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Statistical Based Impulsive Noise Removal
in Digital Radiography

I. Frosio, Member, IEEE, and N. A. Borghese*, Member, IEEE

Abstract—A new filter to restore radiographic images corrupted
by impulsive noise is proposed. It is based on a switching scheme
where all the pulses are first detected and then corrected through a
median filter. The pulse detector is based on the hypothesis that the
major contribution to image noise is given by the photon counting
process, with some pixels corrupted by impulsive noise. Such sta-
tistics is described by an adequate mixture model. The filter is also
able to reliably estimate the sensor gain. Its operation has been ver-
ified on both synthetic and real images; the experimental results
demonstrate the superiority of the proposed approach in compar-
ison with more traditional methods.

Index Terms—Digital radiography, impulsive noise, mixture
models, Poisson noise, switching median filter.

I. INTRODUCTION

F AILURES in sensors, readout circuits, A/D converters, or
communication channels may introduce impulsive noise

in digital images, in particular in radiographies. Image segmen-
tation or compression, edge detection, feature recognition, and
many other image processing procedures are affected by the
presence of this kind of noise. It also constitutes a serious dis-
turbing factor when images have to be analyzed by a human
observer like in clinical practice. In fact, contrast enhancement
techniques such as unsharp masking (UM) [1] or gamma cor-
rection [2], drastically enhance impulsive noise and lead to poor
visualization results, as shown in Fig. 1.

Linear filtering has proven inadequate to eliminate im-
pulsive noise [3], and more elaborate solutions have been
searched. Median filtering is the standard approach, since it
generally achieves a complete elimination of the corrupted
pixels, at least for low and medium corruption rates [3]–[7].
The peak-and-valley filter [5] uses the min and max operators
to remove peaks and valleys recursively from an image; it
produces an output similar to that of the median filter, but
it is computationally less intensive. The drawback of these
approaches is a low pass filtering effect, with consequent loss
of high-frequency details of the image [3], [6]. Some adaptive
versions of the median filter were proposed: they reduce this
drawback, but do not completely remove it [7].
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Fig. 1. Typical raw cephalometric radiography is shown in (a). Zoom of the
rectangle highlighted in (a) is shown in (b): the pulses are indicated by arrows.
In (c) and (d), the same radiography and the zoomed rectangle are shown after
the application of gamma transform �� � ����, followed by UM (mask size
3� 3, gain 3): failed pixels are evident.

Better results can be obtained by resorting to a “switching fil-
tering” scheme: the pulses are first detected and then corrected,
whereas all the uncorrupted pixels remain unaltered. Pulse de-
tection is the most critical stage in this scheme.

Some switching filters are based on rank conditioned statis-
tics. A rank conditioned median filter (RCF) is proposed in [8]:
in its simplest implementation, a median filter is turned on when
the central pixel of a area is the minimum (maximum) of
the analyzed window. When is small, many false pulses are
found, which leads to an evident low-pass filtering effect. The
problem is partially solved increasing the window size; how-
ever, in case of pulses close one to the other, several pulses go
undetected.

The conditional signal adaptive median (CSAM) filter repre-
sents a more refined approach [9]; it describes the image sta-
tistics by a co-occurrence matrix, which is computed using a
3 3 window. Morphological-like operators allow computing a
lower and an upper boundary for each grey level of the co-occur-
rence matrix. These boundaries are used to establish whether the
neighbors of a pixel are “homogeneous” to it or not. A pixel is
classified as a pulse on the basis of the number of homogeneous
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neighbors. A postprocessing step allows the erroneously indi-
viduated pulses to be eliminated. The most critical step of the
CSAM filter is the computation of the boundaries, which should
be adapted to different image sizes, number of grey levels and
corruption rates.

A different approach is to explicitly model the noise statis-
tics. In [10] a Gaussian noise model is adopted to describe the
local statistics; this allows both the pulses to be individuated and
the true pixels value to be estimated. In [11], the predictor of a
Kalman filter moves along the image computing the expected
grey level of each pixel on the basis of the value of its neigh-
bors. A pulse is identified when the prediction error is large. In
this case too, the Gaussian noise approximation is required.

Mixture models have been introduced to build more refined
pulse detectors. This approach works well when noise is consti-
tuted of a mixture of Gaussian and impulsive noise [13]–[15].
In [12] the Bayesian expectation maximization filter (BEM)
is introduced. It describes the image locally using a Gaussian
mixture model, whose number of components is automatically
selected through the Akaike information criterion. The central
pixel of the analyzed area is classified as a pulse and corrected
when it is associated with an unlikely mixture component.

However, noise cannot be considered Gaussian in digital radi-
ography, as its main contribution is given by the Poisson statis-
tics of the photon counting process [16]–[20]. To the best of our
knowledge, no author considered a mixture of photon counting
and impulsive noise to build a pulse detector specifically tailored
to digital radiography. Moreover, all the methods described in
literature are not targeted to the very low corruption rates that
are mandatory in this field.

In this paper, a reliable switching median filter for digital ra-
diography is derived, taking into account the noise statistics and
the properties of the sensor. It outperforms the other traditional
methods. The filter has been termed RaIN, which stands for ra-
diographic impulsive noise filter.

In Section II, the noise and the sensor model are introduced
along with the method to individuate the pulses, when the noise-
less image is known. In Section III, quantitative results on sim-
ulated and real images are reported. Moreover, the method is
extended to the case when the noiseless image is not available,
but it is obtained applying a 3 3 median filter to the measured,
noisy radiography. Some theoretical considerations on the esti-
mate of the sensor parameters are reported in Section IV. The
method is discussed in Section V and conclusions are drawn in
Section VI.

II. METHOD

A. Gain Estimate in Absence of Impulsive Noise

Let us consider a digital radiography affected by photon
counting noise. Let us call the number of photons counted
by the digital sensor in the ith pixel. This is a random variable
with Poisson distribution [16]–[20]

(1)

where is the noiseless photon count at pixel .

Digital sensors transform the noisy photon count, , into a
noisy grey level value, , by a linear transformation [21]

(2)

where the parameter represents the sensor gain and its
offset. As sensors are usually calibrated before their use, their
output is zero, when no photons reach them (unbiased, cali-
brated sensor). As a consequence, in the following we will as-
sume .

The probability density function of the random variable
, can be derived from (1) and (2) and it is

equal to [20]

(3)

where is the noiseless grey level of pixel .
Let us first assume that is known for each pixel

of the image. The likelihood of the measured data,
, can be derived from

(3), [16], [22], [23], and it is a function of the sensor gain .
Maximization of allows to be computed, so
that the observed data are the most probable, under the assump-
tion that the image is corrupted only by photon counting noise.
Instead of maximizing , it is easier to minimize
its negative logarithm, which leads to

(4)

where is the total number of pixels of the image. To mini-
mize , we set to zero its derivative with respect to . This
derivative has the following expression:

(5)

For the computation of the last term, the Stirling’s approxi-
mation1 of the factorial term is adopted [24]. It follows that:

1������ � � � ������ �� ��� � ����� � ���
�
���
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(6)

The value of that minimizes (4) is obtained setting (6) to
zero. It is equal to

(7)

which is closely related to the Kullbach-Leibler divergence of
and , or Csizar divergence [22].

B. Gain Estimate in Presence of Impulsive Noise

The image formation process has to be analyzed to derive
a proper model of the noise affecting the radiographic image.
The first source of noise is associated with the photon counting
process. The photon count is transformed into a digital output
and transmitted to a host: impulsive noise may corrupt the signal
during this process. We assume that the grey level of a pulse
does not depend on the grey level of the image in that pixel. The
probability density function of impulsive noise will be indicated
by . In this paper, a uniform distribution has been
assumed for , but any other distribution can be used
without affecting the following derivation.

Under the here above assumptions, we can use the following
mixture model:

(8)

to describe the probability that a pixel in the noisy
image assumes the grey level , given its true value . As
a consequence, a pixel has probability and of being
corrupted respectively by photon counting or impulsive noise.
Since and add to one and they are both bounded
between zero and one, (8) can be rewritten as show in (9) at
the bottom of the page, where has been introduced to sim-
plify the maximization of the likelihood function. In fact, the
constraint , which must hold in (8), leads to a

constrained optimization. Instead, in (9) is not constrained
, which leads to a simpler, unconstrained

optimization problem. The price to be paid is that does not
go to zero for finite values of . However, always
holds for images which contain not only pixels corrupted by im-
pulsive noise.

From (9), the negative logarithm of the likelihood can be
written as a function of the two parameters and as

(10)

Using again the Stirling’s approximation, (10) becomes (11),
as shown at the bottom page.

Let us define the following quantities in (11):

(12)

.
We observe that the computation of can easily overflow

or underflow the representation capacity of a computer (for in-
stance, for , any value produces overflow
in double precision IEEE754 format). To avoid this, instead of
computing directly, we compute it as

(13)

Defining

(14)

(9)

(11)
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we obtain

(15)

By this transformation, we can now compute without risk
of overflow or underflow (for instance for and

, we obtain and ).
The negative logarithm of the likelihood can now be rewritten

for the mixture defined in (9) as

(16)

The gain parameter cannot be directly computed from (16)
and an iterative optimization scheme has to be adopted. Clas-
sical gradient method plus line search has been adopted here, but
any other optimization procedure can be used [25]–[27]. This
requires the computation of the derivatives of (16) with respect
to and . To the scope, we compare (16) with (10), and
obtain

(17)

Deriving (16) with respect to and , and plugging (17)
into the derivatives, we obtain (see Appendix A):

(18)
Equations (18) can be used to minimize (16), and to obtain

the gain parameter and the impulsive noise corruption rate. The
terms and do not depend on and ; therefore, they
can be computed only once from and .

Once the parameters and have been estimated, the
mixture model can be used to drive a switching median filter,
aimed at removing impulsive noise from the image. Impulses
are identified minimizing the classification error; therefore, all
those pixels which satisfy the following condition:

(19)

are classified as pulses. Afterwards these pixels are corrected
using the switching median filtering scheme.

III. RESULTS

A. Estimate of

The noiseless image is generally not available. This sec-
tion shows experimentally that the image obtained filtering
through a 3 3 median filter, can be used instead of without
affecting the pulse recognition capability.

Therefore, we define

(20)

Fig. 2. Three simulated radiographies used to quantify the performance of the
proposed filter: in (a), a high-frequency image with no impulsive noise; in (b), a
mean frequency image (filtering by a 21� 21 mask) corrupted by 1% of impul-
sive noise; in (c), a low-frequency image (filtering by a 49� 49 mask) corrupted
by 0.1% of impulsive noise.

Given the typical low corruption rate of digital radiographies
and the properties of the median filter, no pulse is present in .

B. Results on Simulated Images

We have generated a set of 200 simulated radiographies of
512 512 pixels. First, an absorption coefficients map is cre-
ated, with coefficients increasing from 0% for the left-most pixel
to 100% for the right-most one. Then, 50 different geometrical
figures (circles and rectangles), randomly positioned inside the
map, are added. The circles have a random radius between 1 and
512 pixels; the rectangles sides have a random length between
1 and 512 pixels. Each time a circle or a rectangle is added to
the map, all the absorption coefficients covered by the figure are
modified as follows: either they are substituted by their comple-
ments with respect to 100%, or they are multiplied by a random
value between 0 and 1, or a random value between 0% and 100%
is added to them. In the latter case, the resulting absorption co-
efficients are always clipped to 100%. The choice among the
three modalities is random.

The map is then filtered with a moving average (MA) filter,
whose window size ranges from 3 3 to 49 49, to simulate
radiographies with different frequency content (Fig. 2). De-
pending on the size of the MA filter, the images have been
grouped into three sets: high-frequency (HF) images (no fil-
tering or filtering mask size up to 15 15 pixels [Fig. 2(a)]),
medium-frequency (MF) images (mask size from 17 17 to
31 31 [Fig. 2(b)]), and low-frequency (LF) images (mask size
from 33 33 to 49 49 [Fig. 2(c)]). To compute the number of
photons reaching each pixel, it is supposed that the X-ray tube
emits 10 000 photons per pixel area; this value is similar to that
used in low dose panoramic and cephalometric imaging. Photon
counting noise is added independently for each pixel, according
to Poisson statistics. Photon count is then transformed into a
digital output through (2) with a random gain selected between
0.05 and 0.5. The resulting sensor output, for the noiseless
images, ranges between 500 and 5000 grey levels.

Impulsive noise is then introduced into the image with a pulse
rate in the range between 0.01% and 1%, which corresponds to
a number of pulses between 26 and 2621 per image. All the
pixels have the same probability of being corrupted by impul-
sive noise; whether corrupted by impulsive noise, a pixel as-
sumes a random value uniformly distributed between 0 and the
maximum grey level of the image.
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TABLE I
SELECTIVITY OF THE TESTED FILTERS MEASURED ON THE SIMULATED DATASET,
FOR DIFFERENT IMPULSIVE CORRUPTION RATES AND IMAGE FREQUENCY CONTENTS

TABLE II
POSITIVE PREDICTIVE VALUE OF THE TESTED FILTERS MEASURED ON THE SIMULATED DATASET,

FOR DIFFERENT IMPULSIVE CORRUPTION RATES AND IMAGE FREQUENCY CONTENTS

In each image, we have identified the pulses through (19),
using , instead of , as in (20). Once the corrupted pixels
have been identified, they are substituted by the median value
of the 3 3 window centred in those pixels, as required by the
switching median filtering scheme.

To get a quantitative evaluation of the method, we adopted
the following indexes [28]: selectivity (Se), specificity (Sp),
positive predictive value (PPV), and negative predictive value
(NPV), defined as

(21)

where a pixel is a true positive (TP) [or, respectively, true nega-
tive (TN)] if it is correctly classified as a pulse (or, respectively,
not a pulse). A pixel which is erroneously classified as a pulse
by the algorithm is called a false positive (FP); vice versa, an
unrecognized pulse constitutes a false negative (FN).

Se and PPV are reported in Tables I and II, for the RCF 3 3,
the RCF 13 13 [8], the CSAM [9], the BEM [12] and the RaIN
filters and for different corruption rates and image frequency
contents. Since the performance of the BEM filter has been ver-
ified to increase when applied after UM, we applied UM to each
image before processing it with BEM. The parameters Sp and
NPV are not reported since they are, respectively, smaller than
0.1% and higher than 99.9% for all the analyzed methods.

The RaIN filter is capable of localizing more than 90% of the
pulses, for all the frequency contents and pulse corruption rates;
Se is higher than 91% for LF images with low corruption rates
( 0.2%), that are typical of the radiographic domain. A qualita-
tive analysis of the undetected pulses reveals that these are com-
patible with the statistics of photon counting noise: their classifi-
cation as pulses can be questioned, since even a human observer
could not distinguish them. The PPV is always higher than 94%
for LF images, but it decreases for HF images. This phenom-
enon can be explained considering that some edge pixels may
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TABLE III
MEAN � STANDARD DEVIATION OF CORRECTED PIXELS AND MEAN SCORES FOR THE SET OF REAL RADIOGRAPHIES ANALYZED BY THE SUBJECTS

be confused with impulsive noise when edges become sharp.
This problem has been addressed with ad hoc techniques in gen-
eral-purpose pulse removal filters [9], [29]. However, as edges in
radiography are never as sharp as in natural images, additional
processing is not required. PPV decreases also for extremely
low corruption rates: in this case the number of pulses is low and
the estimate of the pulse corruption rate becomes less re-
liable, affecting the performance of the pulse detector. However,
for corruption rates as low as 0.01%, for LF and MF images, the
RaIN filter achieves a mean PPV of 90%, meaning that less than
three pixels per image, on the average, are erroneously recog-
nized as pulses.

The RaIN filter compares favourably with the other methods.
The RCF 3 3 filter achieves a slightly higher Se, which is con-
stant for different frequency contents. However, its PPV is ex-
tremely low confirming the poor ability of this filter to discrimi-
nate the pulses. In the best case (LF images corrupted by impul-
sive noise of 1%, corresponding to 2621 pulses) the PPV is equal
to 11.45%: 19 004 pixels are erroneously filtered, leading to a
potentially unacceptable image modification rate. Increasing the
filter width to 13 13, the PPV increases (for instance, it raises
from 2.09% to 77.04% for LF images corrupted by impulsive
noise of 0.2%), at the expense of a decrease in the ability to lo-
cate the pulses (Se drops from 96.29% to 79.87% on the same
data). Moreover, differently from the proposed method, Se and
PPV are both influenced by the corruption rate; this happens
because the probability of finding more than one pulse inside
a window increases with the impulsive corruption rate and the
filter corrects only the most evident pixel inside the window.

The Se of the CSAM filter does not show any correlation
with the image frequency content, but it is lower than RaIN.
Moreover, its PPV is very low, for very low impulsive corrup-
tion rates (22.25% for LF images corrupted by 0.01% of impul-
sive noise), and it approaches 90% only for high corruption rates
(1%). The BEM filter produces a behaviour similar to CSAM,
with a slightly higher Se, and a PPV increasing with the corrup-
tion rate.

C. Results on Real Images

The different performances of the RaIN filter and the other
ones are even more evident when real images are taken under
consideration. To the scope we considered a set of 16 cephalo-
metric images, 2437 1561 pixels, and 10 panoramic images,
1310 2534 pixels, at 12 bpp, acquired using the Orthoralix
9200 DDE by Gendex Dental System, with a corruption rate
not exceeding 0.2%. Coherently with the clinical practice, each
image was treated to enhance its contrast with a gamma trans-
form followed by UM (mask size 3 3, gain 3).
Pulses are clearly visible on these images, as shown in Fig. 1(d).
Each radiography was processed with a RCF, using a 3 3 and
a 13 13 window, and with the CSAM, UM+BEM, and RaIN

Fig. 3. Score distribution for different filters, for the set of real radiographies
analyzed by the subjects.

filters. A total of 156 images were obtained, including the orig-
inal unfiltered images; these constitute our test images data set.

The filtered radiographies were analyzed by 15 skilled people
to evaluate the residual corruption rate of the images; seven of
them were clinicians operating in the dental radiographic field,
with at least three years of experience; the others were high level
technicians employed in the dental radiographic field, with at
least five years of experience. Fifteen images, randomly chosen
from the test image data set, were shown sequentially to each
subject, with the aim of assessing the presence of pulses. The
subject had unlimited time to evaluate each radiography; he was
free to navigate it, zooming at a constant zoom factor (8x) to
better analyze the image locally. Each subject assigned a score
between 0 and 3 to each analyzed image: 0, if no pulse was
visible in any analyzed area (uncorrupted image); 1, if no more
than two pulses were found in no more than two areas (low
corruption rate); 2, if no more than two pulses were found in
two or more areas (medium corruption rate); and 3, when more
than two pulses were found in at least one area (high corruption
rate). The subjects were briefly trained before the experiment
by showing them three images with the three different levels of
impulsive noise.

The mean score achieved by each filter is reported in Table III,
together with the mean and standard deviation of the pixel cor-
rection rate, . In Fig. 3, the distribution of the scores is
shown.

All the original radiographies received a score of 2 or 3 indi-
cating that, despite the low corruption rate, impulsive noise did
appear on the displayed images. On the other hand, very few
pulses were visible in the radiographies treated with the RaIN
filter: the average score received was of 0.15, with 85% of the
radiographies classified as 0 (not corrupted by impulsive noise).
Moreover, RaIN corrected a very low number of pixels: 0.14%
of the total number of pixels on the average. When the images
were treated with RCF 3 3, the mean rate of corrected pixels
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Fig. 4. Portion of radiography highlighted in Fig. 1(d) is shown here, after filtering it with the RCF using a 3� 3 window (a), with the RCF using a 13� 13
window (b), with the CSAM filter (c), with the UM+BEM filter (d) and with the RaIN filter (e). A � transform �� � ���� followed by UM with mask size 3� 3
and gain 3 was applied to the images. The arrows in (a) and (b) indicate some of the pixels clearly corrupted by impulsive noise, but left unaltered by the RCF
filters. In the right area of each panel, the pixels modified by the filter are shown.

increased to 4.73%; despite this, the filter was not able to re-
move the impulsive noise completely from the images as the
mean score achieved by this filter was 1.15; most (65%) of the
images treated with RCF 3 3 were scored as 1 and few of them
(4%) received a completely unsatisfactory score of 3. The RCF
13 13 corrected a lower number of pulses (0.23% of the total
number of pixels), but it left a higher number of pulses unde-
tected (mean score of 1.35, the major part of the radiographies
have been scored 1). The CSAM and the BEM filters showed
similar performances; they both corrected few pixels (1.67%
for CSAM, 0.80% for ), but they both failed to re-
move all the pulses: their mean scores were respectively of 0.65
and 0.79, much higher than RaIN. A few radiographies (respec-
tively 8% and 12%) have been scored 2 for both filters. The dif-
ferent behavior of the analyzed filters is evident comparing the
results obtained on the same portion of image [Fig. 1(d) and
Fig. 4]. The CSAM, UM+BEM, and RaIN filters are able to re-
move the impulsive noise completely in this area, whereas the
RCF filter leaves one (3 3 window) or two (13 13 window)
pulses. Moreover, RCF 3 3 corrects a large number of pixels
(1035 on a total of 20 000 pixels) mainly in the homogeneous
areas, whereas it does not alter the image close to the edges
[Fig. 4(a)]; the same filter, using a 13 13 window, modifies a
smaller number of pixels, but it also fails to identify two pulses
[Fig. 4(b)]. The CSAM filter corrects all the most evident pulses,
but it also filters many pixels lying on the edges of the image
[Fig. 4(c)]. The BEM filter corrects all the most evident pixels,
but it also filters much more uncorrupted pixels [Fig. 4(d)] than
the RaIN filter [Fig. 4(e)].

D. Computational Time

The computational time required to filter the synthetic images
of Section III-B, and the cephalometric and panoramic radiogra-
phies of Section III-C, was, respectively, 0.6, 7.57, and 8.48 s on
a Mobile Toshiba Intel Core Duo 2-GHz, 2GB of RAM, with
compiled code. The number of iteration steps was set to ten,
which was sufficient to reach convergence (each estimated pa-
rameter changes less than between two consecutive itera-
tions). Computational time can be largely reduced by improving
the optimization process. For instance the computational time
decreases respectively to 0.21, 2.64, and 3.02 s considering only
one pixel over four in the computation of the derivatives (18),
for the minimization of .

IV. SENSOR GAIN ESTIMATE

The relative error on the estimated gain parameter is depicted
in Fig. 5 for the simulated dataset. It shows that the gain is un-
derestimated for all the frequencies when the median filtered
image is used in place of . The relationship between the
true sensor gain and cannot be derived because of the non-
linear nature of the median filter. We remark that the value of

can be effectively used to locate the pulses reliably through
(19), as experimentally shown in Section III. As a consequence,

will be referred to as “equivalent gain.”
Median filtering should be avoided when the true sensor gain

has to be estimated; instead, linear filtering can been considered.
Let us consider a radiographic image corrupted
only by photon counting noise. For instance, such an image
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Fig. 5. Relative error of the estimate of sensor gain, for the estimates ��, as a
function of the frequency content of the radiography. Error bars indicate three
standard deviations.

could be obtained applying the procedure outlined in Section III
to the original, noisy radiography. Filtering with a MA filter
of size pixels a new image, called , is obtained. From

and (7), an equivalent gain, , can be estimated, dif-
ferent from . In this case, the following relationship between

and can be analytically derived, at least for LF images, as
shown in Appendix B (cf. B22)

(22)

where . Inverting (22), the sensor gain can be com-
puted.

This relationship can be analyzed considering for simplicity a
uniform image, . In this case, from (B9) the second-
order expansion of (7) can be derived

(23)

where is the noise contribution for the th pixel.
Expression (23) highlights that the estimated sensor gain is pro-
portional to the noise power, . When is sub-
stituted by , the low-pass filter does not completely remove
the noise from the image. In particular, for a MA filter with
samples, the residual noise power is equal to with
respect to the original power [23]. As a consequence, under-
estimates the true sensor gain by a factor , as reported in
(22).

To validate this derivation, we generated a set of 26 images of
512 512 pixels, each containing a sinusoidal oscillation in the
horizontal direction, with frequency between 0 and 0.025 cy-
cles per pixel, with increments of 0.001 cycles per pixels. The
minimum and maximum number of incident photons of each
image was set, respectively, to 1000 and 11 000, coherently with
the data used in Section III-B. For each noiseless image, ten
noisy images were generated, each with a different realization
of photon counting noise, for a total of 260 noisy images. Gain
values compatible with real radiographic images (0.1 and 0.2)

Fig. 6. Estimate of the gain parameter as a function of the frequency content,
for� (crosses), �� (diamonds), and �� (circles). In (a), the true value of the gain
parameter is 0.1; in (b), it is 0.2. Error bars indicate three standard deviations,
whereas the dash–dotted horizontal line indicates the theoretical estimate of ��,
for LF images.

have been used to generate such images. and were com-
puted, for each noisy image of the simulated dataset, using, re-
spectively, a 3 3 MA filter and a 3 3 median filter applied
to . The values of , and were determined from these
images and they are reported in Fig. 6.

When the true image is used, the value of is always very
close to the true sensor gain with a standard deviation lower than
0.5%. This demonstrates that the Stirling’s approximation used
to derive (7) does not introduce any bias on the estimated gain.
The behavior of is similar to that obtained in Fig. 5 and it
does not allow to be reliably estimated. Instead, when the
MA filtered image is considered, the curve obtained from (7)
increases monotonically: for low-frequency values, is very
close to the theoretical value predicted by (22), 8/9 of the true
sensor gain, and it increases for higher frequencies; for frequen-
cies up to 0.005 cycles/pixel, the error on the estimated gain is
smaller than 0.3% of the true gain value.

To evaluate the frequency content of the radiographies of the
dataset, for each image we have computed the 2-D Fourier trans-
form in polar coordinates, , and determined the power up
to frequency . This value is then nor-
malized as follows:

(24)
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Fig. 7. Normalized cumulative power, ����s plotted for (a) the cephalometric
radiographies and (b) the panoramic radiographies of Section III-C.

where the integral at the denominator is computed between 0
and the Nyquist frequency (0.5 cycles/pixel). The mean trend
of is plotted in Fig. 7 for the set of cephalometric and
panoramic radiographies considered in Section III-C; 99.5%
(for the cephalometric radiographies) and 99.2% (for the radio-
graphic radiographies) of the power is contained inside the fre-
quency range cycles/pixel. On the basis of this result,
(22) can be considered a reliable expression to compute the true
sensor gain, at least for the images considered in our experi-
ments.

For sake of completeness, for the real radiographies of our
dataset, the estimated mean value ( standard deviation) of the
sensor gain was of 0.212 for the cephalometric radio-
graphies and 0.095 0.003 for the panoramic radiographies.

V. DISCUSSION

Digital radiographies are characterized by a very low im-
pulsive noise rate: for the images analyzed here, it did not ex-
ceed 0.2%. Nevertheless, its effect on image visualization after
gamma correction and UM is remarkable: all the untreated ra-
diographies of Section III-C were classified as medium or highly
corrupted by all the human observers. This clearly demonstrates
the need of a filtering procedure aimed to remove the impulsive
noise.

The proposed method is based on a realistic model of noise
distribution and an adequate (linear) sensor model. More re-

fined sensor models could be used, which incorporate for in-
stance nonlinearity or histeresis [21]. However, as producers try
to maximize linearity, sensors of the last generations are usually
accurately described by a linear transfer function.

Whether the sensor response were not uniform, the present
approach could be extended to incorporate a parametric space-
varying gain map into the sensor model. This is the case, for
instance, of large area sensors covered by a non uniform scin-
tillator layer, like the ones considered in [30]. However, this
problem does not arise for small area sensors and the widely
used linear sensors, like those considered here [21].

A mixture of impulsive and photon counting noise has been
considered, where it is supposed that impulsive noise destroys
the signal. Therefore, each pixel can be affected either by
photon counting or impulsive noise. Although other forms of
noise could be considered, like thermal, readout, or quantization
noise, for a well constructed and calibrated radiographic sensor,
these are much smaller than photon counting and impulsive
noise. For instance, the readout noise of the sensor used to take
the images of Section III-C, is typically as small as 1/5 grey
level on a total of 4096 grey levels.

The photon counting noise has been assumed white. This as-
sumption is required to derive the expressions of the likelihood
functions in (4) and (10), and it is equivalent to assume that the
sensor point spread function is the delta function. A more ac-
curate description of the sensor response could be accommo-
dated into a more complex likelihood function, at the price of
a higher computational cost and of an adequate estimate proce-
dure. However, experimental results on real images suggest that
this increase in complexity does not seem justified.

The sensor transforms photon counting noise according to
(3). This clearly shows that the common statement that “radio-
graphic images are corrupted by Poisson noise” is partially mis-
leading. The noise in the grey level image is purely Poisson
only when sensor gain is unitary. Such observation should be
carefully considered each time an image de-noising algorithm,
specifically tailored to photon counting noise, is developed.

The Stirling’s approximation of the factorial function was in-
troduced in (6) and (11), to make (5) a continuous, differentiable
function of [32]. This approximation rapidly converges to the
true value for small values of and we have experimentally ver-
ified that it does not significantly affect the estimate of the gain
parameter.

A critical step is the estimate of the noiseless image . During
sensor calibration, a uniform image is often taken. In this case,

can be assumed constant and equal to the mean (or the me-
dian) gray level of and the RaIN filter can be reliably used
to both individuate the faulty pixels of the sensor and to estimate
the sensor gain.

A more difficult problem arises when the pulses have to be
identified and removed from a radiography taken on the field.
In this case, we verified experimentally that the RaIN filter does
identify the noise pulses reliably, provided that is computed
as the median filtered noisy image. The smallest possible kernel,
3 3 has been adopted. A larger kernel could be used for higher

2http://jp.hamamatsu.com/resources/products/ssd/pdf/s7199-
01_kmpd1077e06.pdf

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 9, 2009 at 07:02 from IEEE Xplore.  Restrictions apply.



12 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 1, JANUARY 2009

corruption rates, but its use is not justified for the low-corruption
rates typical of radiographic images, as the computational cost
increases.

The RaIN filter was compared with several among the most
used filters for impulsive noise removal. The RCF filter was se-
lected because of its computational efficiency; the CSAM filter
because it estimates the noise variance as a function of the grey
level, coherently with the properties of photon counting noise.
For the same reason the proposed method was also compared
with the BEM filter, which provides a local, model based de-
scription of the image and noise characteristic. As shown by
the results, statistical methods like the RaIN, the BEM or the
CSAM filters remove impulsive noise much better than the sim-
pler RCF filter. Among these, RaIN achieves the best perfor-
mance, thanks to its accurate description of the noise statistics
represented in the mixture model (8). Both the CSAM and the
BEM filters leave a significant number of uncorrected pulses, as
shown by the relative high mean score achieved by these filters.
Moreover they erroneously identify as pulses more pixels than
the RaIN filter (Fig. 4). This fact can be attributed to the less
realistic statistical model implemented by them. As a matter of
fact, CSAM is a general purpose filter: in fact it does not adopt a
parametric statistical model to describe the image statistics, but
it derives it through a regularized co-occurrence matrix. On the
other hand, BEM approximates the noise locally as a mixture of
Gaussians.

Our experimental results demonstrate that, by improving the
reliability of the noise model, a more efficient denoising algo-
rithm can be obtained. This suggests that an accurate description
of the noise statistics could lead to better results also in other do-
mains, like in tomography, where noise is often approximated
through a Gaussian distribution [31].

Beyond removing the pulses, the RaIN filter also allows to
estimate the sensor gain as follows. First the pulses have to be
removed with the procedure outlined in Section III; then, the
gain can be estimated according to Section IV.

VI. CONCLUSION

We have proposed here a novel method to individuate and cor-
rect impulsive noise in digital radiography. The method is based
on the assumption that the photon counting process provides
the main contribution to image noise, which is a common char-
acteristic of many radiographic systems. A mixture of photon
counting and impulsive noise is used to individuate the pulses;
however, any other form of noise can be easily introduced in this
model. The method also allows a reliable estimate of the sensor
gain. The experimental results on both simulated and real im-
ages demonstrate the superiority of the proposed method com-
pared with other, more traditional approaches.

APPENDIX A

We report here the derivation of the derivatives of (16) with
respect to and , show in (A1) and (A2), at the bottom of
the next page.

APPENDIX B

Let us consider a simplified framework, where an image is
corrupted only by photon counting noise. The measured noise
image, , can be written as

(B1)

where is the photon counting noise contribution to the th
pixel. As a consequence, (7) can be rewritten as

(B2)

The expression of in (B2) can be approximated using its
second-order Taylor expansion as

(B3)

where the vector contains the noise over all the pixels,
and are the gradient and the Hes-

sian of and is a vector of zeros.
Let us first compute

(B4)

.
Computing the derivatives of (B2) with respect to , we ob-

tain

(B5)

where is a vector whose th component is 1, and all the other
components are 0.

For , (B5) gives

(B6)

Deriving (B5), we obtain

(B7)
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that, for , gives

(B8)

As a result, the Taylor expansion of can be written as

(B9)

We now write the Taylor expansion of (7), when is sub-
stituted by its estimate. Let us consider a simplified framework,
where the estimated noiseless image, , is obtained using a MA
filter with samples, that is

(B10)

where indicates the set of indexes of the neighbors of
the th pixel, including the th pixel itself. Under the hypothesis
that the image frequency content is mainly given by the low fre-
quency components, the MA filter does not significantly modify
the signal, but it only reduces the noise. In this case, (B10) can
be simplified as

(B11)

(A1)

(A2)
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where the noise contribution of the th pixel, , has been high-
lighted and \ indicates the set of indexes of the neigh-
bors of the th pixel, excluding the th pixel itself.

Let us rewrite (7) introducing in place of . We obtain

(B12)

Let us consider the second-order Taylor expansion also of
. Its first term, for = , is equal to

(B13)

To compute the second term, the derivative of with re-
spect to the th component of are computed. They are

(B14)

which, for , gives

(B15)

and therefore

(B16)

Lastly, we compute the Hessian of . Since the noise is
white, and are uncorrelated for , it can be demon-
strated that only the diagonal elements of the Hessian are dif-
ferent from zero in the Taylor expansion. In fact, the second-
order term is

(B17)

For a large image the second term in (B17) van-
ishes, since and are uncorrelated. Therefore, the following
relationship holds:

(B18)
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We now compute the diagonal elements of . These are
obtained deriving (B15) with respect to , which gives

(B19)
For , the following expression results:

(B20)

Remembering that, according to our hypothesis, the image
frequency content is mainly given by the low-frequency compo-
nents, we can approximate with and write

(B21)

We can lastly write the Taylor expansion of as

(B22)

It follows that, when is approximated by , and contains
mainly low-frequency components, the sensor gain computed
through (7) is underestimated by a factor , where

is the number of samples of the MA filter used to estimated
from .
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