Hierarchical Clustering

Isabella Cattinelli

cattinelli@dsi.unimi.it

2

Introduction to the HC paradigm

... forget about partitional methods;)

What HC is

- ▲ In brief, HC algorithms build a whole hierarchy of clustering solutions
 - □ Solution at level k is a refinement of solution at level k-1
- Two main classes of HC approaches:
 - Agglomerative: solution at level k is obtained from solution at level k-1 by merging two clusters
 - Divisive: solution at level k is obtained from solution at level k-1 by splitting a cluster into two parts
 - Less used because of computational load

Agglomerative HC

- 1. At start, each input pattern is assigned to a singleton cluster
- At each step, the two closest clusters are merged into one
 - So the number of clusters is decreased by one at each step
- 3. At the last step, only one cluster is obtained

Dendrograms

▲ The clustering process is represented by a dendrogram:

Dendrograms

- ▲ The resulting dendrogram has to be cut at some level to get the final clustering:
 - Cut criterion: number of desired clusters, or threshold on some features of resulting clusters

Computing dissimilarities

Dissimilarity between pairs of single points

- Different distances/indices of dissimilarity...
 - □ E.g. euclidean, city-block, correlation...
- \wedge ... and agglomeration criteria: Merge clusters C_i and C_i such that diss(i, j) is minimum
 - □ Single linkage:
 - \land diss(i,j) = min d(x, y), where x is in C_i , y in cluster C_i
 - □ Complete linkage:
 - \wedge diss(i,j) = max d(x, y), where x is in cluster C_i , y in cluster C_j
 - □ Group Average and Weighted Average Linkage:

$$\text{A diss(i, j)} = \sum_{x \in C_i} \sum_{y \in C_j} w_i w_j d(x, y) / \sum_{x \in C_i} \sum_{y \in C_j} w_i w_j$$

$$\text{GA: } w_i = w_j = 1$$

$$\text{WA: } w_i = n_i, \ w_i = n_i$$

Dissimilarity between pairs of clusters

Computing dissimilarities (cont.)

Dissimilarity between pairs of clusters

- Other agglomeration criteria: Merge clusters C_i and C_j such that diss(i, j) is minimum
 - Centroid Linkage:
 - \triangle diss(i, i) = d(μ_i , μ_i)
 - Median Linkage:
 - \triangle diss(i, j) = d(center_i, center_j), where each center_i is the average of the centers of the clusters composing C_i
 - Ward's Method:
 - \wedge diss(i, j) = increase in the total error sum of squares (ESS) due to the merging of C_i and C_i
- Single, complete, and average linkage: graph methods
 - All points in clusters are considered
- Centroid, median, and Ward's linkage: geometric methods
 - Clusters are summed up by their centers

Sauared Euclidean distances should be used

Ward's criterion

- Also known as minimum variance method
- Each merging step minimizes the increase in the total ESS:

$$ESS_i = \sum_{x \in C_i} (x - \mu_i)^2 \qquad ESS = \sum_i ESS_i$$

 \square When merging clusters C_i and C_j , the increase in the total ESS is

$$\Delta ESS = ESS_{i,j} - ESS_i - ESS_j$$

- Spherical, compact clusters are obtained
- A The solution at each level k is an <u>approximation</u> to the optimal solution for that level (the one minimizing ESS)

The dissimilarity matrix

- A HC algorithms operate on a dissimilarity matrix:
 - For each pair of existant clusters, their dissimilarity value is stored
- When clusters C_i and C_j are merged, only dissimilarities for the new resulting cluster have to be computed
 - The rest of the matrix is left untouched

The Lance-Williams formula

- Used for iterative implementation
- A The dissimilarity value between newly formed cluster $\{C_i, C_j\}$ and every other cluster C_k is computed as

$$diss(k,(i,j)) = \alpha_i diss(k,i) + \alpha_j diss(k,j) + \beta diss(i,j) + \gamma |diss(k,i) - diss(k,j)|$$

- Only values already stored in the dissimilarity matrix are used
- Different sets of coefficients correspond to different criteria

12

The Lance-Williams formula - coefficients

$$diss(k,(i,j)) = \alpha_i diss(k,i) + \alpha_j diss(k,j) + \beta diss(i,j) + \gamma |diss(k,i) - diss(k,j)|$$

Criterion	$lpha_{i}$	$lpha_{ m j}$	β	γ
Single Link.	1/2	<i>1</i> / ₂	0	-1/2
Complete Link.	<i>1</i> / ₂	<i>V</i> ₂	0	1/2
Group Avg.	n _i /(n _i +n _j)	$n_j/(n_i+n_j)$	0	0
Weighted Avg.	<i>1</i> / ₂	1/2	0	0
Centroid	$n_i/(n_i+n_j)$	$n_j/(n_i+n_j)$	$-n_i n_j / (n_i + n_j)^2$	0
Median	1/2	1/2	- 1/4	0
Ward	$(n_i+n_k)/(n_i+n_j+n_k)$	$(n_j + n_k)/(n_i + n_j + n_k)$	$-n_k/(n_i+n_j+n_k)$	0

e.g. for single linkage... diss(k, (i,j)) = min(diss(k, i), diss(k, j))

The Lance-Williams Formula and Single Linkage

Criterion	α_{i}	α_{j}	β	γ
Single Linkage	1/2	1/2	0	-1/2

$$diss(k,(i,j)) = \alpha_i diss(k,i) + \alpha_j diss(k,j) + \beta diss(i,j) + \gamma |diss(k,i) - diss(k,j)|$$

$$diss(k,(i,j)) = \frac{1}{2}diss(k,i) + \frac{1}{2}diss(k,j) + \frac{1}{2}diss(k,j) + \frac{1}{2}|diss(k,i) - diss(k,j)|$$

$$diss(k,i) < diss(k,j)$$

$$diss(k,(i,j)) = \frac{1}{2}diss(k,i) + \frac{1}{2}diss(k,j) + \frac{1}{2}diss(k,j) + \frac{1}{2}diss(k,j)$$

$$diss(k,(i,j)) = \frac{1}{2} diss(k,i) + \frac{1}{2} diss(k,j) + \frac{1}{2} diss(k,j) + \frac{1}{2} diss(k,j) + \frac{1}{2} diss(k,j)$$

... and therefore: diss(k, (i,j)) = min(diss(k, i), diss(k, j))

The Lance-Williams Formula and Single Linkage

```
... and therefore:
diss(k, (i,j)) = min(diss(k, i), diss(k, j))
```


Pros and cons of HC algorithms

A Pros:

- □ Indipendence from initialization
- No need to specify a desired number of clusters from the beginning

▲ Cons:

- Computational complexity at least O(N²)
- Sensitivity to outliers
- No reconsideration of possibly misclassified points
- Possibility of inversion phenomena and multiple solutions

Inversions

We have an inversion when the sequence of dissimilarity values selected by the HC algorithm is nonmonotonic

Inversions may be produced when using the centroid or the median criterion

« This problem "certainly is not widely known" »
(van der Kloot et al., 2005)

Dissimilarity matrix

« This problem "certainly is not widely known" »
(van der Kloot et al., 2005)

Dissimilarity matrix

« This problem "certainly is not widely known" »
(van der Kloot et al., 2005)

Dissimilarity matrix

« This problem "certainly is not widely known" »
(van der Kloot et al., 2005)

Dissimilarity matrix

7.5 7.5

To make a long story short:

Different permutations of the input data can produce different clustering solutions!

- More than one pair of objects having minimum distance: ties
- The first one according to the given input order is selected
 - In other words, the non-uniqueness problem is usually not taken into account, but:
- It is highly desirable to have a unique clustering solution for the same dataset!
 - Replicability of results
 - Different solutions may lead to different conclusions

Non-uniqueness: effects

- Example of application: metanalysis of neuroimaging data
 - Input: activation coordinates on the cerebral volume
 - Output: set of clusters whose functional role has to be determined
 - Running an HC algorithm on a real dataset actually produced different solutions depending on input data order!

23

A quest for uniqueness

Work in progress...

Quest for uniqueness: first approach

- Given a set of minimal distance pairs, select for merging the "best" one
 - How to define best?
- A Greedy approach: the choice of the best pair at step k does not guarantee the solution to be the best one overall

- Note: we are not really interested in the quality of the whole dendrogram
 - We want the final clustering after cutting the dendrogram to be the best one!

Quest for uniqueness: second approach

- Let us develop all the possible dendrograms for a dataset, and look for the best solution they provide
 - At each step, for each minimal distance pair, we generate the dendrogram resulting from the choice of that pair
 - But we have a slight problem here... can you guess what it is???
- Note: not all minimal distance pairs are equal
 - □ Some are critical, some are not

Quest for uniqueness: third approach

- Let us develop all the possible all significantly different dendrograms for a dataset, and look for the best solution they provide
 - At each step, for each <u>critical pair</u>, we generate the dendrogram resulting from the choice of that pair
 - First, noncritical pairs are merged, in a random order
- ▲ The number of dendrograms to be handled drops...
 - ... but not enough!
 - E.g. on a dataset of about 1200 points, after 100,000 dendrograms (and a couple of days of computing) MATLAB ran out of memory

27

All critical pairs are equal, but some critical pairs are more equal than others

Equivalent pairs

Nonequivalent pairs

- Equivalent pairs produce equivalent trees...
- How to check for equivalence?
 - If in both scenarios, the closest point to the new cluster is the excluded extreme (and vice versa), the two pairs are equivalent

Quest for uniqueness: fourth approach (hopefully, the last one)

- Let us develop all the possible all significantly different all nonequivalent dendrograms for a dataset, and look for the best solution they provide
 - At each step, for each <u>nonequivalent pair</u>, we generate the dendrogram resulting from the choice of that pair
 - First, noncritical pairs are merged, in a random order
- Finally, the problem seems treatable!
 - E.g. we go from an out of memory failure to the production of 128 dendrograms
 - Note: we get something more than just nonequivalent dendrograms (due to some extreme configuration of data)

Quest for uniqueness: finding the best solution

- After getting the set of nonequivalent dendrograms, we cut all of them using the same criterion
 - And we get the corresponding final clusterings, one for each dendrogram
- We define the best clustering to be the one having maximum between-cluster variance:

$$bcv = \sum_{i} n_i (m_i - M)^2 \qquad \begin{array}{l} \text{n_i = cardinality of cluster C_i} \\ \text{m_i = mean of cluster C_i} \\ \text{M = grand mean} \end{array}$$

- ... which means that clusters are well-separated
- Therefore the whole process gives us a unique clustering, independent from input order, up to equivalences

A quest for optimality???

HC algorithms are not optimal

- We would like to have a method that gives us a hierarchy of partitions P_k , each of them optimal wrt the objective function (e.g. for Ward's method, $V(P_k) = \sum_{i=1...k} ESS_i$)
- But even if the single merging steps are optimal, the resulting partitions are not necessarily optimal

A quest for optimality???

♠ HC algorithms can produce misclassifications:

The marked blue point is closer to the centroid of the red cluster than to the centroid of the blue cluster it belongs to

- These may be corrected by employing k-means as a postprocessing step...
 - Starting from the clusters produced by the HC algorithm, each point is reconsidered and possibly moved to the "right" cluster (the one whose centroid is closest to the point)
- ... but the resulting solution is still not guaranteed to be optimal.

A quest for optimality???

- ▲ Is it possible to design a truly optimal clustering algorithm?
 - □ No, exhaustive enumeration of all possible partitions is not an admissible answer;)

References

- Reviews:
 - R.M. Cormack. A review of classification. Journal of the Royal Statistical Society 134(3): 321-367, 1971.
 - F. Murtagh. A Survey of Recent Advances in Hierarchical Clustering Algorithms. The computer Journal 26(4):354-359, 1983.
 - R. Xu and D.C.Wunsch. Clustering. Wiley, 2008.
- ▲ J. H. Jr.Ward. Hierarchical grouping to optimize an objective function. Journal of the American StatisticalAssociation, 58:236–244, 1963.
- A B. J. T. Morgan and A. P. G. Ray. Non-uniqueness and inversions in cluster analysis. Applied Statistics,44(1):117–134, 1995.
- For running HC algorithms in MATLAB: linkage.m in stats toolbox