

SOM

(feature mapping)

Iuri Frosio frosio@dsi.unimi.it

In questa lezione...

- Review: clustering e discriminant analysis;
- Review: clustering parametrico non supervisionato (K-means);
- Reti neurali per il feature mapping non supervisionato (SOM).

Classificazione (clustering)

Descrizione numerica dell'oggetto:

altezza, colore, forma, posizione,

SPAZIO DEI CAMPIONI / DELLE CARATTERISTICHE

Classificatore

Classificazione dell'oggetto:

(classe A, classe B, ...)

SPAZIO DELLE CLASSI

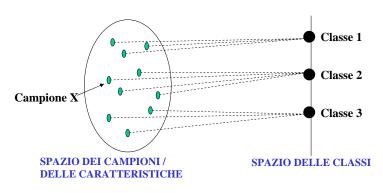
A cosa serve la classificazione?

- Compressione dati (telecomunicazioni, immagini, ...);
- segmentazione (bio)immagini;
- riconoscimento automatico;
- controllo robot;
- pattern recognition;
- ricostruzione superfici;
- •

Classificazione

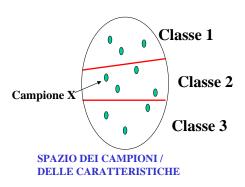
Un'interpretazione geometrica:

Mappatura dello spazio dei campioni nello spazio delle classi.



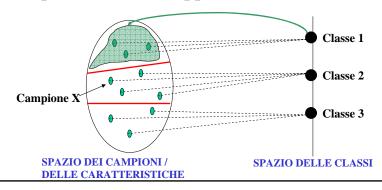
Classificazione

Un'altra interpretazione geometrica: Partizione dello spazio dei campioni.



Osservazione

• La classificazione è un'operazione *non reversibile*, per cui la trasformazione inversa sarà possibile solo con una predeterminata approssimazione.



Scopo dell'addestramento

Scopo dell'algoritmo di addestramento è di far apprendere al classificatore la distribuzione statistica dei dati di addestramento in relazione alle classi, con o senza l'aiuto del supervisore.

CLUSTERING

Scopo dell'addestramento

Una volta effettuato l'addestramento, il solo **classificatore** può essere utilizzato per la classificazione di nuovi dati, non presentati in fase di addestramento (*proprietà di generalizzazione*).

DISCRIMINANT ANALYSIS

Riassunto

- Campioni da classificare;
- (Descrizione numerica dei campioni);
 - (Normalizzazione);
 - Addestramento del classificatore ~ clustering;
 - Nuovi campioni da classificare;
- Riconoscimento di nuovi campioni ~ generalizzazione ~ discriminant analysis.

Addestramento supervisionato / non supervisionato.

- <u>Addestramento supervisionato</u> (in presenza di supervisore):
 - i dati di addestramento sono già divisi in classi di appartenenza.
- <u>Addestramento non supervisionato</u> (non è necessaria la presenza del supervisore):
 - il sistema classificatore + algoritmo di classificazione effettua in maniera automatica una partizione dei dati di addestramento.

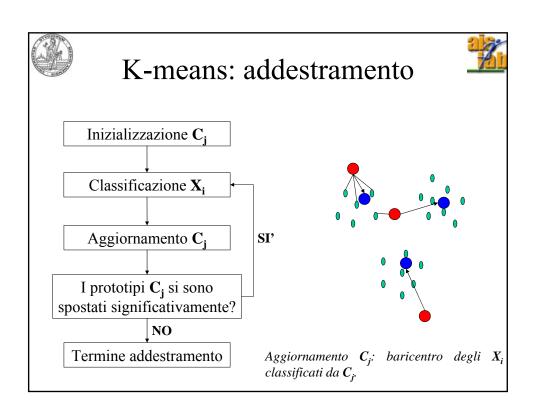
IL SUPERVISORE PUO' EFFETTUARE CONTROLLI A POSTERIORI PER VERIFICARE CHE LA PARTIZIONE OTTENUTA SIA CORRETTA.

In questa lezione...

- Review: clustering e discriminant analysis;
- Review: clustering parametrico non supervisionato (K-means);
- Reti neurali per il feature mapping non supervisionato (SOM).

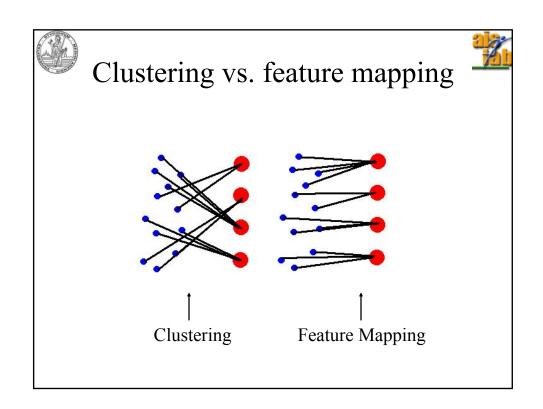
K-means: framework

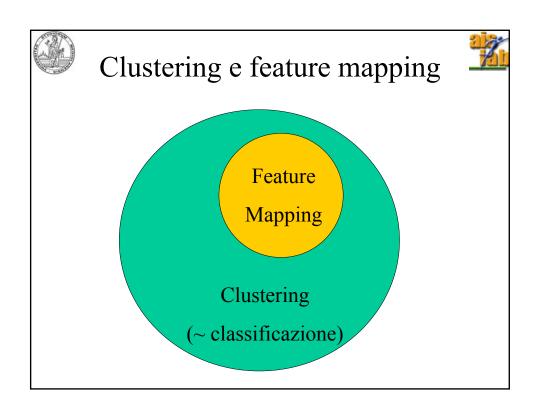
- Siano X₁, ..., X_D i dati di addestramento (per semplicità, definiti in R²);
- siano C_1 , ..., C_K i *prototipi* di K classi, definiti anch'essi in R^2 ; ogni *prototipo* identifica il baricentro della classe corrispondente;
- lo schema di classificazione adottato sia il seguente: " X_i appartiene a C_j se e solo se C_j è il prototipo più vicino a X_i ";
- l'algoritmo di addestramento permette di determinare le posizioni dei *prototipi* C_j mediante successive approssimazioni.



In questa lezione...

- Review: clustering e discriminant analysis;
- Review: clustering parametrico non supervisionato (K-means);
- Reti neurali per il feature mapping non supervisionato (SOM).



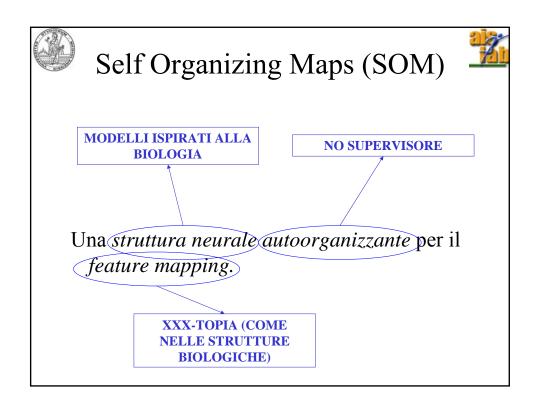


Feature mapping

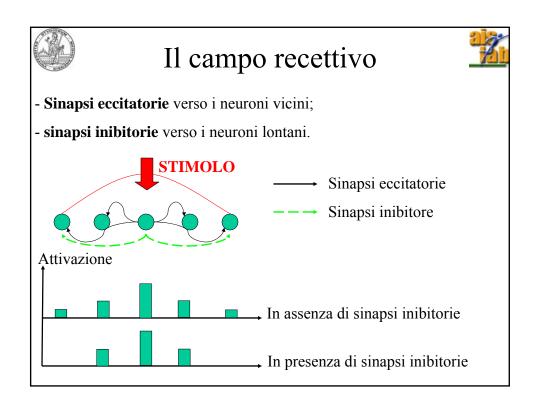
Con il Feature Mapping si dà importanza alla posizione dei prototipi (xxx-topia, Homunculus sensitivo);

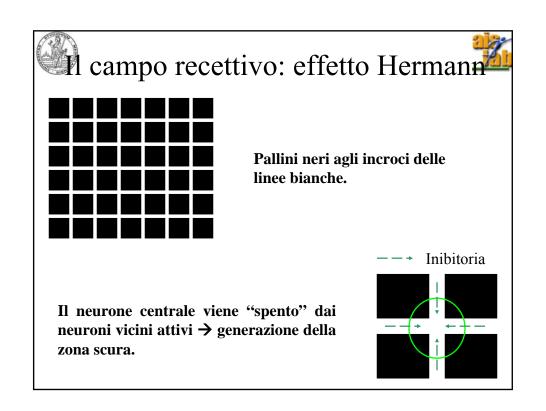
a uscite contigue corrispondono configurazioni d'ingresso contigue;

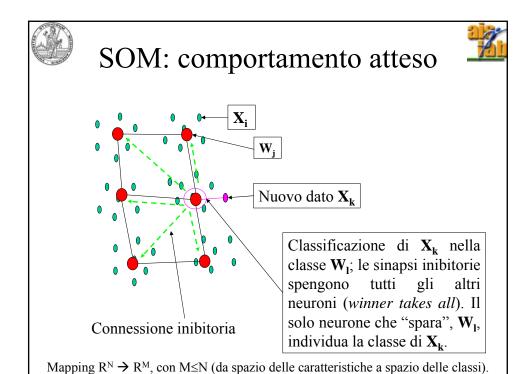
il classificatore opera una trasformazione tra lo spazio degli ingressi e lo spazio delle uscite (categorie) che preserva le relazioni di vicinanza tra i vari elementi.



COMPETITIVE LEARNING: es. self organizing map – clustering e feature mapping nell'addestramento non è necessario dare le "uscite desiderate" - "spara" un solo neurone per volta (grandmother cell)

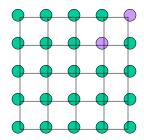






SOM: organizzazione topologica

I neuroni della SOM sono ordinati topologicamente nello spazio dei neuroni (es. griglia ordinata in R²). In tale spazio viene definita la distanza tra neuroni.

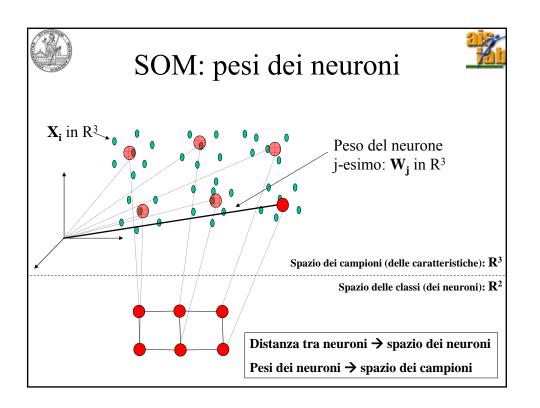


La distanza tra i due neuroni (nello spazio dei neuroni) è:

$$\sqrt{(\Delta x^2 + \Delta y^2)} = 1.4142$$
 [Metrica Euclidea]

$$|\Delta x| + |\Delta y| = 2$$
 [Manhattan]

...



SOM: addestramento

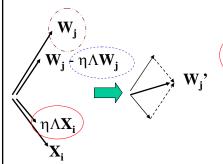
- Siano $X_1, ..., X_D$ i dati di addestramento (per semplicità, definiti in R^3);
- siano W₁, ..., W_K i prototipi di K classi, definiti anch'essi in R³; ogni prototipo identifica il peso di un neurone della SOM (W_i);
- lo schema di classificazione adottato sia il seguente: "**X**_i appartiene a **W**_j se e solo se **W**_j è il *prototipo* (*peso del neurone*) più vicino a **X**_i, nello spazio dei campioni (delle caratteristiche, R³)";
- l'algoritmo di addestramento permette di determinare i pesi dei neuroni (le posizioni dei prototipi) W_j mediante successive approssimazioni;
- L'algoritmo di addestramento tiene conto della topologia dei neuroni nello spazio dei neuroni (*feature mapping*).

SOM: addestramento

- All'interazione k- esima, si presenti alla rete il dato X_i;
- unità vincente (classificazione): $j* t.c. ||\mathbf{W_{j*}} - \mathbf{X_i}|| = \min_i ||\mathbf{W_i} - \mathbf{X_i}||$
- uscita: $-u_{j*} = 1$, $u_{i} = 0$ se j!=j* UNITA' VINCENTE (CLASSIFICAZIONE)
- competitive Learning Rule (SOM, Kohonen '81):
 - $-\Delta \mathbf{W_j} = \eta_k \Lambda_k(j, j^*) (\mathbf{X_i} \mathbf{W_j}) \leftarrow ----- \frac{\text{AGGIORNAMENTO}}{\text{PESI DEI NEURONI}}$
 - $-\Lambda_k(\mathbf{j},\mathbf{j}^*) = \exp(-||\mathbf{r_j} \mathbf{r_{j^*}}||^2 / 2\sigma_k^2)$

FUNZIONE DI VICINATO

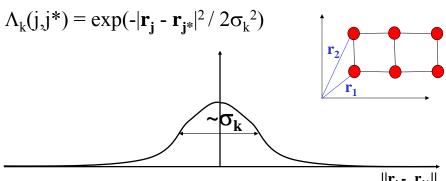
$$\Delta \mathbf{W_j} = \eta_k \Lambda_k(j, j^*) (\mathbf{X_i} - \mathbf{W_j}) \rightarrow \mathbf{W_j}' = \mathbf{W_j} + \eta_k \Lambda_k \mathbf{X_i} + \eta_k \Lambda_k \mathbf{W_j}$$



Il peso W_j del neurone vincente j si sposta verso l'ingresso presentato X_i .

 $-\eta W_j$ evita che il peso W_j cresca a dismisura.

Funzione di vicinato



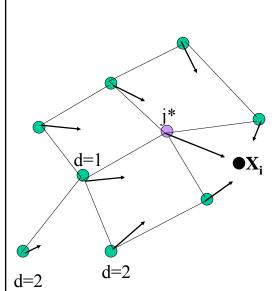
 $\|\mathbf{r}_{i} - \mathbf{r}_{i^{*}}\|$

Neurone lontano dal neurone vincente: $\Lambda_k(j,j^*) \rightarrow 0$.

Aggiornamento del neurone: $\mathbf{w'}=\mathbf{w}+\eta_k\Lambda_k(\mathbf{X_i}-\mathbf{w_i})\rightarrow 0$.

Tutti i pesi dei neuroni sono modificati alla presentazione di X_i .

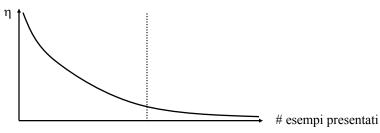
SOM: addestramento



In definitiva:

- -Il neurone vincente si sposta X_{i} verso trascinando i vicini.
- L'ordinamento dei pesi dei neuroni nello spazio dei dati simile all'ordinamento dei neuroni nello spazio dei neuroni.

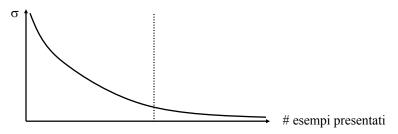
Learning rate



$$\Delta \mathbf{w_j} = \eta_k \; \Lambda_k(j,j^*) \; (\mathbf{X_i} - \mathbf{w_j}) \rightarrow \mathbf{w'} = \mathbf{w} + \eta_k \Lambda_k \mathbf{X_i} - \eta_k \Lambda_k \mathbf{w_i}$$

Procedendo nell'addestramento della rete, i pesi dei neuroni perdono la possibilità di muoversi.

Neighborhood distance



$$\Delta \mathbf{w_j} = \eta_k \; \Lambda_k(j,j^*) \; (\mathbf{X_i} - \mathbf{w_j}) \rightarrow \mathbf{w'} = \mathbf{w} + \eta_k \Lambda_k \mathbf{X_i} - \eta_k \Lambda_k \mathbf{w}$$
$$\Lambda_k(j,j^*) = \exp(-||\mathbf{r_j} - \mathbf{r_{j^*}}||^2 / 2\sigma_k^2)$$

Procedendo nell'addestramento della rete, un neurone perde la capacità di spostare i suoi vicini.

SOM: addestramento

- L'addestramento avviene presentando alla rete i vettori (dati) $\mathbf{X_i} \epsilon R^N$ per un numero di epoche E;
- Per ogni esempio presentato $\mathbf{X_i}$ vengono aggiornati i pesi dei neuroni della rete;
- Durante l'addestramento il learning rate η e la neighborhood distance σ decrescono;
- Se presentiamo alla rete un nuovo esempio $\mathbf{X_i}$ alla fine dell'addestramento, la rete lo classifica (neurone vincente);
- Categorie simili sono rappresentate da neuroni vicini (feature mapping).

- 1) ORDERING PHASE: η , σ grandi; ogni neurone può spostarsi molto verso l'ingresso X_i ; il neurone trascina con sé i vicini; in tale fase la rete si dispiega nello spazio R^N ;
- 2) TUNING PHASE: η, σ piccoli; ogni neurone si muove da solo; è una fase di raffinamento in cui vengono raggiunti con precisione i centri dei cluster.

SOM: addestramento

Problemi:

- -E' necessario scegliere η , σ , numero di epoche, durata della ordering phase \rightarrow metodi empirici(!);
- Scelta della topologia e del numero di neuroni corretti;
- I dati di addestramento devono presentare una certa ridondanza;
- Unità "morte";

SOM: addestramento

Parametri caratteristici della SOM:

- # neuroni, $\eta(t)$, $\sigma(t)$;
- Durata ordering & tuning phase, epoche;
- Topologia della SOM (neuroni in R^M);
- Spazio dei dati \mathbf{q} ($\mathbb{R}^{\mathbb{N}}$) e dei pesi \mathbf{w} ;

SOM per ordinamento

Spazio dei dati $\mathbf{X_i}$ (e dei pesi \mathbf{w}): \mathbb{R}^3

Topologia della SOM : circolare

Parametri di addestramento : # neuroni, $\eta(t)$, $\sigma(t)$, ...

Movie here

SOM per ricostruzione 3D

Spazio dei dati \mathbf{q} (e dei pesi \mathbf{w}): \mathbb{R}^3

Topologia della SOM : griglia 2D

Parametri di addestramento : # neuroni = $10x10, 0.5 \rightarrow$

 $0.1 \text{ lin}, 10 \rightarrow 1 \text{ lin}, \dots$

Movie here

SOM per ricostruzione 3d

Problemi:

- Oscillazioni della rete all'inizio dell'addestramento;

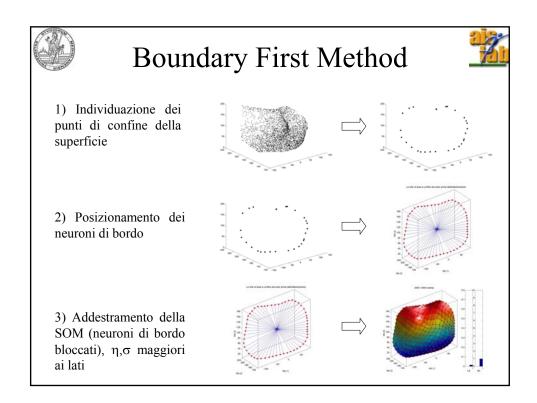
Sol.: Scelta accurata di $\eta(t)$, $\sigma(t)$

- Raggiungimento dei confini della superficie aperta;

Sol.: Boundary First Method + η , σ modificati

- Numero insufficiente di neuroni;

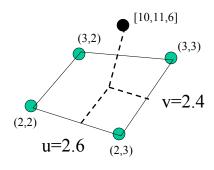
Sol.: Parametrizzazione della points cloud



- Movie here
- Movie here

Parametrizzazione Points Cloud

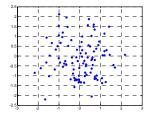
- Ad ogni punto 3D [x,y,z] vengono assegnate le coordinate 2D [u,v] corrispondenti nello spazio 2D della SOM tramite una proiezione (parametrizzazione)

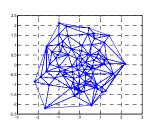


Triangolazione punti in [u,v] (Dealunay)

- Dato un set di punti nello spazio 2D, è possibile trovare un set di triangoli tale per cui (triangolazione di Delaunay):
 - ogni punto si trova al vertice di uno o più triangoli
 - nessun punto si trova all'interno di un triangoli
- Utile in computer graphics.
- In modo più rigoroso:

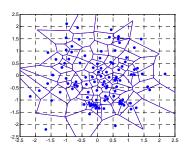
 a Delaunay triangulation for a set P of points in the plane is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P). Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation; they tend to avoid "sliver" triangles.

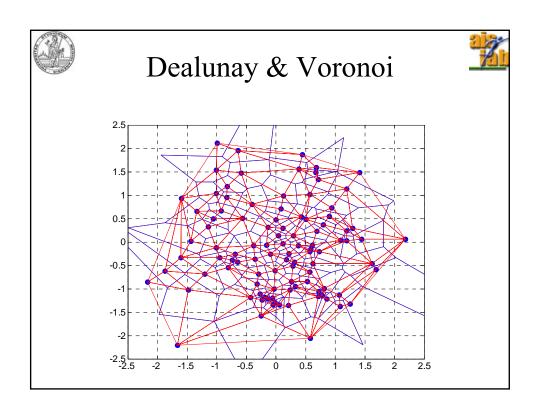


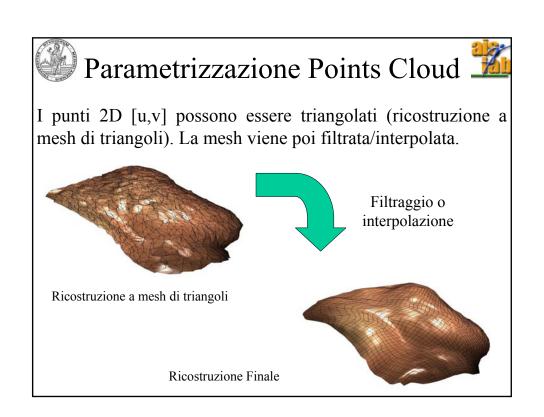


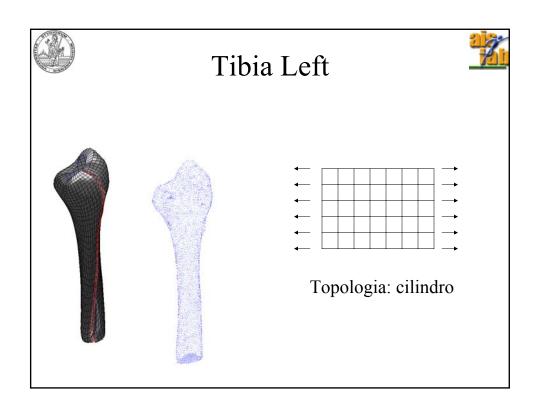
Delaunay e Voronoi

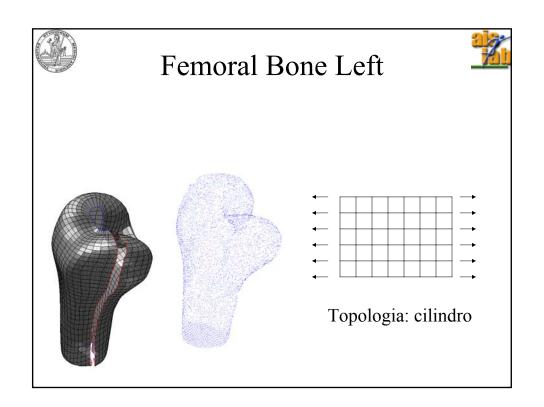
- Duale della triangolazione di Delaunay → Tessellazione di Voronoi.
- Suddivisione "regolare" dello spazio.











Varianti SOM

- SELF CREATING MAP
 - Aggiunta di un neurone:
 - Vicino al neurone vincente con f maggiore;
 - Vicino al neurone con curvatura massima;
- ADAPTIVE RESONANCE THEORY (reti ART);
- SOM SUPERVISIONATE;
- ...

Tesi: Virtual Art / ricostruzione 3D

Ricostruzione tramite SOM di superfici nello spazio 3D dalla topologia complessa:

- Scelta della corretta topologia della SOM;
- Possibilità di usare più SOM (problemi di giunzione);
- Problemi nella generazione della points cloud;

Bibliografia

- J. Hertz, A. Krogh, R. G. Palmer, "Introduction to the theory of neural computation", Santa Fe Institute Editorial Board, 1990
 - Feature mapping & SOM: cap. 9.4