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2 Intfroduction to the
HC paradigm

... forget about partitional methods ;)
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What HC is

A In brief, HC algorithms build a whole
hierarchy of clustering solutions

O Solution at level kis a refinement of solution at
level k-1

A Two main classes of HC approcaches:

0O Agglomerative: solution at level k is obfained from
solution af level k-1 by merging two clusters

a Divisive: solution ¢t level k is obtained from
solution at level k-1 by splitting a cluster info two
parts

A Less used because of computational load

Agglomerative HC

At start, each input pattern is assigned to
a singleton cluster

At each step, the two closest clusters are
merged into one

0 Sothe number of clusters is decreased by one
at each step

At the last step, only one cluster is
obtained




Dendrograms

A The clustering process is represented by
dendrogram:

Dendrograms

A The resulting dendrogram has fo be cut at
some level to get the final clustering:

o Cut criterion: number of desired clusters, or
threshold on some features of resulting clusters

1/16/2011



Computing dissimilarities

Dissimilarity A Different distances/indices of dissimilarity...
between pairs W
of single points

7 A ... and agglomeration criteria: Merge clusters C;

0 E.g. euclidean, city-block, correlation...

and C; such that diss(i, j} is minimum
a Single linkage:

A diss(ij) = min d{x, y), where xisin C;, yin cluster C;
Dissimilarity
between pairs W
of clusters A diss{ij) = max d{x, y), where xisin cluster i, y in cluster]

o Complete linkage:

0 Group Average and Weighted Average Linkage:
A dissli]) = D Zwawjd(LY)/z IRAT
==y yely =0y yelly
GA:w =w;=1

WAIW; =, W=y

Computing dissimilarities
(cont.)

e A Other agglomeration criteria: Merge clusters C; and C;
Dissimilarity such that diss{i, jJ is minimum :
between pairs
of clusters

0 Cenfroid Linkage:

A diss(i, j) = d{w, w)

8 0 Median Linkage: Squared
A diss(ij) = d{center; cemer-}), where each center, is the 3 =

average of the cénters of the clusters composing C-
0 Ward's: Method:

4. dissfi, j) = increase in the total error sum of squares {ESS)
due fo the merging of C;and G

A Single, complete, and average linkage: graph methods
0O All pointsin clusters are considered

A Cenftroid, median, and Ward’s linkage: geometric
methods

a Clusters are summed up by their centers
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Ward's criterion

L Also known as minimum variance method

Each merging step minimizes the increase in the
total ESS:

ESS, =Y. (x— ) ESS=)" ESS,
=0, i

m] V\glgen merging clusters C; and C;, the increase in the total
ESS is

AES':E;SSU — ESS; —I'ES'J.
. Spherical, compact clusters are obtained

The solution at each level k is an gpproximation to
the opfimal solution for that level (the one
minimizing ESS)

The dissimilarity matrix

A HC algorithms operate on a dissimilarity
maitrix:

0 For each pair of existant clusters, their dissimilarity

1 0 value is stored
A When clusters C; and C; are merged, only

dissimilarities for the new resulting cluster
have fo be computed

0 The rest of the matrix is left untouched
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The Lance-Williams
formula

A Used for iferative implementation

A The dissimilarity value between newly formed
cluster {C;, C; } and every other cluster C, s

1 1 computed as
diss(k, @, 1)) =adiss(k. 1)+ a, diss(k, 1)+ Bdiss G, 1)+
+ rldiss (k, f)—di.rs (k, j]
. Only values already stored in the dissimilarity
matrix are used

. Different sets of coefficients correspond to
different criteria

The Lance-Williams
formula - coefficients

disz (k.G 1)=a,diss(k.1)+ &, diss (k. 1)+ Bdss§, 1)+
+ y|diss (k, i)~ diss (k, 7}
Criterion o o
Single Link. Ya Yo
Complete Link. % Y2

Group Avg. n/(ni+n;) n/(ni+n;)

0
0
0
0

Weighted Avg. % %
Centroid n/(n+n;) n/(n+n;) -nn/(ni+n))?
Median Y2 Y2 -Ya

Ward (n#n)/(nFn+n)  (nFnY/(niFEni+n) - -n/(n+n+ny)

e.g. for single linkage...
diss{k, {i.j) = min{diss(k, i), diss(k.j))
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Pros and cons of HC
algorithms

A Pros:

0 Indipendence from initialization

0 No need to specify a desired number of clusters
1 3 from the beginning

A Cons:
o Computational complexity af least O(N?)
Sensitivity to outliers
No reconsideration of possibly misclassified points

Possibility of inversion phenomena and multiple
solutions

Inversions

A We have an inversion when the sequence
of dissimilarity values selected by the HC
algorithm is nonmonotonic

A Inversions may be produced when using
the centroid or the median criterion
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Non-unigueness

A« This problem “certainly is not widely known' »
{van der Kloot et al., 2005)

Dissimilarity matrix

5 10 15

® 5
o

Non-unigueness

A« This problem “certainly is not widely known” »
{van der Kloot et al., 2005)

16

Dissimilarity maftrix

® /5 105

o 5
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Non-unigueness

A« This problem “certainly is not widely known' »
{van der Kloot et al., 2005)

Dissimilarity matrix
o

. 5 5

o

Non-unigueness

A« This problem “certainly is not widely known” »
{van der Kloot et al., 2005)
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Dissimilarity martrix

® s 5
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Non-unigueness

To make a long story short:
Different permutations of the input data

can produce different clustering solutions!

More than one pair of objects having minimum
distance: fies

The first one according to the given input order is
selected

O Inother words, the non-unigueness problem is usually not taken
into account, but:

It is highly desirable fo have a unique clustering
solution for the same dataset!

O Replicability of results

u Different solutions may lead to different conclusions

Non-unigueness: effects

A Example of application: metanalysis of
neuroimaging data

0 Input: activation coordinates on the cerebral volume

0 OQutput: set of clusters whose functional role has to be
determined

Running an HC algerithm on a real dataset actually
produced different solutions depending on input data
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21 A quest for
unigueness

Work in progress...

Quest for uniqueness: first
approach

A Given a set of minimal distance pairs, select
for merging the “best” one

0 How to define best?2

22 A Greedy approach: the choice of the best

pair at step k does not guarantee the solution
fo be the best one overall

A Note: we are not really interested in the
quality of the whole dendrogram

o We want the final clustering after cutting the
dendrogram to be the best onel
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Quest for unigueness:
second approach

A Let us develop all the possible dendrograms
for a dataset, and compare them to find the
best one

a At each step, for each minimal distance pair, we

generate the dendrogram resulting from the choice
of that pair

0 But we have a slight problem here... can you guess
what it 5222

A Note: not all minimal distance pairs are equal

o Some are critical, some are not

Noncritical pairs Critical pairs

Quest for unigueness: third
approach

A Let us develop allthe possible all significantly

different dendrograms for a dataset, and
compare them to find the best one

O Af each step, for each critical pair, we generate the
dendrogram resulting from the choice of that pair
O First, noncritical pairs are merged, in a random order

A The number of dendrograms to be handled
drops...

0 ... but not enough!
0 E.g.on a dataset of about 1200 points, after 100,000

dendrograms (and a couple of days of computing)
MATLAB ran out of memory
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All critical pairs are equal, but
some critical pairs are more
equal than others

\Y \% \Y
Equivalent pairs Nonequivalent pairs

A Equivalent pairs
produce equivalent
frees...

How to check for
eqguivalence®?

0 Ifin both scenarios, the
closest point to the new
cluster is the excluded
extreme {and vice
versa), the two pairs are
equivalent

Quest for unigueness:
fourth approach (opetuly, the

last one)

A Let us develop allHhepossible allsignificantly
different all nonequivalent dendrograms for
a dataset, and compare them to find the
best one

O Af each step, for each nonequivalent pair, we
generate the dendrogram resulting from the choice
of that pair

0O First, noncritical pairs are merged, in a random order
A Finally, the problem seems treatable!

0 E.g. we go from an out of memory failure to the
production of 128 dendrograms

O Note: we get something more than just
nonequivalent dendrograms (due fo some exireme
configuration of data)
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Quest for unigueness:
finding the best solution

A After getting the set of nonequivalent
dendrograms, we cut all of them using the same
criterion

0 Andwe gel the comrresponding final clusterings, one for
each dendrogram

L We define the best clustering fo be the one having
maximum between-cluster variance:

n; = cardinality of cluster C;
bev= E n (m! — .ﬂl)2 m, = mean of cluster C;
i M = grand mean
O ... which means that clusters are well-separated
\ Therefore the whole process gives us a unique

clustering, independent from input order, up to
equivalences

A quest for optimalityeee

A HC algorithms are not optimal

o We would like to have a method that gives us a
hierarchy of partitions P, each of them optimal

wrt the objective function (e.g. for Ward's
method, V{P,) = X, (ESS)

O But even if the single merging steps are opfimal,
the resulting partitions are not necessarily optimal
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A quest for optimalitygee

A HC algorithms can produce misclassifications:

The marked blue point is
/ closer to the centroid of the

red cluster than to the centroid

of the blue cluster it belongs to

A These may be corrected by employing k-means as
a postprocessing step...

0 Starting from the clusters produced by the HC algorithm,
each point is reconsidered and possibly moved to the
“right” cluster {the one whose cenfroid is closest to the
jelellaly]

A ... but the resulting solution is still hot guaranteed
to be optimal.

A quest for optimalityeee

A s it possible to design a truly optimal
clustering algorithm?

0 No, exhaustive enumeration of all possible
30 partitions is not an admissible answer ;)
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