model
Formulation
Applying Reinforcement Learning

4 Results
5 Quantitative behavior analysis

Motivation
Markov chains theory
Markov chains for behavior analysis
Some examples

6 Conclusion
7 References

Corso di Sistemi Intelligenti - A. A. 2009/10 2 / 38



What is this about?

1 Introduction
History
Background

2 The basic model
Formulation
Implementation

3 The extended model
Formulation
Applying Reinforcement Learning

4 Results
5 Quantitative behavior analysis

Motivation
Markov chains theory
Markov chains for behavior analysis
Some examples

6 Conclusion
7 References

Probabilistic finite state automata

Corso di Sistemi Intelligenti - A. A. 2009/10 2 / 38



What is this about?

1 Introduction
History
Background

2 The basic model
Formulation
Implementation

3 The extended model
Formulation
Applying Reinforcement Learning

4 Results
5 Quantitative behavior analysis

Motivation
Markov chains theory
Markov chains for behavior analysis
Some examples

6 Conclusion
7 References

Probabilistic finite state automata

Reinforcement learning

Corso di Sistemi Intelligenti - A. A. 2009/10 2 / 38



What is this about?

1 Introduction
History
Background

2 The basic model
Formulation
Implementation

3 The extended model
Formulation
Applying Reinforcement Learning

4 Results
5 Quantitative behavior analysis

Motivation
Markov chains theory
Markov chains for behavior analysis
Some examples

6 Conclusion
7 References

Probabilistic finite state automata

Reinforcement learning

Markov chains

Corso di Sistemi Intelligenti - A. A. 2009/10 2 / 38



Introduction History

It’s been a long road...

It all started with my Master Thesis (April 2006)

The basic model proposed there has been successively extended and
refined

Finally, a quantitative analysis approach was developed based on
Markov chains theory

Published on Biological Cybernetics in 2008
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Introduction Background

Affective Computing

What?
A fairly new interdisciplinary field, defined as computing that relates to,

arises from, or deliberately influences emotions [1]
Contributions from Computer Science, Psychology, Neuroscience, ...

Who?
Research in this field “officially” started in the 1990s with Rosalind
Picard and her Affective Computing Group at MIT
In the last years the interest toward this research area has greatly
grown, as proved by a number of dedicated conferences and workshops,
papers and books

How?
Implementation of modules for human emotion recognition, based
on physiological parameters or on non-verbal communication
Design of systems for simulating emotional states, which can
communicate emotions readable by the human user
Models of emotional dynamics, to explain how human emotional
intelligence works and to reproduce this faculty in machines
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Introduction Background

Affective Computing

... and above all: Why???

To get truly intelligent machines: emotions are an important part of
our intellective faculties!
To improve human-machine interaction, making it a bit closer to
human-human interaction
Application domains: entertainment (video games, home robots),
health care, social robots
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The basic model Formulation

The basic model

Let us consider a basic scenario where an artificial agent and a human
partner interact.
The model for the agent’s emotional dynamics is given by a four-tuple:

〈S, U, P, s(0)〉

where:

S = {s1, s2, . . . , sN} is the set of emotional states for the agent

U = {u1, u2, . . . , uM} is the set of input (that is, the user’s emotions)

P = {P0, P1, . . . } is the sequence of probabilistic transition functions:

Pt : S × U × S → [0, 1] for t = 0, 1, . . .

s(0) is the initial state.
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The basic model Formulation

The basic model

Therefore, our model is a Probabilistic Finite State Automaton...
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The basic model Formulation

The basic model

Therefore, our model is a Probabilistic Finite State Automaton...

Toy example:

S1

S2

S3

U1

U2

U2 P(S1, U1, S2) = 1
P(S1, U2, S2) = 0.7
P(S1, U2, S3) = 0.3

N.B.:
∑

s′∈S P (s, u, s′) = 1 for each (s, u) ∈ S × U
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The basic model Formulation

The basic model

As we said, our model is a Probabilistic Finite State Automaton...

1 The agent receives the user’s emotional state (e.g. by analyzing her
facial expression);

2 Based on the agent’s current state and input, Pt gives the probability
of entering each possible next state;

3 A new emotional state is chosen by the agent based on these
probabilities;

4 Pt is (possibly) modified to get Pt+1;

5 Go to 1.
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The basic model Formulation

The basic model

We now introduce a specific terminology:

The initial transition probability function, P0, is called personality of
the agent;

The current transition probability function, Pt, is called attitude of
the agent;

The criterion that drives the update of the transition probabilities is
called nature of the agent
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The basic model Formulation

The basic model

We now introduce a specific terminology:

The initial transition probability function, P0, is called personality of
the agent;

The current transition probability function, Pt, is called attitude of
the agent;

The criterion that drives the update of the transition probabilities is
called nature of the agent

Personality

Agent 1

Attitude

Nature

Agent 2

Emotional Input

Interaction
History

Emotional 

State Emotional Input

Interaction

history
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The basic model

We now introduce a specific terminology:

The initial transition probability function, P0, is called personality of
the agent;

The current transition probability function, Pt, is called attitude of
the agent;

The criterion that drives the update of the transition probabilities is
called nature of the agent

Personality

Agent 1

Attitude

Nature

Agent 2

Emotional Input

Interaction
History

Emotional 

State Emotional Input

Interaction

history

PFSA
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The basic model Formulation

The basic model

We have not mentioned, yet, how transition probabilities are being
changed...

Emotional inputs are grouped into K categories ck (e.g. “nice”
inputs)

Each category has an eligibility trace et(ck) associated

Each category has a set of target states TS(ck) associated

When et(ck) exceeds a given threshold, the probability of entering the
corresponding target states is incremented:

Pt+1(s, u, ts) = Pt(s, u, ts) + ∆ ∀s ∈ S, u ∈ U, ts ∈ TS(ck)
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The basic model Formulation

The basic model

We have not mentioned, yet, how transition probabilities are being
changed...

Emotional inputs are grouped into K categories ck (e.g. “nice”
inputs)

Each category has an eligibility trace et(ck) associated

Each category has a set of target states TS(ck) associated

When et(ck) exceeds a given threshold, the probability of entering the
corresponding target states is incremented:

Pt+1(s, u, ts) = Pt(s, u, ts) + ∆ ∀s ∈ S, u ∈ U, ts ∈ TS(ck)

Target states for each category are defined by the agent’s nature.
Example: for an imitative nature, ck = joyful inputs, TS(ck) = {joyful}
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The basic model Formulation

Reminder: Eligibility trace

The eligibility trace in TD(λ) algorithms keeps a history of visited states.
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The basic model Formulation

Reminder: Eligibility trace

The eligibility trace in TD(λ) algorithms keeps a history of visited states.

Here, the eligibility trace for each input category ck keeps a history of
received inputs:

et(ck) =







αet−1(ck) + h(ck, uj) if the current input is
clustered in category ck

αet−1(ck) otherwise

α is the decay parameter;

h(ck, uj) represents the affinity between the input and the category
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The basic model Implementation

Human-robot interaction

The basic model was at first implemented in a real human-robot
interaction setting.

Robot has 4 emotional states
neutral, joyful, sad, angry

User gives one of 7 emotional states as an input:
the six basic emotions according to Ekman [2] (joyful, sad,
surprised, angry, fearful, disgusted), plus the neutral state

Input is given via facial expressions, which are captured by the robot’s
camera and analyzed by basic image processing techniques

color segmentation, border extraction, block matching... → to get
real-time processing
the facial expression is coded into a set of Action Units [3]
detected AUs are then mapped into emotions through a fuzzy-like
scoring system

Corso di Sistemi Intelligenti - A. A. 2009/10 12 / 38



The basic model Implementation

Human-robot interaction

The basic model was at first implemented in a real human-robot
interaction setting.

Robot has 4 emotional states
neutral, joyful, sad, angry

User gives one of 7 emotional states as an input:
the six basic emotions according to Ekman [2] (joyful, sad,
surprised, angry, fearful, disgusted), plus the neutral state

Input is given via facial expressions, which are captured by the robot’s
camera and analyzed by basic image processing techniques

color segmentation, border extraction, block matching... → to get
real-time processing
the facial expression is coded into a set of Action Units [3]
detected AUs are then mapped into emotions through a fuzzy-like
scoring system

Corso di Sistemi Intelligenti - A. A. 2009/10 12 / 38



The basic model Implementation

Human-robot interaction

The basic model was at first implemented in a real human-robot
interaction setting.

Robot has 4 emotional states
neutral, joyful, sad, angry

User gives one of 7 emotional states as an input:
the six basic emotions according to Ekman [2] (joyful, sad,
surprised, angry, fearful, disgusted), plus the neutral state

Input is given via facial expressions, which are captured by the robot’s
camera and analyzed by basic image processing techniques

color segmentation, border extraction, block matching... → to get
real-time processing
the facial expression is coded into a set of Action Units [3]
detected AUs are then mapped into emotions through a fuzzy-like
scoring system

Corso di Sistemi Intelligenti - A. A. 2009/10 12 / 38



The basic model Implementation

Human-robot interaction

The basic model was at first implemented in a real human-robot
interaction setting.

Robot has 4 emotional states
neutral, joyful, sad, angry

User gives one of 7 emotional states as an input:
the six basic emotions according to Ekman [2] (joyful, sad,
surprised, angry, fearful, disgusted), plus the neutral state

Input is given via facial expressions, which are captured by the robot’s
camera and analyzed by basic image processing techniques

color segmentation, border extraction, block matching... → to get
real-time processing
the facial expression is coded into a set of Action Units [3]
detected AUs are then mapped into emotions through a fuzzy-like
scoring system

Corso di Sistemi Intelligenti - A. A. 2009/10 12 / 38



The basic model Implementation

Human-robot interaction

The basic model was at first implemented in a real human-robot
interaction setting.

Robot has 4 emotional states
neutral, joyful, sad, angry

User gives one of 7 emotional states as an input:
the six basic emotions according to Ekman [2] (joyful, sad,
surprised, angry, fearful, disgusted), plus the neutral state

Input is given via facial expressions, which are captured by the robot’s
camera and analyzed by basic image processing techniques

color segmentation, border extraction, block matching... → to get
real-time processing
the facial expression is coded into a set of Action Units [3]
detected AUs are then mapped into emotions through a fuzzy-like
scoring system

Video!
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The extended model Formulation

Agent-agent emotional interaction

Now, let us consider two synthetic agents interacting... How do we get
there?
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Agent-agent emotional interaction

Now, let us consider two synthetic agents interacting... How do we get
there?
Simple! We use two PFSA:

A1 =
〈

S, U, P 1, s(0)1
〉

and A2 =
〈

S, U, P 2, s(0)2
〉

, where:
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Agent-agent emotional interaction

Now, let us consider two synthetic agents interacting... How do we get
there?
Simple! We use two PFSA:

A1 =
〈

S, U, P 1, s(0)1
〉

and A2 =
〈

S, U, P 2, s(0)2
〉

, where:

the set of emotional states S is the same for both A1 and A2;

the set of possible inputs, U , is coincident with the possible states, S;

the probabilistic transition functions, P 1
0 and P 2

0 , are different at
start, that is the two agents have different personalities;

the initial states s(0)1 and s(0)2 are different.

In brief: the state of A1 is the input for A2, and vice versa.
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The extended model Applying Reinforcement Learning

Learning Attitudes

Adaptation to the partner may be attained through the probabilities
update mechanism described above...
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The extended model Applying Reinforcement Learning

Learning Attitudes

Adaptation to the partner may be attained through the probabilities
update mechanism described above...
... or, we can assign interaction goals to one agent and apply
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update mechanism described above...
... or, we can assign interaction goals to one agent and apply
reinforcement learning [4]

Agent A1 acts as the environment, whose states
are observable by the learning agent
can be changed by the learning agent through its own “actions”
can be either goal or non-goal states

Agent A2 is the learning agent, and
receives positive reward when the environment gets to a goal state
has to learn a policy to maximize the long-term reward

Q-learning [5] is used for optimal policy discovery

Environment
Agent
(A2)

A1’s Emotional State

Agent A1

Attitude = Policy

Emotional 

StateAgent’s Action

Reward
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The extended model Applying Reinforcement Learning

Reminder: Q-learning

Q-learning is a TD algorithm for learning the optimal action-value function
Q∗(s, a), which gives the expected return starting from s, executing the
action a, and, from that on, following the optimal policy.
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The extended model Applying Reinforcement Learning

Reminder: Q-learning

Q-learning is a TD algorithm for learning the optimal action-value function
Q∗(s, a), which gives the expected return starting from s, executing the
action a, and, from that on, following the optimal policy.

For every step of each learning episode, the function being learned,
Q(s, a), is updated according to

Q(s, a) = Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)] (1)
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The extended model Applying Reinforcement Learning

Learning Attitudes

In this framework, Q(s, a) is initialized to P 2
0 .
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The extended model Applying Reinforcement Learning

Learning Attitudes

In this framework, Q(s, a) is initialized to P 2
0 .

At each step t:

1 the learning agent observes state s and takes action a according to
Q(s, a): i.e., it takes action a, when seeing s, with a probability given
by P 2

t ;

2 the agent observes the new state s′ and the associated reward (= 1
only if s′ is a goal state);

3 Q (= P 2
t ) is updated according to Eq. 1;

4 go to (1).

The policy being learned is therefore the agent’s attitude.
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Results

Applying Reinforcement Learning: some results

A1 and A2 start as “friendly” agents. Goal for A2: making A1 frequently
angry
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Applying Reinforcement Learning: some results

A1 and A2 start as “friendly” agents. Goal for A2: making A1 frequently
angry

MELANCHOLIC

WORRIED

ANNOYED

A2_Neutral
A2_Melancholic

A2_Contemptuous

A1

DISLIKING

NEUTRAL

A2_Annoyed

A2_Furious

SAD

A2_Contemptuous

A2_Fearful

A2_Disliking

A2_Contemptuous

A2_Contemptuous

ANGRY

FURIOUS

FEARFUL

A2_Annoyed
A2_Furious

A2_Neutral

A2_Furious

A2_Furious

A2_Annoyed

A2_Annoyed

A2_Disliking A2_Disliking

A2_Contemptuous

50

10

6

5

5

A2_Fearful

WORRIED

Goal states =
{annoyed,
angry,
furious}

Success rate on

this instance of

interaction:

78%
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Results

Applying Reinforcement Learning: some results

A1 and A2 start as “friendly” agents. Goal for A2: making A1 frequently
surprised
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Results

Applying Reinforcement Learning: some results

A1 and A2 start as “friendly” agents. Goal for A2: making A1 frequently
surprised

MELANCHOLIC

ASTONISHED

A2_Neutral

A2_Astonished

A1

NEUTRAL

A2_Angry

A2_Disliking

WONDERING

SURPRISED

FEARFUL

A2_Wondering

47

17

15

A2_Astonished

A2_Astonished

A2_Disliking
A2_Disliking

A2_Wondering

A2_Wondering

A2_Wondering

8

MELANCHOLIC

Goal states =
{wondering,
surprised,
astonished}

Success rate on

this instance of

interaction:

95%
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Results

Applying Reinforcement Learning: some results

Let us go back to the 1st example: A1 is “friendly”, A2’s goal is to make it angry.

A2 has learnt the appropriate attitude...
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A2 has learnt the appropriate attitude... but now A1’s personality changes!
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Applying Reinforcement Learning: some results

Let us go back to the 1st example: A1 is “friendly”, A2’s goal is to make it angry.

A2 has learnt the appropriate attitude... but now A1’s personality changes!

MELANCHOLIC

WORRIED

ANNOYED

A2_Neutral
A2_Sad

A1

NEUTRAL

SAD

A2_Contemptuous

ANGRY

FURIOUS

FEARFUL

A2_Surprised

A2_Angry

A2_Worried

A2_Disliking

A2_Astonished

A2_In_Despair

A2_Terrified

21

10

5

17 9

A2_Joyful

TERRIFIED

PLEASED

WONDERING

SURPRISED

CONTEMPTUOUS

A2_Sad

A2_Sad
A2_Sad

A2_Surprised

A2_Angry

A2_Terrified

A2_Terrified

A2_Surprised

A2_Surprised

A2_Astonished

A2_Disliking

A2_Disliking

A2_Annoyed

A2_Annoyed

A2_Annoyed

A2_Worried

A2_WorriedA2_Joyful

A2_Annoyed

WORRIED Goal states =
{annoyed,
angry,
furious}

Success rate on

this instance of

interaction:

51%
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Quantitative behavior analysis Motivation

Quantitative behavior analysis

Problem: how can we evaluate such a model? Which quantitative
measures can we derive?

Which states will be the most frequent ones?

How long will it take to go from state i to state j?

...
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Quantitative behavior analysis Markov chains theory

Markov chains [6]

Given:

a finite set of states, S;

a probability distribution µ(0) over S, termed the initial distribution

a stochastic matrix P with indexes in S, called the transition matrix
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Quantitative behavior analysis Markov chains theory

Markov chains [6]

Given:

a finite set of states, S;

a probability distribution µ(0) over S, termed the initial distribution

a stochastic matrix P with indexes in S, called the transition matrix

Definition

a finite homogeneous Markov chain is a sequence of random variables
{Xn}n∈N such that

for every i ∈ S, Pr(X0 = i) = µ(0)(i)

for every integer n > 0, i, j ∈ S, and for every n-tuple i0, i1, . . . , in−1,
Pr(Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i) =
Pr(Xn+1 = j|Xn = i)

for every n ∈ N and i, j ∈ S, Pr(Xn+1 = j|Xn = i) = p(i, j)
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Quantitative behavior analysis Markov chains theory

Markov chains

Moreover, let us call µ(n), for every integer n, the probability distribution
of Xn. Then:

Pr(Xn = j|X0 = i) = (Pn)ij

µ
(n)
j = Pr(Xn = j) = (µ(0)′Pn)j

→ prob. of going from i to j in n steps

→ prob. of being in j at the n-th step
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Quantitative behavior analysis Markov chains theory

Markov chains

Moreover, let us call µ(n), for every integer n, the probability distribution
of Xn. Then:

Pr(Xn = j|X0 = i) = (Pn)ij

µ
(n)
j = Pr(Xn = j) = (µ(0)′Pn)j

→ prob. of going from i to j in n steps

→ prob. of being in j at the n-th step

We are particularly interested in primitive Markov chains, that is chains
having transition matrix P such that

P k > 0 for some k ∈ N
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Quantitative behavior analysis Markov chains theory

Markov chains

A primitive Markov chain is:

irreducible → strongly connected transition graph

aperiodic → the greatest common divisor of the lengths of cycles is 1
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Quantitative behavior analysis Markov chains theory

Markov chains

A primitive Markov chain is:

irreducible → strongly connected transition graph

aperiodic → the greatest common divisor of the lengths of cycles is 1

Question time!
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Quantitative behavior analysis Markov chains theory

Markov chains

A primitive Markov chain is:

irreducible → strongly connected transition graph

aperiodic → the greatest common divisor of the lengths of cycles is 1

Question time!

1 Which graph is a strongly connected one?

2 Which one is aperiodic?

S1 S2

S3S4

S1 S2

S3S4

Corso di Sistemi Intelligenti - A. A. 2009/10 23 / 38



Quantitative behavior analysis Markov chains theory

Markov chains

A primitive Markov chain is:

irreducible → strongly connected transition graph

aperiodic → the greatest common divisor of the lengths of cycles is 1

Question time!

1 Which graph is a strongly connected one? The one on the right!

2 Which one is aperiodic? None of these!

S1 S2

S3S4

S1 S2

S3S4
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Quantitative behavior analysis Markov chains theory

Markov chains

Let us recall that a primitive chain has a transition matrix P such that
there exists a k for which P k > 0.

Is this the same as requiring P to be irreducible?
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Markov chains

Let us recall that a primitive chain has a transition matrix P such that
there exists a k for which P k > 0.

Is this the same as requiring P to be irreducible?
No, aperiodicity is required too!
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Quantitative behavior analysis Markov chains theory

Markov chains

Let us recall that a primitive chain has a transition matrix P such that
there exists a k for which P k > 0.

Is this the same as requiring P to be irreducible?
No, aperiodicity is required too!

S1 S2 P =

[

0 1
1 0

]

P k = P for every odd k,
P k = I for every even k
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Quantitative behavior analysis Markov chains theory

Markov chains

Let us recall that a primitive chain has a transition matrix P such that
there exists a k for which P k > 0.

Is this the same as requiring P to be irreducible?
No, aperiodicity is required too!

S1 S2 P =

[

0 1
1 0

]

P k = P for every odd k,
P k = I for every even k

S1 S2

P =

[

0.5 0.5
1 0

]

P 2 =

[

0.75 0.25
0.5 0.5

]
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Quantitative behavior analysis Markov chains theory

Properties of primitive Markov chains

1 There exists a unique stationary distribution π over S:

π′ P = π′

where π′ is a left eigenvector of P corresponding to the eigenvalue 1

2 For every i, j ∈ S

lim
n→+∞

(Pn)ij = lim
n→+∞

Pr(Xn = j) = πj

that is, the limit distribution of Xn is independent from the initial
state of the chain, and is coincident with the unique stationary
distribution
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Quantitative behavior analysis Markov chains theory

Properties of primitive Markov chains

The error in the approximation of µ(n) towards π can be kept arbitrarily
small by controlling n.

Corso di Sistemi Intelligenti - A. A. 2009/10 26 / 38



Quantitative behavior analysis Markov chains theory

Properties of primitive Markov chains

The error in the approximation of µ(n) towards π can be kept arbitrarily
small by controlling n.

3 For every ε > 0
dTV (µ(n), π) ≤ ε

for all n ∈ N such that

n ≥ t

(

1 +
log2 k − log2 ε − 1

− log2 m(P t)

)

where

dTV is the total variation distance between two probability
distributions: dTV (µ, ν) = 1

2

∑

i∈S |µi − νi|
t is the smallest integer such that P t > 0
k is the cardinality of S
m(T ) is a coefficient defined over a stochastic matrix T , such that
m(T ) = 1

2
maxi,j∈S{

∑

l∈S |Til − Tjl|}
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Quantitative behavior analysis Markov chains theory

Properties of primitive Markov chains - Average waiting

time for first entrance

For every j ∈ S, let τj be the random variable defined by

τj = min{n > 0 | Xn = j}

Then, Ei(τj) = E(τj | X0 = i) is the mean waiting time for the first
entrance in j starting from state i.

4 Ej(τj) = 1/πj for each j ∈ S
5 For i 6= j, the values Ei(τj) can be computed as well...

Let G(z) be the matrix of polynomials in the variable z given by
G(z) = I − Pz
Let rij(z) be the entry of indexes i, j of the adjunct of G(z):
rij(z) = (−1)i+jdet(Gji(z)) where Gji(z) is the matrix obtained from
G(z) by deleting the j-th row and the i-th column

Ei(τj) =
r′

ijrjj−rijr′

jj

r2

jj

, where rij = rij(1), rjj = rjj(1), r′ij = r′ij(1)

and r′jj = r′jj(1)
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Quantitative behavior analysis Markov chains for behavior analysis

Markov chains and the interaction model

How can all this be related to our model?
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Quantitative behavior analysis Markov chains for behavior analysis

Markov chains and the interaction model

How can all this be related to our model?
Markov chains have no inputs!
Yes, but...

We can build one transition matrix, M , for the whole interaction
system

M(i, j) gives the probability to go from state i = (a, b) to state
j = (a′, b′), with a, a′ emotional states for agent A1, and b, b′ states
for A2

a a’b b’

i

j

M(i, j) = P 1(a, b, a′) × P 2(b, a′, b′)
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Quantitative behavior analysis Markov chains for behavior analysis

Markov chains and the interaction model

How can all this be related to our model?
Markov chains have no inputs!
Yes, but...

We can build one transition matrix, M , for the whole interaction
system

M(i, j) gives the probability to go from state i = (a, b) to state
j = (a′, b′), with a, a′ emotional states for agent A1, and b, b′ states
for A2

a a’b b’

i

j

M(i, j) = P 1(a, b, a′) × P 2(b, a′, b′)

... and so now we have all the ingredients for a Markov chain!
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Quantitative behavior analysis Markov chains for behavior analysis

Markov chains and the interaction model

We have seen that primitive Markov chains have interesting properties, so:
is our M primitive?
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We have seen that primitive Markov chains have interesting properties, so:
is our M primitive?
No! Because it is generally not irreducible...
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Quantitative behavior analysis Markov chains for behavior analysis

Markov chains and the interaction model

We have seen that primitive Markov chains have interesting properties, so:
is our M primitive?
No! Because it is generally not irreducible...
Solution: let us reduce it!
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Quantitative behavior analysis Markov chains for behavior analysis

Markov chains and the interaction model

We have seen that primitive Markov chains have interesting properties, so:
is our M primitive?
No! Because it is generally not irreducible...
Solution: let us reduce it!

M not irreducible → the transition graph has more than one strongly
connected component

Some of them will be essential components: once entered, they will
never be left
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Quantitative behavior analysis Markov chains for behavior analysis

Markov chains and the interaction model

Example of a reducible chain

S1 S2S1
S3

S4

S5

S6

We have three strongly connected
component, with just the blue one
being essential (and aperiodic, too).
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Example of a reducible chain

S1 S2S1
S3

S4

S5

S6

We have three strongly connected
component, with just the blue one
being essential (and aperiodic, too).

We can reduce our system just to
the blue states, and what we get is a
primitive chain.
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Quantitative behavior analysis Markov chains for behavior analysis

Markov chains and the interaction model

Example of a reducible chain

S1 S2S1
S3

S4

S5

S6

We have three strongly connected
component, with just the blue one
being essential (and aperiodic, too).

We can reduce our system just to
the blue states, and what we get is a
primitive chain.

In our examples, M turns out to have only one essential (and aperiodic)
component → this Mred is primitive, and we can apply the above
properties!
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Quantitative behavior analysis Some examples

Quantitative behavior analysis – Limit probability of states

Let us consider again the previously shown interaction systems:
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Quantitative behavior analysis – Limit probability of states

Let us consider again the previously shown interaction systems:

1 A1 friendly, A2 acquired a policy for making the partner angry most
of the time (fig.)

Mred is composed of 15 states
the most probable states according to π are

(angry, annoyed), with p = 0.5148

(annoyed, furious), with p = 0.1548

(sad, disliking), with p = 0.0973
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Quantitative behavior analysis Some examples

Quantitative behavior analysis – Limit probability of states

Let us consider again the previously shown interaction systems:

1 A1 friendly, A2 acquired a policy for making the partner angry most
of the time (fig.)

Mred is composed of 15 states
the most probable states according to π are

(angry, annoyed), with p = 0.5148

(annoyed, furious), with p = 0.1548

(sad, disliking), with p = 0.0973

2 A1 friendly, A2 acquired a policy for making the partner surprised
most of the time (fig.)

Mred is composed of 10 states
the most probable states according to π are

(surprised, wondering), with p = 0.6286

(wondering, astonished), with p = 0.2292

(astonished, disliking), with p = 0.0917
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Quantitative behavior analysis Some examples

Quantitative behavior analysis – Limit probability of states

What does this analysis tell us?
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Quantitative behavior analysis – Limit probability of states

What does this analysis tell us?

Probability values provided by the stationary distribution are rather
close to the frequencies observed in the experiments

the stationary distribution is a suitable descriptor of the actual behavior
of the systems even after a limited amount of steps
the error in approximation is less than 0.001 just after 38 and 27 steps,
respectively (see Prop. 3)
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What does this analysis tell us?

Probability values provided by the stationary distribution are rather
close to the frequencies observed in the experiments

the stationary distribution is a suitable descriptor of the actual behavior
of the systems even after a limited amount of steps
the error in approximation is less than 0.001 just after 38 and 27 steps,
respectively (see Prop. 3)

The reinforcement learning process was effective

the goal states defined for A1 are among the most probable states of
the system in each of the considered examples
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We can define a set of starting states, SS, and a set of ending states, ES, and

use Prop. 4–5 to compute the mean entrance times for going from states in SS

to states in ES.
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to states in ES.

Natural choice in a learning scenario: ES coincident with goal states...

1 A1 friendly, A2 acquired a policy for making the partner angry most
of the time

ES = {(a, b) | a = {annoyed,angry, furious}, b ∈ S}
SS = {(melancholic,contemptuous)}
a minimum of 5.91 and a maximum of 213.10 steps, on average, for
going from states in SS to states in ES (mean 77.98)

Corso di Sistemi Intelligenti - A. A. 2009/10 33 / 38



Quantitative behavior analysis Some examples

Quantitative behavior analysis – Mean entrance times

We can define a set of starting states, SS, and a set of ending states, ES, and

use Prop. 4–5 to compute the mean entrance times for going from states in SS

to states in ES.

Natural choice in a learning scenario: ES coincident with goal states...

1 A1 friendly, A2 acquired a policy for making the partner angry most
of the time

ES = {(a, b) | a = {annoyed,angry, furious}, b ∈ S}
SS = {(melancholic,contemptuous)}
a minimum of 5.91 and a maximum of 213.10 steps, on average, for
going from states in SS to states in ES (mean 77.98)

2 A1 friendly, A2 acquired a policy for making the partner surprised
most of the time

ES = {(a, b) | a = {wondering, surprised, astonished}, b ∈ S}
SS = {(neutral,angry)}
a minimum of 3.86 and a maximum of 12.43 steps, on average, for
going from states in SS to states in ES (mean 7.07)
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What does this analysis tell us?

In the second example, the learned policy is particularly effective in
driving A1’s behavior to the given goals

just 7 steps are required, on average, to reach a goal state!
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Quantitative behavior analysis – Mean entrance times

What does this analysis tell us?

In the second example, the learned policy is particularly effective in
driving A1’s behavior to the given goals

just 7 steps are required, on average, to reach a goal state!

In the first example, the policy is less effective, meaning that about
78 steps are required, on average, to reach a goal state...

... however this is mainly due to two particular end states that have
very low entrance probabilities
the other three goal states can be reached within 30 steps
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Conclusion

Summing up

We proposed an emotional interaction model:

for a human-robot, or for an agent-agent interactions scenario

having a probabilistic and time-varying nature, leading to more
life-like interactions

capable of adaptation to the interlocutor, either by the probabilities
update mechanism or by autonomous learning

with a basic structure that can easily be extended (adding/modifying
states, inputs, personalities, . . . )

which can be employed, for instance, as a basis for emotional agents
in video games, or in social robotics
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Conclusion

Summing up

We showed how a quantitative analysis of interaction scenarios can be
attained by resorting to Markov chains theory:

the stationary distribution of the system highlights its most probable
states, largely corresponding to goal states as defined in the
reinforcement learning framework

mean waiting times are used to establish the number of steps
required, on average, for the system to reach a set of states of
interest (e.g. goal states)
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Conclusion

Summing up

We showed how a quantitative analysis of interaction scenarios can be
attained by resorting to Markov chains theory:

the stationary distribution of the system highlights its most probable
states, largely corresponding to goal states as defined in the
reinforcement learning framework

mean waiting times are used to establish the number of steps
required, on average, for the system to reach a set of states of
interest (e.g. goal states)

Therefore, this analysis can provide a measure of the effectiveness of
learned policies
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What’s next?
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Conclusion

What’s next?

Currently, I am moving to different topics...

... but there’s still work to do on this topic (read : Theses available)

Highlight: Markov chain-based analysis in the non-stationary case
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