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Infroduction to the
HC paradigm

... forget about partitional methods ;)



What HC is

A In brief, HC algorithms build a whole
hierarchy of clustering solutions

O Solution atf level kis a refinement of solution at
level k-1

A Two main classes of HC approaches:

O Agglomerative: solution at level k is obtained from
solution at level k-1 by merging two clusters

O Divisive: solution at level k is obtained from
solution at level k-1 by splitting a cluster into two
parts

A Less used because of computational load



Agglomerative HC

1. Afstart, each input pattern is assigned to
a singleton cluster

2. At each step, the two closest clusters are
merged into one

O So the number of clusters is decreased by one
at each step

3. Afthe last step, only one clusteris
obtained



Dendrograms

A The clustering process is represented by a
dendrogram:
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Dendrograms

A The resulting dendrogram has to be cut at
some level to get the final clustering:

a Cut criterion: number of desired clusters, or
threshold on some features of resulting clusters
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Computing dissimilarities

Dissimilarity A Different distances/indices of dissimilarity...
between pairs
of single points
. A ... and agglomeration criteria: Merge clusters C,
and C; such that diss(i, j) is minimum

O E.g. euclidean, city-block, correlation...

a Single linkage:

A diss(i,j) = min d(x, y), where xisin C;,yin cluster C,

Dissimilarity . .
between pairs O Complete linkage:
of clusters A diss(i,j) = max d{x, y), where xis in cluster C;, y in cluster C,

0O Group Average and Weighted Average Linkage:

A dliss(i, ) = 2o 2, Wiwid(x,y) / > > ww
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Computing dissimilarities
(cont.)

A Otfher agglomeration criteria: Merge clusters C; and C;

Dissimilarity such that diss(i, j) is minimum
between PAlrs o Cenftroid Linkage
id Li :
of clusters °
A dissi, ) = d{w, p)
O Median Linkage: Squared
4 diss(i, j) = d{center, center), where each center, is the Euclidean
average of the centers of the clusters composmg C, distances
should be
o Ward's Method: used

A diss(i, j) = increase in the total error sum of squares (ESS)
due to the merging of C, and C;

A Single, complete, and average linkage: graph methods

O All points in clusters are considered

A Cenftroid, median, and Ward’'s linkage: geometric
methods

o Clusters are summed up by their centers



Ward's criterion

A Also known as minimum variance method

A Each merging step minimizes the increase in the
total ESS:

ESS, = (x— 1)’ ESS=) ESS,

XGCi

Q V\ggen merging clusters C; and C;, the increase in the fotal
ESS is

AESS:ESSL i~ ESS. — ESS j
A Spherical, compact clusters are obtained

A The solution at each level k is an gapproximation to
the optimal solution for that level (the one
minimizing ESS)




The dissimilarity matrix

A HC algorithms operate on a dissimilarity
martrix:

O For each pair of existant clusters, their dissimilarity
value is stored

A When clusters C; and C; are merged, only
dissimilarities for the new resulting cluster
have to be computed

O The rest of the matrixis left untouched




The Lance-Williams
formula

A Used for iterative implementation

A The dissimilarity value between newly formed
cluster {C;, C,; } and every other cluster C,is
computed as

diss(k, (i, j)) =, diss(k,i)+ «; diss(k, j)+ Bdiss(i, j)+
+ y|diss(k,i)—diss(k, j)
A Only values already stored in the dissimilarity
maftrix are used

A Different sets of coefficients correspond to
different criteria



The Lance-Williams
formula - coefficients

diss(k, (i, j))=adiss(k,i)+ e, diss(k, j)+ Bdiss(i, j)+
+ y|diss(k,i)—diss(k, j)

Single Link. Yo Yo 0 -2
Complete Link. % Yo 0 Yo
Group Avg. n/(ni+n;) n/(ni+n;) 0 0
Weighted Avg. % Yo 0 0
Centroid n/(ni+n;) n/(ni+n;) -nin/(ni+n))? 0
Median Yo Yo -Ya 0
Ward (n+n)/(ni+ni+ny)  (nEn)/(ni+ni+n)  -n/(n+n+n) 0

e.g. for single linkage...
diss(k, {i,j)) = min{diss(k, i), diss(k, j))



The Lance-Williams Formula
and Single Linkage

diss(k, (i, j)) = diss(k,i)+a, diss(k, j)+ Bdiss(i, j)+

Single Linkage % % 0 -Y% +)/‘diSS(k,i)—diSS(k,j)(

diss(k, (i, j)):%diss(k,i)+%diss(k, i)+

diss(k, 1) > diss(k. ] ~ L dissqi, iy + Ldiss(k, j)
2 W0 ’

diss (k, (i, j))=%diss(k,i)+%diss(k, i)+

— %\diss (k,i)—diss (k, j)

P S B
diss(k. ) < dliss(k. i diss(k, (i, j))ZEdISS(k,I)+§dISa(k, j)+

1 .. 1. )
——diss(k, 1)+ =diss(k, i
—diss(k, )+~ (k,i)

... and therefore: diss(k, (i,j)) = min(diss{k, i), diss{k, j))



The Lance-Williams Formula
and Single Linkage

... and therefore:
diss(k, {i,j)) = min{diss{k, i), diss(k, j))




Pros

and cons of HC

algorithms

A Pros:

Q

Indipendence from initialization

O No need to specify a desired number of clusters
from the beginning
A Cons:
0 Computational complexity at least O(N?)
O Sensitivity to outliers
O No reconsideration of possibly misclassified points
O Possibility of inversion phenomena and multiple

solutions



Inversions

A We have an inversion when the sequence
of dissimilarity values selected by the HC
algorithm is nonmonotonic

1.8
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1.4
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A Inversions may be produced when using
the centroid or the median criterion



Non-unigueness

A« This problem “certainly is not widely known” »
(van der Kloot et al., 2005)
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Non-unigueness

A« This problem “certainly is not widely known” »
(van der Kloot et al., 2005)
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Non-unigueness

A« This problem “certainly is not widely known” »
(van der Kloot et al., 2005)
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Non-unigueness

A« This problem “certainly is not widely known” »
(van der Kloot et al., 2005)
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Non-unigueness

To make a long story short:
Different permutations of the input data

can produce different clustering solutfions!

A More than one pair of objects having minimum
distance: ties

A The first one according to the given input order is
selected

O In other words, the non-uniqueness problem is usually not taken
into account, but:

A It is highly desirable to have a unique clustering
solution for the same dataset!

O Replicability of results

O Different solutions may lead to different conclusions



Non-uniqueness: effects

A Example of application: metanalysis of
neuroimaging data

O Input: activation coordinates on the cerebral volume

O Output: set of clusters whose functional role has to be
determined

O Running an HC algorithm on a real dataset actually
prgdtfced different solutions depending on input data
order!




A )

A quest for
unigueness

Work in progress...
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Quest for unigueness: first
approach

A Given a set of minimal distance pairs, select
for merging the “best” one

O How to define best?

A Greedy approach: the choice of the best
pair at step kK does not guarantee the solution
to be the best one overall

A Note: we are not readlly interested in the
quality of the whole dendrogram

O We want the final clustering after cutting the
dendrogram to be the best onel
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Quest for unigueness:
second approach

A Let us develop all the possible dendrograms
for a dataset, and look for the best solution
they provide

O Afeach step, for each minimal distance pair, we

generate the dendrogram resulting from the choice
of that pair

0O But we have aslight problem here... can you guess
what it is¢e?

A Note: not all minimal distance pairs are equal

O Some are critical, some are not

el 4o ebe

Noncritical pairs Critical pairs
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Quest for unigueness: third
approach

A Let us develop allthepossible all significantly

different dendrograms for a dataset, and
look for the best solution they provide

O Afeach step, for each critical pair, we generate the
dendrogram resulting from the choice of that pair

O First, noncritical pairs are merged, in a random order

A The number of dendrograms to be handled
drops...

O ... but not enough!
O E.g.on adataset of about 1200 points, after 100,000

dendrograms (and a couple of days of computing)
MATLAB ran out of memory
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All critical pairs are equal, but
some critical pairs are more
equal than others

v
Vv’ Vv’
Vv 5 v v (5 . v
Equivalent pairs Nonequivalent pairs

A Equivalent pairs
produce equivalent
trees...

A H to check f
egmvivglecngece - . Q v O ‘ v

a If in both scenarios, the

closest point to the new

cluster is the excluded O . v’ CD ‘ v’

extreme (and vice

versa), the two pairs are
equivalent
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Quest for uniqueness:
fourth approach (hopefuly, the

last one)

A Let us develop eu—ﬂqe—pesskble allsianificantly
ditferent- all nonequivalent dendrograms for

a dataset, and look for the best solution they
provide

O At each step, for each nonequivalent pair, we
generate the dendrogram resulting from the choice
of that pair

O First, noncritical pairs are merged, in a random order

A Finally, the problem seems treatablel

O E.g. we go from an out of memory failure to the
production of 128 dendrograms

O Note: we get something more than just
nonequivalent dendrograms (due to some extreme
configuration of data)
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Quest for unigueness:
finding the best solution

A After getting the set of nonequivalent
dendrograms, we cut all of them using the same
criterion

O And we get the corresponding final clusterings, one for
each dendrogram

A We define the best clustering to be the one having
maximum between-cluster variance:

2 n; = cardinality of cluster C,
bCV — E ni (mi — M ) m; = mean of cluster C
i M = grand mean

QO ... which means that clusters are well-separated

A Therefore the whole process gives us a unique
clustering, independent from input order, up to
equivalences



A quest for optimalityeee

A HC algorithms are not optimal

O We would like to have a method that gives us a
hierarchy of partitions P,, each of them optimal

L.\

wrt the objective function (e.g. for Ward’s
method, V(P,) = X, ESS)

O But even if the single merging steps are optimal,
the resulting partitions are not necessarily optimal
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A quest for optimalityeee

A HC algorithms can produce misclassifications:

° °&

g‘ The marked blue point is

closer to the cenftroid of the
‘ red cluster than to the centroid
of the blue cluster it belongs to

A These may be corrected by employing k-means as
a postprocessing step...

a Starting from the clusters produced by the HC algorithm,
each point is reconsidered and possibly moved 1o the
“right” cluster (the one whose centroid is closest to the
point)

A ... but the resulting solution is still not guaranteed
to be optimal.
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A quest for optimalityeee

A s it possible to design a truly optimal
clustering algorithm?

O No, exhaustive enumeration of all possible
partitions is not an admissible answer ;)
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