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Abstract. We present an integrated system for automatic acquisition of the human body model and motion
tracking using input from multiple synchronized video streams. The video frames are segmented and the 3D voxel
reconstructions of the human body shape in each frame are computed from the foreground silhouettes. These
reconstructions are then used as input to the model acquisition and tracking algorithms.

The human body model consists of ellipsoids and cylinders and is described using the twists framework resulting
in a non-redundant set of model parameters. Model acquisition starts with a simple body part localization procedure
based on template fitting and growing, which uses prior knowledge of average body part shapes and dimensions.
The initial model is then refined using a Bayesian network that imposes human body proportions onto the body part
size estimates. The tracker is an extended Kalman filter that estimates model parameters based on the measurements
made on the labeled voxel data. A voxel labeling procedure that handles large frame-to-frame displacements was
designed resulting in very robust tracking performance.

Extensive evaluation shows that the system performs very reliably on sequences that include different types of
motion such as walking, sitting, dancing, running and jumping and people of very different body sizes, from a nine
year old girl to a tall adult male.

Keywords: human body model acquisition, motion capture, pose estimation
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1. Introduction

Tracking of the human body, also called motion cap-
ture or posture estimation, is a problem of estimating
the parameters of the human body model (such as joint
angles) from the video data as the position and config-
uration of the tracked body change over time.

A reliable motion capture system would be valu-
able in many applications (Gavrila, 1999; Moeslund
and Granum, 2001). One class of applications are those
where the extracted body model parameters are used di-
rectly, for example to interact with a virtual world, drive
an animated avatar in a video game or for computer
graphics character animation. Another class of applica-
tions use extracted parameters to classify and recognize
people, gestures or motions, such as surveillance sys-
tems, intelligent environments, or advanced user inter-
faces (sign language translation, gesture driven control,
gait, or pose recognition). Finally, the motion param-
eters can be used for motion analysis in applications
such as personalized sports training, choreography, or
clinical studies of orthopedic patients.

Human body tracking algorithms usually assume
that the body model of the tracked person is known
and placed close to the true position in the beginning
of the tracking process. These algorithms then estimate
the model parameters in time to reflect the motion of the
person. For a fully automated motion capture system,
in addition to tracking, the model acquisition problem
needs to be solved. The goal of the model acquisition
is to estimate the parameters of the human body model
that correspond to the specific shape and size of the
tracked person and to place and configure the model to
accurately reflect the position and configuration of the
body in the beginning of the motion capture process.

In this paper we present a fully automated system for
motion capture that includes both the model acquisition
and the motion tracking. While most researchers have
taken the approach of working directly with the image
data, we use 3D voxel reconstructions of the human
body shape at each frame as input to the model acqui-
sition and tracking (Miki¢ et al., 2001). This approach
leads to simple and robust algorithms that take advan-
tage of the unique qualities of voxel data. The price is
an additional preprocessing step where the 3D voxel
reconstructions are computed from the image data—a
process that can be performed in real-time using dedi-
cated hardware.

Section 2 describes the related work and Section 3
gives an overview of the system. The algorithm for

computing 3D voxel reconstructions is presented in
Section 4, the human body model is described in Sec-
tion 5 and the tracking in Section 6. Section 7 describes
the model acquisition and Section 8 shows the results
of the system evaluation. The conclusion follows in
Section 9. Additional details can be found in Mikié
(2002).

2. Related Work

Currently available commercial systems for motion
capture require the subject to wear special markers,
body suits or gloves. In the past few years, the problem
of markerless, unconstrained posture estimation using
only cameras has received much attention from com-
puter vision researchers.

Many existing posture estimation systems require
manual initialization of the model and then perform
tracking. Very few approaches exist where the model
is acquired automatically and in those cases, the per-
son is usually required to perform a set of calibration
movements that identify the body parts to the system
(Kakadiaris and Metaxas, 1998; Cheung et al., 2000).
Once the model is available in the first frame, a very
common approach to tracking is to perform iterations
of four steps until good agreement between the model
and the data is achieved: prediction of the model posi-
tion in the next frame, projection of the model to the
image plane(s), comparison of the projection with the
data in the new frame and adjustment of the model
position based on this comparison.

Algorithms have been developed that take input
from one (Rehg and Kanade, 1995; Hunter, 1999;
Bregler, 1997; DiFranco et al., 2001; Howe et al.,
1999; Wachter and Nagel, 1999; Sminchiescu and
Triggs, 2001; Ioffe and Forsyth, 2001) or multiple
cameras (Kakadiaris and Metaxas, 1996; Bregler and
Malik, 1998; Gavrila and Davis, 1996; Delamarre and
Faugeras, 2001; Yamamoto et al., 1998; Hilton, 1999;
Jung and Wohn, 1997). Rehg and Kanade (1995) have
developed a system for tracking a 3D articulated model
of a hand based on a layered template representation
of self-occlusions. Hunter (1999) and Hunter et al.
(1997) developed an algorithm based on the Expec-
tation Maximization (EM) procedure that assigns fore-
ground pixels to body parts and then updates body
part positions to explain the data. An extra process-
ing step, based on virtual work static equilibrium con-
ditions, integrates object kinematic structure into the
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EM procedure, guaranteeing that the resulting posture
is kinematically valid. An algorithm using products of
exponential maps to relate the parameters of the hu-
man body model to the optical flow measurements was
described by Bregler and Malik (1998). Wren (2000)
designed the DYNA system, driven by 2D blob features
from multiple cameras that are probabilistically inte-
grated into a 3D human body model. Also, the system
includes a feedback from the 3D body model to the 2D
feature tracking by setting the appropriate prior prob-
abilities using the extended Kalman filter. This frame-
work accounts for ‘behaviors’—the aspects of motion
that cannot be explained by passive physics but rep-
resent purposeful human motion. Gavrila and Davis
(1996) used a human body model composed of tapered
super-quadrics to track (multiple) people in 3D. They
use a constant acceleration kinematic model to pre-
dict positions of body parts in the next frame. Their
locations are then adjusted using the undirected nor-
malized chamfer distance between image contours and
contours of the projected model (in multiple images).
The search is decomposed in stages: they first adjust
positions of the head and the torso, then arms and legs.
Kakadiaris and Metaxas have developed a system for
3D human body model acquisition (1998) and tracking
(1996) using three cameras placed in a mutually or-
thogonal configuration. The person under observation
is requested to perform a set of movements according
to a protocol that incrementally reveals the structure of
the human body. Once the model has been acquired, the
tracking is performed using the physics-based frame-
work (Metaxas and Terzopoulos, 1993). Based on the
expected body position, the difference between the pre-
dicted and actual images is used to calculate forces that
are applied to the model. The dynamics are modeled
using the extended Kalman filter. The tracking result, a
new body pose, is a result of the applied forces acting
on the physics-based model. The problem of occlu-
sions is solved by choosing from the available cameras
those that provide visibility of the part and observabil-
ity of its motion, for every body part at every frame.
Delamarre and Faugeras (2001) describe an algorithm
that computes human body contours based on optical
flow and intensity. Then, forces are applied that attempt
to align the outline of the model to the contours ex-
tracted from the data. This procedure is repeated until
a good agreement is achieved. Deutscher et al. (2000,
2001) developed a system based on the CONDEN-
SATION algorithm (particle filter) (Isard and Blake,
1996). Deutscher introduced a modified particle filter to

handle high dimensional configuration space of human
motion capture. It uses a continuation principle, based
on annealing, to gradually introduce the influence of
narrow peaks in the fitness function. Two image fea-
tures are used in combination: edges and foreground sil-
houettes. Good tracking results are achieved using this
approach.

Promising results have been reported using the depth
data obtained from stereo (Covell et al., 2000; Jojic et
al., 1999; Plankers and Fua, 1999, 2001) for pose esti-
mation. The first attempt at using voxel data obtained
from multiple cameras to estimate body pose has been
reported in Cheung et al. (2000). A simple six-part
body model is fitted to the 3D voxel reconstruction.
The tracking is performed by assigning the voxels in
the new frame to the closest body part from the pre-
vious frame and by recomputing the new position of
the body part based on the voxels assigned to it. This
simple approach does not guarantee that two adjacent
body parts would not drift apart and also can lose track
easily for moderately fast motions.

In the algorithms that work with the data in the image
planes, the 3D body model is repeatedly projected onto
the image planes to be compared against the extracted
image features. A simplified camera model is often
used to enable efficient model projection (Hunter, 1999;
Bregler, 1997). Another problem in working with the
image plane data is that different body parts appear in
different sizes and may be occluded depending on the
relative position of the body to the camera and on the
body pose.

When using 3D voxel reconstructions as input to the
motion capture system, very detailed camera models
can be used, since the computations that use the camera
model can be done off-line and stored in lookup tables.
The voxel data is in the same 3D space as the body
model, therefore, there is no need for repeated projec-
tions of the model to the image space. Also, since the
voxel reconstruction is of the same dimensions as the
real person’s body, the sizes of different body parts are
stable and do not depend on the person’s position and
pose. This allows the design of simple algorithms that
take advantage of our knowledge of average shapes and
sizes of body parts.

3. System Overview

The system flowchart is shown in Fig. 1. The main
components are the 3D voxel reconstruction, model
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Figure 1. The system flowchart.

acquisition and motion tracking. The 3D voxel re-
construction takes multiple synchronized, segmented
video streams and computes the reconstruction of the
shape represented by the foreground pixels. The system
computes the volume of interest from the foreground
bounding boxes in each of the camera views. Then,
for each candidate voxel in the volume of interest, it is
checked whether its projections onto each of the im-
age planes coincide with a foreground pixel. If yes,
that voxel is assigned to the reconstruction, otherwise
the voxel is set to zero. The cameras are calibrated,
and calibration parameters are used by the system to
compute the projections of the voxels onto the image
planes.

Model acquisition is performed in two stages. In
the first frame of the sequence, a simple template
fitting and growing procedure is used to locate dif-
ferent body parts. This procedure takes advantage of
the prior knowledge of average sizes and shapes of
different body parts. This initial model is then re-
fined using a Bayesian network that incorporates the
knowledge of human body proportions into the esti-
mates of body part sizes. This procedure converges
rapidly.

Finally, the tracking procedure executes the predict-
update cycle at each frame. Using the prediction of
the model position and configuration from the previ-

EKF
prediction

EKF update

ous frame, the voxels in the new frame are assigned
to one of the body parts. Measurements of locations
of specific points on the body are extracted from the
labeled voxels and a Kalman filter is used to adjust
the model position and configuration to best fit the ex-
tracted measurements. The voxel labeling procedure
combines template fitting and distance minimizing
approaches. This algorithm can handle large frame-
to-frame displacements and results in robust tracking
performance.

The human body model used in this project is de-
scribed using the twists framework developed in the
robotics community (Murray et al., 1993). In this
formulation, the constraints that ensure kinematically
valid postures allowed by the degrees of freedom in
the joints and the connectedness between specific body
parts are incorporated into the model. This results in
the non-redundant set of model parameters and in the
simple and stable tracking algorithm, since there is no
need to impose these constraints during the tracking
process.

4. 3D Voxel Reconstruction

To compute the voxel reconstruction, the camera im-
ages are first segmented using the algorithm described
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Figure 2. 3D voxel reconstruction: (a) original input images, (b) extracted 2D silhouettes, (c) two views of the resulting 3D reconstruction at
voxel size of 50 mm and (d) two views of the 3D reconstruction at voxel size of 25 mm.

in Horprasert et al. (1999) which eliminates shadows
and highlights and produces good quality silhouettes.
Based on the centroids and bounding boxes of the 2D
silhouettes, a bounding volume of the person is com-
puted. Cameras are calibrated using Tsai’s algorithm
(Tsai, 1987).

Reconstructing a 3D shape using silhouettes from
multiple images is called voxel carving or shape from
silhouettes. Octree (Szeliski, 1993) is one of the best
known approaches to voxel carving. The volume of
interest is first represented by one cube, which is pro-
gressively subdivided into eight subcubes. Once it is
determined that a subcube is entirely inside or entirely
outside the 3D reconstruction, its subdivision is
stopped. Cubes are organized in a tree, and once all
the leaves stop dividing, the tree gives an efficient rep-
resentation of the 3D shape. The more straightforward
approach is to check for each voxel if it is consistent
with all silhouettes. With several clever speed-up meth-
ods, this approach is described in Cheung et al. (2000).
In this system, the person is known to always be in-
side a predetermined volume of interest. A projection
of each voxel in that volume onto each of the image
planes is precomputed and stored in a lookup table.
Then, at runtime, the process of checking whether the

voxel is consistent with a 2D silhouette is very fast
since the use of the lookup table eliminates most of the
necessary computations.

Our goal is to allow a person unconstrained move-
mentin alarge space by using multiple pan-tilt cameras.
Therefore, designing a lookup table that maps voxels
to pixels in each camera image is not practical. Instead,
we pre-compute a lookup table that maps points from
undistorted sensor-plane coordinates (divided by fo-
cal length and quantized) in Tsai’s model to the image
pixels. Then, the only computation that is performed at
runtime is mapping from world coordinates to undis-
torted sensor-plane coordinates. A voxel is uniformly
sampled and included in the 3D reconstruction if the
majority of the sample points agree with all image sil-
houettes. Voxel size is chosen by the user. An example
frame is shown in Fig. 2 with reconstruction at two
resolutions.

The equations are given below, where Xy is the
voxel’s world coordinate, X. is its coordinate in the
camera coordinate system, X, and Y, are undistorted
sensor-plane coordinates, X4 and Yy are distorted (true)
sensor-plane coordinates and Xy and Y are pixel
coordinates. The lookup table is fixed for a camera
regardless of its orientation (would work for a pan/tilt
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camera also—only rotation matrix R and a translation
vector T change in this case).

Lookup table computations: Run-time computations:

X = Xa (1451 (X3 + 7))
Yo=Ya (144 (X3 +77))
X¢ =d; ' Xasy + Cx
Ye=d;'Yq+Cy

(v z) = (%, 5)

5. Human Body Model

In designing a robust motion capture system that pro-
duces kinematically valid posture estimates, the choice
of the human body modeling framework is critical.
Valid configurations of the model are defined by a
number of constraints that can be incorporated into the
model itself or imposed during tracking. It is desir-
able to incorporate as many constraints as possible into
the model, since that results in a more robust and stable
tracking performance. However, it is also desirable that
the relationship between the model parameters and lo-
cations of specific points on the body be simple, since it
represents the measurement equation of the Kalman fil-
ter. The twists framework (Murray et al., 1993) for de-
scribing kinematic chains satisfies both requirements.
The model is captured with a non-redundant set of pa-
rameters (i.e. with most of the constraints incorporated
into the model), and the relationship between the model
parameters and the locations of specific points on the
body is simple.

5.1. Twists and the Product of Exponentials

Formula for Kinematic Chains

Let us consider a rotation of a rigid object about a fixed
axis. Let the unit vector along the axis of rotation be
w € N> and q € N3 be a point on the axis. Assuming
that the object rotates with unit velocity, the velocity of
a point p(¢) on the object is:

p(t) = w x (p(t) — q) (1
This can be rewritten in homogeneous coordinates as:

HElra

p=E£p

o

2

where p = [p 1]7 is a homogeneous coordinate of the
point p, and w X X = WX, Vx € R, ie.,

0 —w3 w7
w= w3 0 —wq (3)
—w? w1 0

and

£ W —wXxq @w v @
1o 0 1o o
is defined as a twist associated with the rotation about

the axis defined by w and q. The solution to the differ-
ential Eq. (1) is:

p(1) = ¢¥'p(0) (5)

e isthe mapping (the exponential map associated with
the twist £) from the initial location of a point p to
its new location after rotating ¢ radians about the axis
defined by w and q. It can be shown that

M e — e®  (I-e“")w x V) + wwlvo
0 1
(6)
where
- 2
o0 W o w
e’ =1+ ——sin(|lw||0) + ——= (1 — cos([w]|))
wll lwll
(7

is a rotation matrix associated with the rotation of 6
radians about an axis w. If we have an open kinematic
chain with n axes of rotation, it can be shown that:

gp(0) = %% e80g,(0) (8)

where gp(0) is the rigid body transformation between
the base of the chain and a point on the last link of the
chain, in the configuration described by the n angles
0=1[6, 6, - 6,17; gp(0) represents the rigid body
transformation between the same points for a reference
configuration of the chain. Equation (8) is called the
product of exponentials formula for an open kinematic
chain and it can be shown that it is independent of the
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Figure 3. Articulated body model. Sixteen axes of rotation (marked by circled numbers) in body joints are modeled using twists relative to
the torso-centered coordinate system. To describe an axis of rotation, a unit vector along the axis and a coordinate of a point on the axis in the
“initial” position of the body are needed. As initial position, we chose the one where legs and arms are straight and arms are pointing away from
the body as shown in the figure. Dimensions of body parts are determined in the initialization procedure and are held fixed thereafter. Body part
dimensions are denoted by A; subscript refers to the body part number and superscript to dimension order: 0 is for the smallest and 2 for the
largest of the three. For all body parts except the torso, the two smaller dimensions are set to be equal.

order in which the rotations are performed. The angles
are numbered going from the chain base toward the last
link.

5.2.  Twist-Based Human Body Model

The articulated body model we use is shown in Fig. 3.
It consists of five open kinematic chains: torso-head,
torso-left arm, torso-right arm, torso-left leg and torso-
right leg. Sizes of body parts are denoted as 2)\51),
where i is the body part index, and j is the dimen-
sion order—smallest dimension is O and largest is 2.
For all parts except torso, the two smaller dimensions
are set to be equal to the average of the two dimen-
sions estimated during initialization. The positions of
joints are fixed relative to the body part dimensions in
the torso coordinate system (for example, the hip is at
[0 dyrl’ —aP17).

Sixteen axes of rotation are modeled in different
joints. Two in the neck, three in each shoulder, two
in each hip and one in each elbow and knee. We take
the torso-centered coordinate system as the reference.

The range of allowed values is set for each angle. For
example, the rotation in the knee can go from 0 to 180
degrees—the knee cannot bend forward. The rotations
about these axes (relative to the torso) are modeled
using exponential maps, as described in the previous
section.

Even though the axes of rotation change as the body
moves, in the twists formulation the descriptions of
the axes stay fixed and are determined in the initial
body configuration. We chose the configuration with
extended arms and legs, and with arms pointing to the
side of the body (shown in Fig. 3) as the initial body
configuration. In this configuration, all angles 6; are
equal to zero. The figure also shows values for the vec-
tors w; and q; for each axis. The location of a point on
the body with respect to the torso is determined by its
location in the initial configuration and the product of
exponential maps for the axes that affect the position
of that point.

Knowing the dimensions of body parts and using
the body model shown in Fig. 3, the configuration of
the body is completely captured with angles of rotation
about each of the axes (6; — 01¢) and the centroid (ty)
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and orientation (rotation matrix Ry) of the torso. Ori-
entation of the torso is parameterized with a unit vector
wo = [wy w1 w;] and the angle 6y (Eq. (9)). The po-
sition and orientation of the torso are captured using
seven parameters—three coordinates for centroid lo-
cation and four for the orientation. Therefore, the con-
figuration of the described model is fully captured by
23 parameters: 6 — 016, ty, wo and Gy.

N W
Ry = % = T4+ 2 gin(f|lwoll®)
llewoll
@5
+ 5 (1 = cos(llwollb)) 9)
llewoll

The exponential maps associated with each of the
sixteen axes of rotation are easily computed using
Eq. (6) and the vectors w; and q;, foreachi =1, ...,
16 given in Fig. 3.

During the tracking process, locations of specific
points on the body, such as the upper arm centroid or
neck, are used to adjust the model configuration to the
data. To formulate the tracker, it is necessary to derive
the equations that relate locations of these points in the
reference coordinate system to the parameters of the
body model.

For a point p, we define the significant rotations as
those affecting the position of the point—if p is the
wrist, there would be four: three in the shoulder and one
in the elbow. The set of angles 8, contains the angles
associated with the significant rotations. The position
of a point p¢(@,) with respect to the torso is given by
the product of exponential maps corresponding to the
set of significant rotations and of the position of the
point in the initial configuration p¢(0) (in homogeneous
coordinates):

pe(0p) = M; 1Mo ... M;,pe(0), where
0p = {61, 02, ... O} (10)

We denote with My the mapping that corresponds to
the torso position and orientation:

R() t() CQOGO t()
M, = = 11
’ [o 1} [ 0 1] (b

where Ry = e“% and ¢, is the torso centroid. The

homogeneous coordinates of a point with respect to
the world coordinate system can now be expressed as:

Po(Op, wo, to) = Mope(0p) (12)

It follows that the Cartesian coordinate of this point is:

Po(fp) = Ro(R;1 (Riz(. .. Ripupe(0) +t;) + -+ -)
+t) +t) +to (13)

6. Tracking

The algorithm for model acquisition, which estimates
body part sizes and their locations in the beginning of
the sequence, will be presented in the next section. For
now, we will assume that the dimensions of all body
parts and their approximate locations in the beginning
of the sequence are known. For every new frame, the
tracker updates the model position and configuration to
reflect the motion of the tracked person. The algorithm
flowchart is shown in Fig. 4.

The tracker is an extended Kalman filter (EKF) that
estimates the parameters of the model given the mea-
surements extracted from the data. For each new frame,
the prediction of the model position and configura-
tion produced from the previous frame is used to label
the voxel data and compute the locations of the cho-
sen measurement points. Those measurements are then
used by the EKF to update the model parameters and
to produce the prediction for the next frame. In this
section, the extended Kalman filter is formulated and
the voxel labeling algorithm is described.

6.1. The Extended Kalman Filter

The Kalman filter tracker for our problem is defined
by:

x[k + 1] = FlkIx[k] + v[k]
z[k] = hlk, x[k]] + w(k]

(14)

where v[k] and w[k] are sequences of zero-mean,
white, Gaussian noise with covariance matrices Q[k]
and R[k], respectively. The initial state x(0) is assumed
to be Gaussian with mean X[0/0] and covariance
P[0/0]. The 23 parameters of the human body model
described in Section 5 constitute the Kalman filter state,
x (Table 1):

T
x=[tf wl 6 6 - 6] s)
The state transition matrix is set to the identity matrix.

For the measurements of the Kalman filter (contained
in the vector z;) we chose 23 points on the human
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Table 1. State variables.
to Torso centroid 03, 65,07  Shoulder angles (L) 010 Elbow (R) 615  Knee (L)
wo, B0  Torso orientation 64, 6¢,603  Shoulder angles (R) 611,013 Hipangles (L) 6;6  Knee (R)
01, 6> Neck angles 7 Elbow (L) 612,014  Hip angles (R)
Voxel data: new Model Voxel labeling and Model update
frame prediction measurement
computation

A
L

Figure 4. Flow chart of the tracking algorithm. For each new frame, the prediction of the model position is used to label the voxels and compute
the locations of measurement points. The tracker then updates the model parameters to fit the new measurements.

Figure 5. Measurement points.

body which include centroids and endpoints of differ-
ent body parts (Fig. 5 and Table 2):

z=[pf - ph]' (16)

The measurement equation is defined by Eq. (13).
The measurement Jacobian hy[k + 1] [Vih”
[k + 1, X1} g /i) 1s easily computed. For example,
the last row of the measurement Jacobian (for the right
foot) is determined from:

JR
= a—wZ(Rn(Rm(Rmpzz(O) T tie) + tia) + t)

A7)

0p2
dwg

op,  dRy
— = — (RpR4(Ry6p22(0) + t16) + t14) + t12)
009 009
(18)
opn IRy
——~ =R Ri4(R 0 t t
3012 0<8912( 14(R16P22(0) + ti6) + tia)
atyo
19
+ 8912> (19
3[’22 BR14 3t14
— =RyR — (R 0 t —
301s 0 12(8914( 16P22(0) + ti6) + 3914>
(20
pa2 dRy6 ote
— =RoR;sR — 0 — 21
201 oR12 14(8916 p22(0) + 3916) 2D

Usually several iterations of the extended Kalman
filter algorithm are performed in each frame with the
measurement Jacobian updated at every iteration.

6.2. Voxel Labeling

Initially, we labeled the voxels based on the Maha-
lanobis distance from the predicted positions of body
parts (Mikié et al., 2001). However, in many cases, this
led to loss of track. This was due to the fact that labeling
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Table 2. Variables in the measurement vector.

po  Torso centroid Ps

p1  Head centroid Po

p2  Upper arm cent. (L) Pio
P3 Upper arm cent. (R) P11
ps  Thigh cent. (L) P12
ps  Thigh cent. (R) P13
ps  Lower arm cent. (L) P14
p7  Lower arm cent. (R) Pis

Calf cent. (L) pis  Elbow (R)
Calf cent. (R) p17  Fingertips (L)
Neck pis  Fingertips (R)
Shoulder (L) piv  Knee (L)
Shoulder (R) po  Knee (R)

Hip (L) p2 Foot (L)

Hip (R) p  Foot (R)
Elbow (L)

(e) (d)

Figure 6. Head location procedure illustrated in a 2D cross-section. (a) Search for the location of the center of a spherical crust template that
contains the maximum number of surface voxels. Small dashed circle is the prediction of the head pose from the previous frame. It determines
the search area (large dashed circle) for the new head location; (b) the best location is found; (c) voxels that are inside the sphere of a larger
diameter are labeled as belonging to the head; (d) head voxels, the head center and the neck.

based purely on distance cannot produce a good result
when the model prediction is not very close to true po-
sitions of body parts. We have, therefore, designed an
algorithm that takes advantage of the qualities of voxel
data to perform reliable labeling even for very large
frame-to-frame displacements. The head and torso are
located first without relying on the distance from the
prediction, but based on their unique shapes and sizes.
Next, the predictions of limb locations are modified to
preserve joint angles with respect to the new positions
of the head and the torso. This is the key step that en-
ables tracking for large displacements. The limb vox-
els are then labeled based on distance from the mod-
ified predictions. In the reminder of this section, the
detailed description of the voxel labeling algorithm is
given.

Due to its unique shape and size, the head is easi-
est to find and is located first (see Fig. 6). We create
a spherical crust template whose inner and outer di-
ameters correspond to the smallest and largest head
dimensions. The template center location that max-
imizes the number of surface voxels that are inside
the crust is chosen as the head center. Then, the vox-
els that are inside the sphere of the larger diameter,
centered at the chosen head center are labeled as be-
longing to the head, and the true center and orienta-
tion of the head are recomputed from those voxels.
The approximate location of the neck is found as an
average over the head voxels with at least one neigh-
bor a non-head body voxel. Since the prediction of
the head location is available, the search for the head
center can be limited to some neighborhood, which
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Figure 7. Fitting the torso. The torso template is placed so that its
base is at the neck and its main axis passes through the centroid
of non-head voxels. Voxels that are inside the template are used to
calculate the new centroid and the template is rotated to align the
main axis with the new centroid. The process is repeated until the
template stops moving which happens when it is entirely inside the
torso, or is well centered over it.

centroid
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speeds up the search and reduces the likelihood of
error.

The torso is located next. The template of the size
of the person’s torso (with circular cross-section of the
radius equal to the larger of the two torso radii) is placed
with its base at the neck and with its axis going through
the centroid of non-head body voxels. The voxels inside
the template are then used to recompute a new centroid,
and the template is rotated so that its axis passes through
it (Fig. 7). The template is anchored to the neck at the
center of its base at all times. This procedure is repeated
until the template stops moving, which is accomplished
when it is entirely inside the torso or is well centered
over it.

Next, the predictions for the four limbs are modified
to maintain the predicted hip and shoulder angles with
the new torso position, which usually moves them much
closer to the true positions of the limbs. The remaining
voxels are then assigned to the four limbs based on
Mahalanobis distance from these modified positions.
To locate upper arms and thighs, the same fitting pro-
cedure used for the torso is repeated, including only
the appropriate limb voxels, with templates anchored
at the shoulders/hips. When the voxels belonging to
upper arms and thighs are labeled, the remaining vox-
els in each of the limbs are labeled as lower arms or
calves.

Once all the voxels are labeled, the 23 measurement
points are easily computed as centroids or endpoints of
appropriate blobs. The extended Kalman filter tracker
is then used to adjust the model to the measurements
in the new frame and to produce the prediction for the
next frame. Figure 8 illustrates the voxel labeling and
tracking.

7. Model Acquisition

The human body model is chosen a priori and is the
same for all humans. However, the actual sizes of body
parts vary from person to person. Obviously, for each
captured sequence, the initial locations of different
body parts will vary also. Model acquisition, therefore,
involves both locating the body parts and estimating
their true sizes from the data in the beginning of a se-
quence. It is performed in two stages (Fig. 9). First,
rough estimates of body part locations and sizes in the
first frame are generated using a simple template fit-
ting and growing algorithm. In the second stage, this
estimate is refined over several subsequent frames us-
ing a Bayesian network that takes into account both
the measured body dimensions and the known propor-
tions of the human body. During this refinement pro-
cess, the Bayesian network is inserted into the tracking
loop, using the body part size measurements produced
by the voxel labeling to modify the model, which is
then adjusted to best fit the data using the extended
Kalman filter. When the body part sizes stop changing,
the Bayesian network is “turned off” and the regular
tracking continues.

7.1.  Initial Estimation of Body Part Locations
and Sizes

This procedure is similar to the voxel labeling described
in Section 6.2. However, the prediction from the previ-
ous frame does not exist (this is the first frame) and the
sizes of body parts are not known. Therefore, several
modifications and additional steps are needed.

The algorithm illustrated in Fig. 6 is still used to
locate the head, however, the inner and outer diame-
ters of the spherical crust template are now set to the
smallest and largest head diameters we expect to see.
Also, the whole volume has to be searched. Errors are
more likely than during voxel labeling for tracking, but
are still quite rare: in our experiments on 600 frames,
this version located the head correctly in 95% of the
frames.

To locate the torso, the same fitting procedure de-
scribed for voxel labeling is used (Fig. 7), but with
the template of an average sized torso. Then, the torso
template is shrunk to a small predetermined size in its
new location and grown in all dimensions until fur-
ther growth starts including empty voxels. At every
step of the growing, the torso is reoriented as shown
in Fig. 7 to ensure that it is well centered during
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Figure 8. Voxel labeling and tracking. (a) Tracking result in the previous frame; (b) model prediction in the new frame; (c) head and torso
located; (d) limbs moved to preserve the predicted hip and joint angles for the new torso position and orientation; (e) four limbs are labeled
by minimizing the Mahalanobis distance from the limb positions shown in (d); (f) upper arms and thighs are labeled by fitting them inside the
limbs, anchored at the shoulder/hip joints. The remaining limb voxels are labeled as lower arms and calves; (g) the measurement points are

easily computed from the labeled voxels; (h) tracker adjusts the body model to fit the data in the new frame.
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Figure 9. Flow chart of the model acquisition process.
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(a) (k) (<) (d)

(e)

Figure 10. Torso locating procedure illustrated in a 2D cross-section. (a) Initial torso template is fitted to the data; (b) It is then replaced by a
small template of predetermined size which is anchored at the same neck point and oriented the same way; (c) the template is then grown and
reoriented at every step of growing to ensure the growth does not go in the wrong direction; (d) the growing is stopped when it starts including
empty voxels; (e) voxels inside the final template are labeled as belonging to the torso.

growth. In the direction of the legs, the growing will
stop at the place where legs part. The voxels inside
this new template are labeled as belonging to the torso
(Fig. 10).

Next, the four regions belonging to the limbs are
found as the four largest connected regions of remain-
ing voxels. The hip and shoulder joints are located as
the centroids for voxels at the border of the torso and
each of the limbs. Then, the same fitting and growing
procedure described for the torso is repeated for thighs
and upper arms. The lower arms and calves are found
by locating connected components closest to the
identified upper arms and thighs. Figure 11 shows the
described initial body part localization on real voxel
data.

7.2. Model Refinement

The estimates of body part sizes and locations in the
first frame are produced using the algorithm described
in the previous section. It performs robustly, but the
sizes of the torso and the limbs are often very inaccu-
rate and depend on the body pose in the first frame. For
example, if the person is standing with legs straight
and close together, the initial torso will be very long
and include much of the legs. The estimates of the
thigh and calf sizes will be very small. Obviously, an
additional mechanism for estimating true body part
sizes is needed.

In addition to the initial estimate of the body part
sizes and of the person’s height, a general knowledge

of human body proportions is available. To take that im-
portant knowledge into account when reasoning about
body part sizes, we are using Bayesian networks (BNs).
A BN is inserted into the tracking loop (Fig. 12), mod-
ifying the estimates of body part lengths at each new
frame. The EKF tracker adjusts the new model position
and configuration to the data, the voxel labeling proce-
dure provides the measurements in the following frame,
which are then used by the BN to update the estimates
of body part lengths. This procedure is repeated until
the body part lengths stop changing, which is usually
achieved in three to four frames.

The domain knowledge that is useful for designing
the Bayesian network is: the human body is symmetric,
i.e., the corresponding body parts on the left and the
right sides are of the same dimensions; the lengths of
the head, the torso, the thigh and the calf add up to the
person’s height; the proportions of the human body are
known.

The measurements that can be made from the data
are the sizes of all body parts and the person’s height.
The height of the person, the dimensions of the head
and the two width dimensions for all other body parts
are measured quite accurately. The lengths of differ-
ent body parts are the ones that are inaccurately mea-
sured. This is due to the fact that the measured lengths
depend on the borders between body parts, which
are hard to locate accurately. For example, if the leg
is extended, it is very hard to determine where the
thigh ends and the calf begins, but the two width di-
mensions can be very accurately determined from the
data.
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Figure 11. Initial body part localization. (a) 3D voxel reconstruction; (b) head located; (c) initial torso template anchored at the neck centered
over the non-head voxels; (d) start of the torso growing; (e) final result of torso growing with torso voxels labeled; (f) four limbs labeled as four
largest remaining connected components; (g) upper arms and thighs are grown anchored at the shoulders/hips with the same procedure used for

torso; (h) lower arms and calves are fitted to the remaining voxels; (i) all voxels are labeled; (j) current model adjusted to the data using the EKF
to ensure a kinematically valid posture estimate.

Voxel data: Voxel labeling and Estimating body New model
new frame measurement part sizes using the adjustment
computation Bayesian network using the EKF

A 4

Y

Figure 12. Body part size estimation.
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»{ LowerAm

Figure 13. The Bayesian network for estimating body part lengths. Each node represents a length. The leaf nodes are measurements (Thm
represents the new thigh measurement, ThmO reflects the past measurements etc.). Nodes Torso, Thigh, Calf, UpperArm and LowerArm are

random variables that represent true body part lengths.

Taking into account what is known about the human
body and what can be measured from the data, we can
conclude that there is no need to refine our estimates
of the head dimensions or the width dimensions of
other body parts since they can be accurately estimated
from the data, and our knowledge of body proportions
would not be of much help in these cases anyway. How-
ever, for body part lengths, the refinement is neces-
sary and the available prior knowledge is very useful.
Therefore, we have built a Bayesian network shown
in Fig. 13 that estimates the lengths of body parts and
that takes into account what is known and what can be
measured.

Each node represents a continuous random variable.
Leaf nodes Thm, Cm, UAm and LAm are the measure-
ments of the lengths of the thigh, calf and upper and
lower arm in the current frame. Leaf node Height is
the measurement of the person’s height (minus head
length) computed in the first frame. If the person’s
height is significantly smaller than the sum of mea-
sured lengths of appropriate body parts, we take that
sum as the true height—in case the person is not stand-
ing up. Leaf nodes Thm0O, Cm0O, UAmO and LAmO are
used to increase the influence of past measurements and
speed up the convergence. Each of these nodes is up-
dated with the mean of the marginal distribution of its
parent from the previous frame. Other nodes (Torso,
Thigh, Calf, UpperArm and LowerArm) are random
variables that represent true body part lengths. Due to
the body symmetry, we include only one node for each
of the lengths of the limb body parts and update the
corresponding measurement node with the average of
the measurements from the left and right sides. The
measurement of the torso length is not used because

the voxel labeling procedure just fits the known torso
to the data, therefore the torso length measurement is
essentially the same as the torso length in the model
from the previous frame.

All variables are Gaussian and the distribution of a
node Y with continuous parents Z is of the form:

p(Y)Z =17)=N(a+B"z,06%) (22)

Therefore, for each node with n parents, a set of n
weights 3 =1[f; ... B,.17, a standard deviation o and
possibly a constant « are the parameters that need to be
chosen. These parameters have clear physical interpre-
tation and are quite easy to select. The selected param-
eters for the network in Fig. 13 are shown in Table 3.
Nodes Thigh, Calf, UpperArm and LowerArm have
each only one parent (Torso) and the weight parameters
represent known body proportions. Node Height has a
Gaussian distribution with the mean equal to the sum
of thigh, calf and torso lengths (hence all three weights
are equal to 1). Each of the nodes Thm0, Cm0, UAmO
and LAmO is updated with the mean of the marginal
distribution of its parent in the previous frame—hence
the weight of 1.

7.3.  Determining Body Orientation

The initial body part localization procedure does not
include determining which side of the body is left and
which is right. This is important to do because it af-
fects the angle range for each joint. For example, if the
y-axis of the torso points to the person’s left, the angle
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Table 3. The parameters used in the Bayesian network shown in Fig. 13. Torso is the only parent node, and
therefore the only node that needs an a priori distribution. Nodes Thigh, Calf, UpperArm and LowerArm have
each only one parent. Torso and their probabilities conditioned on the torso length are Gaussian with the mean
that linearly depends on the torso length. The weight parameters represent known body proportions. Node Height
has a Gaussian distribution with the mean equal to the sum of thigh, calf and torso lengths. Each of the nodes
ThmO, Cm0, UAmO and LAmO is updated with the mean of the marginal distribution of its parent in the previous

frame—hence the weight of 1.

Parameter values (mm) Parameter values (mm) Parameter values (mm)
Node B,o Node B,o Node B,o
Thigh [0.9], 100 Thm [1], 200 ThmO [1], 100
Calf [1], 100 Cm [1], 200 Cm0 [1], 100
UpperArm [0.55], 100 UAm [1], 200 UAmO [1], 100
LowerArm [0.75], 100 LAm [1], 200 LAmO [1], 100
Torso (., o) = (500, 300) Height (1,1, 117, 100

zanas pues ._..‘.;i_‘,t
ey

Figure 14. Determining the body orientation. Left: top-down view, Right: side view. (a) In the first frame, using the erroneous orientation,
EKF cannot properly fit one leg because it is trying to fit the left leg to the measurements from the right leg; (b) using the other orientation, the

fit is much closer and this orientation is accepted as the correct one.

range for either knee is [0, 180] degrees. If, however,
it points to the right, the knee range is [—180, 0]. To
determine this overall body orientation, we first try to
adjust the model to the body part positions that are ini-
tially estimated using the EKF described in the previous
section using an arbitrary body orientation. Then, we
switch the body orientation (i.e., the angle limits) and
repeat the adjustment. If a significant difference in the
quality of fit exists, the orientation that produces a
smaller error is chosen. The quality of the fit is quan-
tified by the sum of Euclidean distances between the
measurement points and the corresponding points in
the model. Otherwise, the decision is deferred to the
next frame. The quality of the fit is quantified by
the sum of Euclidean distances between the mea-
surement points and the corresponding points in the
model.

This is illustrated in Fig. 14. Figure 14(a) shows
the model adjustment with erroneous orientation.
Figure 14(b) shows the correct orientation with knees
appropriately bent.

8. Results

The system presented in this paper was evaluated in a
set of experiments with sequences containing people of
different heights and body types, from a nine-year-old
girl to a tall adult male, and different types of motions
such as walking, dancing, jumping, sitting, stair climb-
ing, etc. (Fig. 15). For each sequence, six synchro-
nized full frame (640 x 480 pixels) video streams were
captured at approximately 10 Hz. The voxel size was
set to 25 x 25 x 25 mm.
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Figure 15. The performance of the system was evaluated on sequences with people of different body sizes and with different motions.

In this section, we present some of the results of
these experiments. However, the quality of the re-
sults this system produces can be fully appreciated
only by viewing the movies that show the model over-
laid over the 3D voxel reconstructions, which can be
found at http://cvrr.ucsd.edu/~ivana/projects.htm. The
details of the system evaluation can be found in Mikié
(2002).

8.1.  Model Acquisition

The iterations of the model refinement are stopped
when the sum of body part length changes falls below
3 mm, which usually happens in three to four frames.
Figure 16 shows the model acquisition process in a
sequence where the person is climbing a step that is
behind her. In the first frame, the initial model has a
very long torso and short thighs and calves. The model

refinement converges in three frames producing a very
good estimate of body part lengths.

Figure 17 shows the body part size estimates in six
sequences recorded with the same person and the true
body part sizes measured on the person. Some variabil-
ity is present, but it is quite small—about 3—4 voxel
lengths, i.e. 75-100 mm.

Figure 18 shows the original camera views of five
people and Fig. 19 shows the corresponding acquired
models. The models successfully capture the main fea-
tures of these very different human bodies. All five
models were acquired using the same algorithm and
the same Bayesian network with fixed parameters.

8.2.  Tracking

The ground truth, to which the tracking results should
be compared, is very difficult to obtain. We have taken
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Figure 16. Model refinement. The person is climbing the step that is behind her. For this sequence the procedure converged in three frames.
The person is tracked while the model is acquired. (a) Initial estimate of body part sizes and locations in the first frame; (b)—(d) model refinement.
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Figure 17. Body part size estimates for six sequences showing the same person, and the true body part sizes. Body part numbers are:
0—torso, 1—head, 2—upper arm (L), 3—upper arm (R), 4—thigh (L), 5—thigh (R), 6—lower arm (L), 7—lower arm (R), 8—calf (L),
9—-calf (R).

the approach, as in Hunter (1999), of verifying the smooth curve fitted to the data is taken as the sub-
tracking accuracy by subjective evaluation—careful vi- stitute for the ground truth and the precision of the
sual inspection of result movies. Once we are con- tracking output is evaluated using quantitative mea-

vinced that the results are accurate, i.e. unbiased, a sures. Savitzky-Golay filter (Press et al., 1993) is used
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(a) (b)

Figure 18. Original views of the five people shown in Fig. 19. (a) Aditi (height: 1295.4 mm); (b) Natalie (height: 1619.25 mm); (c) Ivana
(height: 1651 mm); (d) Andrew (height: 1816.1 mm); (e) Brett (height: 1879 mm).

(a) (b)

(d) (e)

Figure 19. Estimated models for the five people that participated in the experiments. The models are viewed from similar viewpoints—the
size differences are due to the true differences in body sizes. (a) Aditi (height: 1295 mm); (b) Natalie (height: 1619 mm); (c) Ivana (height:
1651 mm); (d) Andrew (height: 1816 mm); (e) Brett (height: 1879 mm).

to compute the smooth curve fit. Its output at each point
is equal to the value of a polynomial of order M, fit-
ted (using least squares) to points in a (2n + 1) win-
dow centered at the point that is currently evaluated.
It achieves smoothing without much attenuation of the
important data features. The values of M and n are cho-
sen by the user who subjectively optimizes between the
level of smoothing and the preservation of important
data features. In our experiments, we used M = 3
andn =17.

The tracking results look very good by visual inspec-
tion. We show sample frames from three sequences in
this section, and invite the reader to view the result
movies at http://cvrr.ucsd.edu/~ivana/projects.htm.
The precision analysis showed an average absolute er-
ror for joint angles of three to four degrees. Shoulder
angles 67 and g that capture the rotation about the main
axis of the upper arm contribute the most to the average
error. When the arm is not bent at the elbow, that angle
is not defined and is difficult to estimate. However, in
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Figure 20. Tracking results for the walking sequence and one of the six original camera views.

these cases, the deviation from the “ground truth” is
g 0 not really an error. The average error drops below three
;{:f":‘ I ® L degrees when these two angles are not considered. The
o - detailed precision figures can be found in Miki¢ (2002).
e S P Figure 20 shows five sample frames of a walking
&0 sequence. Figure 21 shows the trajectory of the torso
0. centroid as the person walked around the room. Figure
22 shows plots of the hip and knee angles as functions
of time. This sequence contained 19 steps, 10 by the left
and 9 by the right leg, which can easily be correlated
ol Ll IR gl with the shown plots.

i i.:c“:';}._x R, ~ o Figure 23 shows six sample frames for a dance se-

o~ 0 quence. The results for a running and jumping sequence
+500 . .
are shown in Fig. 24.
Figure 21.  Walking: trajectory of the torso centroid. Our experiments also reveal some limitations of the
current version of the model. Figure 25 shows a case
where the rotation in the waist that is not captured in our

2 thip (L) 2 1hip (R)

-2

50 100 150 50 100 150

2 N . g
bl RAAAANA IR
2 |knee(L) ‘ -2 knee(R) ‘ _
50 100 150 50 100 150

(8]

Figure 22. Hip and knee angles [rad] as functions of frame number for the walking sequence.
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Figure 23. Dance sequence: one of the original camera views, the voxel reconstructions and the tracking results for six sample frames.
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Figure 24. Running and jumping sequence: one of the original camera views, the voxel reconstructions and the tracking results for six sample
frames.
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Figure 25. Tracking error due to the rotation in the waist that is not modeled in our body model. Left: original view. Right: the tracking result

shown from two different angles.

model causes a tracking error. To improve the results
in such cases, we can split the torso in two parts and
add one rotation (about the z axis) between them. Such
refinements can be easily incorporated in the proposed
framework.

9. Conclusion

We have presented a fully automated system for hu-
man body model acquisition and tracking using mul-
tiple cameras. The system does not perform the track-
ing directly on the image data, but on the 3D voxel
reconstructions computed from the 2D foreground sil-
houettes. This approach removes all the computations
related to the transition between the image planes and
the 3D space from the tracking and model acquisition
algorithms, making them simple and robust.

The advantages of this approach are twofold. First,
the transition from the image space to the 3D space
that the real person and the model inhabit is performed
once, during the preprocessing stage when the 3D voxel
reconstructions are computed. The approaches where
the image data is directly used for tracking require re-
peated projections of the model onto the image planes,
often performed several times per frame. Second, anal-
ysis of the voxel data is in many ways simpler than the
analysis of the image data. Voxel data is in the same 3D
space as the model and the real person. Therefore, the
measurements made on the voxel data are very easily
related to the parameters of the human body model,
which makes the tracking algorithm simple and sta-
ble. Also, the dimensions and shapes of different body
parts are the same in the data as in the real world, which

leads to simple algorithms for locating body parts that
rely on knowledge of their average shapes and sizes.
For example, finding the head in the voxel data is an
easy task, since the head has a unique and stable shape
and size. However, this is a much harder problem when
image data is directly analyzed. The head may be oc-
cluded in some views and its size will depend on the
relative distance to each of the cameras.

We are using the twists framework to describe the
human body model. The constraints that ensure phys-
ically valid body configurations are inherent to the
model, resulting in a non-redundant set of parame-
ters. Only the constraints for joint angle limits have
to be imposed during the tracking. The body is de-
scribed in a reference configuration, where axes of ro-
tation in different joints coincide with basis vectors of
the world coordinate system. The coordinates of any
point on the body are easily computed from the model
parameters using this framework, which results in a
simple tracker formulation that uses locations of dif-
ferent points as measurements to which the model is
adjusted.

We have developed an automated model acquisition
procedure that does not require any special movements
by the tracked person. Model acquisition starts by ini-
tial estimation of body part sizes and locations using a
template fitting and growing procedure that takes ad-
vantage of our knowledge of average shapes and sizes
of body parts. Those estimates are then refined using a
system whose main component is a Bayesian network,
which incorporates the knowledge of human body pro-
portions. The Bayesian network is inserted into the
tracking loop, modifying the model as the tracking is
performed.
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The tracker relies on a hybrid voxel labeling pro-
cedure to obtain quality measurements. It combines
the minimization of distance from the model predic-
tion and template fitting to produce reliable labeling
results, even for large frame to frame displacements.

We have conducted an extensive set of experiments,
involving multiple people of heights ranging from
1.3 to 1.9 m, and complex motions ranging from sit-
ting and walking to dancing and jumping. The sys-
tem performs very reliably in capturing these different
types of motion and in acquiring models for different
people.
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