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Abstract. In this paper we show how combining fuzzy sets and reinforcement 
learning a winning agent can be created for the popular Pac-man game. Key 
elements are the classification of the state into a few fuzzy classes that makes the 
problem manageable. Pac-man policy is defined in terms of fuzzy actions that are 
defuzzified to produce the actual Pac-man move. A few heuristics allow making 
the Pac-man strategy very similar to the Human one. Ghosts agents, on their side, 
are endowed also with fuzzy behavior inspired by original design strategy. 
Performance of this Pac-man is shown to be superior to those of other AI-based 
Pac-man described in the literature. 

Keywords. Fuzzy Q-learning, game engine, minimum path, artificial intelligence, 
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Introduction 

Pac-man is one of the most successful computer games. It was originally produced by 
Namco and distributed by Midway, starting in May 1980 and has become since then a 
classic of the field [1].  

Pac-man is an agent that moves in a maze constituted of corridors paved with pills. 
Aim of the agent is to eat all these pills (each pill eaten is worth 10 points); when this 
happens the game proceeds to the next game level. Also some enemies, that have the 
shape of ghosts, are present inside the maze; these can eat the Pac-man. Every time a 
Pac-man is eaten a new Pac-man is generated up to a maximum of three times. Four 
special pills, called power pills, are also present in the maze. These special pills enable 
the Pac-man to eat the ghosts, but their effect lasts for a limited amount of time; 
therefore, during this period, ghosts tend to run away from the Pac-man. As each eaten 
ghost is worth 200 points (the first one), 400 points (the second one), 600 points (the 
third) and 800 points (the fourth), the strategy of going for ghosts is an efficient 
strategy to get many points quickly. 

As many other computer games, Pac-man has been widely used in the literature to 
study techniques for optimal decision and learning in game theory and machine 
learning. The challenge is due to the fact that the environment seen by Pac-man is non 
deterministic as no knowledge on the ghosts behavior is provided to Pac-man. The 
same is true for the ghosts that do not know in advance which can be the best policy to 
haunt the Pac-man. A further issue is the problem complexity as the number of cells 
can be very large: the maze can be constituted by some hundreds of cells that can be 



occupied by pills, power pills, ghosts and the Pac-man (cf. Fig. 1). This calls for a 
smart definition of the states that cannot be associated to single maze positions. 

In this paper we explore the possibility of recently proposed Fuzzy Q-learning [2] 
to learn the optimal behavior of the Pac-man. A fuzzy approach has been adopted for 
the states definition to make the problem manageable. Ghosts behavior has also been 
completely modeled with fuzzy controllers. Results show that on average the Pac-man 
achieves over 6000 points that are more than the 4300 points gained in the Pac-man 
described in [3], using the same game map of the original Ms. Pac-man game. 
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Figure 1. In panel (a) the game layout map used, equal to the original one. In panel (b) the states on 

which the Pac-man defines its policy. 

1. Method 

The gameplay requires the definition of the behavior of the ghosts, while the artificial 
engine will shape the behavior of the Pac-man. 

1.1 The ghosts 

The classical implementation of Pac-man assumes that the four ghosts have different 
personalities [4] and therefore different behaviors. As stated by Toru Iwatani: 
“INTERVIEWER: What was the most difficult part of designing the game? - 
IWATANI: The algorithm for the four ghosts who are the enemies of the Pac Man 
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1 Low Low Low 
2 Low Low Medium 
3 Low Low High 
4 Low Medium Low 
5 Low Medium Medium 
6 Low Medium High 
7 Low High Low 
8 Low High Medium 
9 Low High High 
10 Medium Low Low 
11 Medium Low Medium 
12 Medium Low High 
13 Medium Medium Low 
14 Medium Medium Medium 
15 Medium Medium High 
16 Medium High Low 
17 Medium High Medium 
18 Medium High High 
19 High Low Low 
20 High Low Medium 
21 High Low High 
22 High Medium Low 
23 High Medium Medium 
24 High Medium High 
25 High High Low 



getting all the movements lined up correctly. It was tricky because the monster 
movements are quite complex. This is the heart of the game. I wanted each ghostly 
enemy to have a specific character and its own particular movements, so they weren't 
all just chasing after Pac Man in single file, which would have been tiresome and flat. 
One of them, the red one called Blinky, did chase directly after Pac Man. The second 
ghost is positioned at a point a few dots in front of Pac Man's mouth. That is his 
position. If Pac Man is in the center then Monster A and Monster B are equidistant 
from him, but each moves independently, almost sandwiching him. The other ghosts 
move more at random. That way they get closer to Pac Man in a natural way”. 

This leads to different implementations. We have adopted the implementation 
proposed in [5]: all the ghosts can assume all the three possible behaviors and they 
decide through a fuzzy controller which of the three behaviors is most adequate to the 
present situation. Therefore the decision on the actual behavior of a given ghost does 
not depend on the ghost but on the game situation. 

The ghost behavior is different depending if it is attacking the Pac-man or 
defending from it. At start all the ghosts start at the maze center and, as they have to 
protect the pills from being eaten by the Pac-man, they tend to distribute along the 
maze corridors. If a ghost becomes close to the Pac-man, it aims to it, unless the power 
pill is active (has been just eaten by the Pac-man) in which case the ghost runs away 
from the Pac-man. The more the game progresses the more the ghosts tend to stop the 
Pac-man. These qualitative statements are translated into fuzzy controller rules as 
follows. 

We have the following ghosts’ behaviors: shy, random, hunting and defense. In the 
original implementation the four ghosts have the following behaviors: two move 
randomly, one actively goes after the Pac-man and the fourth waits for the Pac-man 
close to the pills.  

We have preferred here to optimize the ghosts’ behavior according to the game 
situation. In the shy behavior, the ghost gets away from the closest agent. In the default 
condition the ghosts tend to move as far as possible one from the other, while when the 
power pill is active they tend to move as far as possible from the Pac-man. To achieve 
this, the ghost evaluates the new distance from each agent moving in the four 
orthogonal directions (north, east, south, west), that are allowed (it is not allowed to go 
through a wall). The direction that produces the maximum increment of the distance is 
chosen. To avoid stereotyped behaviors, when ties are present, the four directions are 
explored in random order and the agent always chooses the first best direction.  

The random behavior is the same of the original game: at each time step, the ghost 
moves towards an adjacent admissible cell, at random.  

In the hunting behavior, the ghost goes for the Pac-man, to eat it. To this aim, the 
ghost chooses always the minimum path to the Pac-man, that is pre-computed at game 
loading using the Floyd-Warshall algorithm [7] creating a look-up table. With this 
behavior all the ghosts get aligned and follow the Pac-man from behind. To break this, 
one of the ghosts has to move in a suboptimal (random) direction in one step, and 
eventually surround the Pac-man. We remark here that the evaluation of the best 
direction has to be repeated at each step, as the Pac-man is moving in a way that is not 
known to the ghosts. 

The actual action in the defence behavior, also present in the original version, 
depends on the pills density left. In fact to complete the game the Pac-man has to eat all 
the pills and when few pills are left, the ghosts know that the Pac-man has to go for 
them. Therefore in the defense behavior the ghost goes in the area with the maximum 



pills density and waits that the Pac-man moves towards this area, instead of actively 
chasing the Pa-man. In the implementation the maze is subdivided into nine partially 
overlapped areas and the Pac-man moves towards the central pill of the chosen area. 
The areas have limits on both axes respectively at {0, ½; ¼ ¾ and ½ 1}. When the 
ghost is in the central pill he always moves to a random adjacent cell. 

The ghosts choose their actual behavior as a function of their actual state according 
to a fuzzy policy. The variables input to the fuzzy controller associated to each ghost 
are: the distance between the ghost and the Pac-man, the distance with the nearest other 
ghost, the frequency with which the Pac-man eats the pills and the lifetime of the Pac-
man that represents the Pac-man ability. For each of these variables three fuzzy classes 
are defined. An additional Boolean variable, not fuzzy, is defined that states if the ghost 
can be eaten by the Pac-man and it is asserted for the time span in which the effect of 
the power pill lasts. 

A set of fuzzy rules are defined inspired to [4], like for instance: 
• If pacman_near AND skill_good, Then hunting_behavior 
• If pacman_near AND skill_med AND pill_med, Then hunting_behavior 
• If pacman_near AND skill_med AND pill_far, Then hunting_behavior 
• If pacman_med AND skill_good AND pill_far, Then hunting_behavior 
• If pacman_med AND skill_med AND pill_far, Then hunting_behavior 
• If pacman_far AND skill_good AND pill_far, Then hunting_behavior 

The rules activated are then defuzzyfied, choosing the behavior that is associated 
to the rule with maximum fitness [8]. This, in turns, induces the ghost to move in one 
of the possible directions. The definition of the classes boundary was carried out such 
that the ghosts have as preferred action “hunting”, that is chose four times more 
frequently than the other actions.  

1.2 The Pac-man 

In this work the Fuzzy Q-learning algorithm developed for deterministic 
frameworks [2] has been adapted to the non-deterministic setting considered here. The 
need of using a fuzzy description of the state is mandatory here to avoid the explosion 
in the number of states that would make the computation infeasible. At the basis of 
Fuzzy Q-learning is the aggregation of different states into the same fuzzy class, the 
generation of a policy and its evaluation as a function of the value assumed by the 
fuzzy classes. To this aim, the analysis is not carried out on the single maze positions 
but on three fuzzy variables that assume the values low, medium high and represent the 
minimum distance from the closest pill, the minimum distance from the closest power 
pill and the minimum distance from the closest ghost. With this discretization we 
obtain 27 fuzzy classes that represent the different states of the Pac-man and are shown 
in Fig. 1c. 

1.3 Q-learning 

In reinforcement learning (RL) [6], an agent has to interact with an environment 
that can be described through a state variable, s. To this aim, the agent has to learn a 
policy (1a). The agent has to learn the policy that allows the best reward in the long 
term. The reward is represented by a discounted sum of the reward obtained at each 



step of interaction with the environment, r(st, at, st+1) and it is represented by a value 
function, Q(s,a).  

 
at = π(st)  Policy      (1a) 
rt = r(st, at, st+1) Reward      (1b) 
Qt = Q(st, at)  Value function     (1c) 
 
Q(st,at)’ = Q(st,at) + α[rt+1 + γ max a’ Q(st+1,a’) - Q(st,at)]   (2) 
 
RL can be well cast to the Pac-man game where the agent has to learn how to earn 

the maximum score. Among the most successful algorithms of this family is Q-
learning [9]. In this case, the agent learns Q(st,at) from the actual action, at, chosen in 
the current state, st with the current policy, and at the same time improves its policy to 
obtain a larger long-term reward. Q(st+1,at) is maximized with respect to the current 
action, a’. rt+1 represents the reward obtained in the transition from state st to state st+1, 
α and γ represent respectively the learning rate and the discount rate of the reward.  

In the present state, we distinguish between the actual state of the Pac-man, s, 
represented by the distance of the closest ghost, of the closest pill and of the closest 
power pill that can assume continuous values and the fuzzy aggregated states, q, that 
can assume one of the 27th defined situations presented in Fig. 1b.  

Each of the three input variables has a membership function associated to it, and 
the degree of membership to one of the classes is computed here according to the 
average method. Given s* = {c1, c2, c3} the actual input state and m(ci) the degree of 
membership of ci to one of the fuzzy input classes, and fi the current fuzzy aggregated 
state analized, the degree of membership of s* to the fuzzy aggregated class, fi will be: 

 

μ(fι) = 
3

)(
3

1
∑

=i
icm

       (3) 

 
Given the fuzzy nature of the input classes, more than one fuzzy aggregated state 

can be active at the same time. Therefore, the actual Q value of the current state, s*, 
can be computed summing over all the active fuzzy aggregated states as: 
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where the μ(fi) add to one. The Q function for each aggregated state active, q(.) is 

update according to Q-learning [6] as: 
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Eq. (5) is applied to all aggregated states f that are active in one transition step. 

The value of αf,a is chosen according to: 
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that is a natural extension to fuzzy states of the computation of the running average [6].  
The action available to Pac-man are: Go to Pill, Go to Power Pill, Avoid Ghost and 

Go to Ghost, of which the last two are mutually exclusive: avoid ghost is available 
when Power Pill is not active while Go to Ghost when it is active. As in any time step 
there can be both edible and hunting Ghosts (those that have been eaten and has born 
again), the distance is measured only from the closest ghost, independently on its 
attitude.  

The actual success of the Pac-man depends on the implementation of these four 
actions, as different implementation can produce very different behaviors. Hereafter is 
a description of the implementation chosen here. When the Pac-man decides to Go to 
pill, he always goes to the closest pill, independently on the position of the ghosts. To 
achieve this, the look-up table containing the minimum path to goal is addressed. To 
achieve this, the distance from all the pills is examined and the pill towards which to 
move has to be decided randomly among all the pills that are closest. Otherwise, the 
Pac-man would move always towards the pills in the upper west region of the maze. 
The same strategy is used for the action Go to Power Pill. In the Go to ghost action, the 
Pac-man goes run always after the closest ghost. 

Avoid Ghost is the most critical action. If we move the Pac-Man to increase the 
distance from the closest ghost, at the maze crossings, where the turning choice would 
produce an increased distance, easily the Pac-man can choose the direction that leads it 
directly to another ghost coming from that direction. A possible alternative is to choose 
the direction that maximizes a weighted distance from all the ghost. Although this 
second solution is more efficient for the life length of the Pac-man it induces the Pac-
man to move inside a small area at the corners of the maze. A possible solution is to 
consider a weighted distance only inside a given area around the actual state. In this 
situation the Pac-man is forced at the corner of such an area that changes at every step. 
The last improvement is related to the situation in which multiple directions allow 
increasing the distance from the ghosts. In this situation the Pac-man will choose the 
direction that leads it towards the closest power-pill, if still present in the maze, 
otherwise the closest “normal” pill is chosen.  

2. Results and Discussion 

2.1 Implementation notes 

We have implemented the basic version of the game: the only bonus is represented 
by the Power Pill. We have not considered the fruit bonus, that may show for a brief 
time inside the maze and can change the behavior of the ghosts, according to [3]. 
Moreover, a single map has been used, but any other map associated to the different 
levels can be easily loaded.  

A few heuristics have been implemented to make the behavior pleasant. The first is 
persistence [3]. The policy learnt by the Pac-man often forced it to change action at 
each step, resulting into an unstable behavior and of little motion of the Pac-man. We 
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and we have adopted here an experimental approach, evaluating the Q(.) function 
associated to a greedy agent playing the game. We could explore few combination of 
classes boundaries, but these have suggested classes that allowed very good results; in 
particular we have chosen d = 5 as maximum membership for low distance, d = 12 as 
maximum membership for medium distance and d = 25 as maximum membership for 
high distance. Other combinations of distance led to worse results as shown in Fig. 2. 

The reward associated to each pill has also been investigated, but it is shown that 
there is no large difference in the results for a wide range of results as shown by the 
score difference when r = 1 (the score associated to each pill) and r = 0,1 (Fig. 3a). 

The effect of the greediness of the policy has also been investigated. If a random 
policy was chosen, the improvement resulted very slow but consistent as shown in Fig. 
3a, where the average of three different set of trials is reported. In this situation, the 
function Q(.) is learnt by moving randomly inside the maze. When using an ε-greedy 
policy, results are variable, depending if the random initial choices were in the correct 
or wrong direction. In the second case, learning became slower, while in the first one a 
score as large as 9000 points was reached after only 20 games (Fig. 3b). 

To avoid such variability obtaining at the same time a consistent improvement, as 
initialization of the Q(.) function according to Optimistic initial value [6] has been 
implemented. This has allowed to achieve results that were superior to those reported 
in [4]. Scores obtained in the different situations are summarized in Figure 4a. The Q 
function well represents the best actions in each state (Fig. 4b). 

The results obtained here show that a fuzzyfication of the state allows making this 
game manageable and discover an effective gameplay that, given the high number of 
cells, would have not been computable. On average the Pac-man has obtained more 
than the 4300 points reported in [4].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 (a)        (b) 
 
 
 
Figure 4. In panel (a) the average score obtained in different conditions from left to right: blue – 

random policy, no learning; orange – shy ghost, always escaping the ghosts except when Power Pill is on, no 
learning; yellow – Pac-man learning with an �-greedy policy (reward factor = 0.1); Pac-man learning with 
an �-greedy policy (reward factor = 1); random policy, learning, fuzzy boundaries {5. 12. 25}; cyan, random 
policy, learning, fuzzy boundaries {6, 18, 30}. In panel (b) the Q value of the state-action pairs for the yellow 
case after 10,000 games. 

 
The fuzzy approach has also allowed a simple but close to the original 

implementation of the ghosts behavior.  



We have always relied the choices to the closest element (ghost, pill, power pill) 
while a human player relies more on the concept of density or of “average easy to 
reach”. This more comprehensive analysis of the game status can make the Pac-man 
even more effective, but would introduce more high level knowledge into the game. 

With the same idea in mind, the escape from ghost strategy implemented was quite 
simple as the Pac-man tries to escape the closest ghost looking forward at one step. For 
this reason, a few times, the Pac-man is trapped between two ghosts and is eaten. To 
avoid this a multi-step forward analysis might be more performing, allowing the Pac-
man elaborate escaping strategies, for instance through min-max strategies. However 
this solution would require again to insert knowledge into the game, and has not been 
further pursued. 

3. Conclusion 

We have presented here an application of Fuzzy Q-learning to the Pac-man game, 
where, with the help of a few heuristic the Pac-man can achieve very high scores. Key 
element is the fuzzyfication of the state space that allows reducing the number of states 
on which the fuzzy inference engine has to work making the game engine feasible.  

Although with such a simple implementation the game played by the Pac-man 
instructed by Q-learning is extremely similar to that played by a Human player.  
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