
An Ant-Based Algorithm

for the Dynamic Task Allocation Problem

Roberto Ghizzioli, Shervin Nouyan,

Mauro Birattari, and Marco Dorigo

Technical Report No.

TR/IRIDIA/2004-16

September 2004

An Ant-Based Algorithm

for the Dynamic Task Allocation Problem

Roberto Ghizzioli, Shervin Nouyan, Mauro Birattari and Marco Dorigo
IRIDIA

Avenue Franklin Roosevelt 50,

CP 194/6 - 1050 Bruxelles - Belgium

rghizzioli@iridia.ulb.ac.be

{snouyan,mbiro,mdorigo}@ulb.ac.be

Abstract

Different multi-agent algorithms, based on a model of division of labor of social insects, are
applied to an online scheduling problem and compared. A painting facility, consisting of trucks
and painting booths, can be taken as example of the problem. Trucks roll of an assembly line
to get painted by booths. Crucial to this problem is to minimize the makespan that is the time
until all tasks in the system have been processed. Additionally, in this scenario booths may be
identical or heterogeneous in the meaning that different booths require different process times
for the same task. In particular, based on previous work of Cicirello et al. [8], we propose an
insect-based algorithm that increases the plasticity of the agents to the environmental changes
and their specialization level based on their characteristics. By an empirical analysis we show
that, for the classes of instances considered, our algorithm performs better than the others
considered. Additionally, we emphasize the contribution to the makespan of each introduced
rule.

1 Introduction

The use of Multi-Agent Systems (MAS) is rapidly increasing in a variety of fields of computer
science, engineering and artificial intelligence in the last years. A multi-agent system can be
described as a loosely coupled network of agents interacting to collectively solve problems which
are beyond the capabilities of each individual agent [10]. Agents are autonomous systems capable
of adapting to changing environments and able to exhibit goal-directed behaviors [26].

In this paper our interest is in using multi-agent algorithms to solve the Dynamic Task Alloca-
tion (DTA) problem. The DTA problem is an online, non-deterministic scheduling problem, that
is, a decision-making process for assigning tasks to agents working in parallel. Each task belongs
to a particular type and if a working agent changes the type of task it performs, a setup is required
and a given cost is incurred. In the DTA problem different agents can have different processing
times for different task types. If this is the case, the DTA problem is said heterogeneous; other-
wise, if all the agents are identical, the problem is said homogeneous (DTAHom). The objective
for this problem is to minimize the makespan, that is, the time until all tasks in the system have
been processed.

Different work has been done using multi-agent algorithms on the homogeneous case of the prob-
lem. Most of the proposed algorithms use paradigms based on the specialization concept, where
agents tend to specialize for one type of task, to avoid unnecessary reconfiguration and in this way
increase the efficiency of the system. Morley [14] is the first one that solved a painting problem
similar to the homogeneous case of the DTA problem. His algorithm was adopted in the GM
facility and was found that his system performs 10% better than the previously used centralized

1

scheduler. Later, Campos et al. [7] proposed to solve the same problem with an insect-based
approach. Subsequently, Cicirello et al. [8] proposed another insect-based algorithm introducing
concepts not considered by Campos et al.

In this paper, we present Ant Task Allocation (ATA), an algorithm for the homogeneous case
of the problem based on the work of Cicirello et al. The algorithm of Cicirello et al., especially for
problems in which demands change dynamically, often takes much time to re-adapt or does not
succeed to re-adapt at all. In order to overcome this problem we propose some modifications and
additional rules to speed up the adaptation process.

Applying these algorithms to the heterogeneous case of the DTA problem, we found that they
perform poorly because the agents do not consider their process speed to perform a task. Therefore,
we propose a Different Process Speed (DPS) rule applicable to all the considered insect-based
algorithms. This rule is inspired by division of labor as observed in different castes of Pheidole
ants.

We compare all presented algorithms on the DTA problem. Additionally, we introduce a
non-adaptive algorithm in the experimental analysis in order to have a performance reference.
The comparison considers two possible real-world situations: a big painting factory with identical
agents and a medium dimension factory with two heterogeneous subsets of agents. Particular
attention has been payed to the experimental conditions; in fact, we have used two instance
generators in order to obtain the two classes of instances of the problem and we have done a
rigorous parameters tuning for each used algorithm. Furthermore, a statistical analysis has been
done to study the data obtained. We will show that our algorithm achieves the best results for both
the considered class of homogeneous and heterogeneous problems. Moreover, we will show that
all adaptive algorithms in all situations achieve better results than the non-adaptive algorithm.
Again, Campos’ et al. algorithm does not obtain good results in both the experiments but we are
grateful to him because his work has the merit of having introduced the insect-based approach to
solve this problem. Moreover, the performance of the insect-based algorithms are ranked according
to the time they was made. In fact the algorithm of Campos’ et al. does not obtains good results,
the algorithm of Cicirello et al. gives a significant improvement to the performance obtained by
Campos’ et al. as they show in paper [8] and our algorithm improves again the results of the
solution of Cicirello et al.

Another set of experiments deals with the analysis of the proposed rules. First of all we show
that ATA with all the introduced rules performs better than the original algorithm of Cicirello et
al. Moreover, we observe that one of the proposed rules gives a large contribution to reduction in
the makespan, two others a significant contribution to it and the last one does not give any ap-
parent contribution to the results. Finally, we show that the DPS rule improves the performances
of all the insect-based algorithms on the heterogeneous case of the DTA problem.

In Section 2 we give a formal description of the DTA problem and use the metaphor of a painting
facility to describe it in a simple way. Section 3 presents the related work for the homogeneous case
of the DTA problem. We present two approaches: the market-based approach with the algorithm
of Morley and the insect-based approach with the algorithms of Campos et al. and Cicirello et
al.. Afterwards, Section 4 introduces ATA, our algorithm for the DTAHom problem. In Section 5
we describe the DPS rule which is applicable to the insect-based algorithms in the heterogeneous
case of the problem. Section 6 details the experimental setup and the instance generators. Fur-
thermore, a summary of the algorithms and of the parameter is given. In the second part of this
section, we analyze the obtained results. Finally, we conclude in Section 7.

2 Problem Definition

The problem considered here is a particular non-deterministic scheduling problem that we refer
to as the Dynamic Task Allocation (DTA) problem. This problem is a decision-making process
for assigning tasks to parallel working machines. In the DTA the machines differ in their process
speed. Moreover, tasks information is only known at execution time. A very similar problem,

2

with identical machines, was presented and solved by Morley [14] for painting trucks at General
Motors.

The DTA problem can be described by considering a painting factory environment.

Painting facility. Trucks roll off an assembly line at the end of which there is a storage where
each truck waits to be assigned to a painting booth. The number of available colors is fixed and
a truck’s color is predetermined by a customer order. The distribution of colors of trucks and the
truck release dates are not specified.

A painting booth is an agent able to paint with all the available colors. Booths may be identical
or may have different process times for the same type of tasks. This situation may happen for
example in a factory with old and new machines, where the new ones require less time to accomplish
a same task. Another possibility is that a set of agents do some work faster than another and
vice versa. Moreover, each booth has a fixed queue length which can be filled by trucks. If the
color of a painting booth must be changed, a setup time is necessary. For example, if a booth is
applying red and the next truck to be processed by that painting booth requires white, a fixed
flush time is taken. If no setup is necessary, the booth starts immediately to paint the next truck
in its queue. A setup may also be related to a monetary cost that for example is the amount of
paint lost during a swap.

The objective of this problem is to assign trucks to painting booths minimizing the makespan,
that is, the completion time of the last truck in the system. We also analyze the number of setups
and the storage dimension that should be kept as low as possible.

2.1 Dynamic Task Allocation (DTA) Problem

According to Pinedo [16] we formalize the scheduling problem introduced by the following notation

< Qm|rj , sj,h|CMAX >, (1)

where each variable has the following meaning:

• Machines in parallel Qm: in the system there are m machines in parallel that are in
charge of m booths in the paint facility. Machines may have different process times for
different types of tasks. Groups of machines can be grouped in different subsets Si. The
process times of a subset Si for the types of tasks cj is given by tproc(Si, cj). The setup time
tsetup is identical for all the working machines. Furthermore, each machine k has a queue
that can be filled with up to qk tasks. If all machines have the same processing time tproc
for all types of tasks, we refer to the homogeneous case of the problem (DTAHom).

• Release date rj : this is the time at which a task j is released to the painting facility. The
value of rj is not available at the beginning of the experiment. It is the earliest time at
which the task j can start being processed. Each tasks j requires a single operation and
may be processed on any one of the m machines. Furthermore, each task j belongs to a
particular type cj which is the color to be painted and also this information is not available
at the beginning of the experiment.

• Sequence dependent setup times sj,h: represents the sequence dependent setup time
between two tasks j and h. If cj = ch, no setup is required and sj,h = 0. This means that the
respective machine can immediately start processing task h after having finished to process
task j. If cj �= ch, a configuration time tsetup is needed. The setup time between task j and
task h is independent of the machine.

• Makespan CMAX : the objective of the DTA problem is to minimize the makespan that is
the time until all tasks in the system have been processed.

In the DTA problem, the task generation process is not specified. For instance, the release dates
and the types of the tasks may be distributed exponentially or normally. This distributions may

3

vary dynamically so that at a random time the probability mix changes and the machines need
to adapt to the new environment. It also may happen the extreme case of all tasks being create
before the scheduling process start. This last example would make the DTA instance a very simple
scheduling problem requiring only a simple algorithm to optimize a schedule because everything
in known a priori.

3 Related Work

In the previous section we used a painting facility as a real world example of the DTAHom problem.
This example originates from Morley [14], who was given the task of optimizing a scheduler for
a General Motors truck painting facility. Morley used a decentralized market-based approach
that, compared to the previously used centralized scheduler, improved the performance in terms
of decreasing the amount of paint lost. In the following section we give a short overview of market-
based algorithms for problems that are related to the DTAHom problem. In particular, we detail
Morley’s approach.

Independently of each other, Campos et al. [7] and Cicirello et al. [8] used similar insect-based
approaches to solve the same problem. They were inspired by a threshold model proposed by
Bonabeau et al. [2, 3] and Theraulaz et al. [22]. In Section 3.2 we first introduce the threshold
model and then explain the two approaches.

3.1 Market-Based Approach

Market-based approaches are often used for coordinating asynchronous scheduling operations in
the face of imperfect knowledge [9, 13, 12]. The decision process is based on a decentralized bidding
mechanism where autonomous agents bid for a task or a resource, which is then assigned to the
agent with the highest bid. The agents dynamically adjust their bids according to their capability
to solve a task or according to the availability of a resource.

For example, Waldspurger et al. [24] presented a computational system called Spawn, in which
each task bids for the use of machines on a network. According to its priority, each task is given a
certain budget, which it has to use such that it will be assigned to the resources it requires. Prices
are adjusted dynamically and are based on the demands of other tasks.

Another example is given by Schwartz et al. [20] that use the bidding mechanism for data
allocation of self-motivated data servers with no common preferences and no central controller.
The location of each data unit is determined using a bidding mechanism where the server bidding
the highest price for obtaining the data will actually obtain it. This market-based approach yields
an efficient and fair solution, a simple implementation and the bidders are motivated to offer
efficient prices.

Clearwater et al. [11] also use a market-based approach for a thermal resource distribution
problem: computational agents that represent individual temperature controllers bid to buy or
sell cool or warm water air.

All these examples show that market mechanisms provide methods to deal with coordinating
asynchronous operations in the face of imperfect knowledge. A computational system set up
along market rules can allow the system as a whole to adapt to changes in the environment or
disturbances to individual members. Additionally, the price mechanism behind this approach
simplifies the design of adaptive algorithms.

3.1.1 Morley’s Algorithm

The following algorithm definition originates from the paper of Campos et al. [7]. In fact, the
algorithm developed by Morley is a manufacturing application and many details are protected.

Morley [14] proposed a market-based algorithm to solve an example of the homogeneous case
of the DTA problem which was applied to a General Motors factory. We refer to his algorithm
as Market-Based Approach (MBA). In his market-based approach booths bid for trucks to paint

4

them. For each booth the intensity of the bid for a particular truck is based on the amount of
time and the additional costs that would be related to an assignment. If the queue of a booth is
full, it does not participate to the bidding process. Morley proposed a bid function applied to each
booth that considers the importance of the tasks, the color of the presented task, and the state of
the booth. More precisely, if we consider a task j of color cj that is in the storage, a booth k that
does not have a full queue participates in the bidding process with a range of values given by:

Bk(j) =
P ∗ wj ∗ (1 + C ∗ e(k, j))

∆Tk(j)L
, (2)

where wj gives the importance of the task, e(k, j) is a function that is 1 if the color of the last
truck in the queue is equal to cj , and 0 otherwise. P , C, and L are parameters that weight each
component. ∆Tk(j) is the time until task j starts to be painted, and is determined by the following
equation

∆Tk(j) = q ∗ tproc + n ∗ tsetup + tworking , (3)

where q is the number of trucks in the queue of booth k, tproc is the time required to paint one
truck, n is the number of setups between trucks in the booth’s queue, tsetup is the time required
for a setup, and tworking is the time necessary to finish the truck currently being painted.

The assignment process is very simple. For all trucks each booth with space in its queue bids
for them according to Equation 2 and the respective truck is assigned to the end of the queue of
the highest bidder. If all the queues are full no booth can bid and the truck stays in the storage. If
more than one booth submits the same highest bid, the respective truck is assigned to the booth
that requires no setup to paint it. In the case that all competing booths require a setup, the
winner is chosen randomly. If none of the booths requires a setup, the truck is assigned to the
booth with the shortest queue size or, in case all the booths have the same queue length, it is
assigned randomly.

3.2 Insect-Based Approach

Campos et al. [7] and Cicirello et al. [8] used an insect-based approaches to solve the DTAHom

problem which are inspired by the methodology of division of labor in social insect. Insect societies
perform different activities simultaneously exploiting specialized individuals. This parallelism is
undoubtedly more efficient than sequential task performance by unspecialized workers because
individual specialization leads to a higher grade of colony efficiency as specialized individuals
don’t switch between one type of task and another, a process that often requires time. Moreover,
a specialized individual can perform a type of tasks more efficiently.

A key feature of division of labor is plasticity. The ratios of workers performing the different
tasks can vary in response to internal and external challenges. Factors such as food availability,
climatic conditions or phase of colony development influence the specialization of the colony’s
workers. In the Pheidole ant species, for example, there are minor workers that are smaller and
morphologically distinct from major workers. Minor and major workers tend to perform different
tasks: while majors cut large preys and defend the nest, minors feed the brood or clean the nest.
Wilson [25] showed experimentally that when removing minors, majors get engaged in the tasks
usually performed by minors to replace them.

The fixed threshold model In order to explain Wilson’s [25] observations, Bonabeau et al. [4]
have developed a simple model that relies on response threshold [18, 17]. The idea behind the
fixed threshold model is that each individual has a threshold value for every kind of task available
in an environment. A threshold represents the level of specialization of an agent for a particular
task. A task emits a stimulus to attract the individuals’ attention. Based on the stimulus, an
individual will or will not accept to start performing the respective task. The higher the intensity
of a stimulus the higher the attraction toward workers to accept that task. This model is said to
be with fixed thresholds because these thresholds do not change over time.

5

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

P
(s

,θ
)

θ = 1
θ = 5
θ = 10
θ = 20

Figure 1: Response curve P (s, θ) with different thresholds.

The first question that we have to answer is: how do we formally define a response threshold?
Assume that m tasks need to be performed. Each task j is associated with a stimulus sj , the level
of which increases if it is not satisfied. Let us assume that there are N agents, denoted by i, with
response threshold θi,j (i = 1, ..., N) for each task j. In the threshold model, individual i engages
in task j with probability

P (sj , θi,j) =
s2

j

s2
j + θ2

i,j

. (4)

This equation shows that for sj � θi,j the probability of an individual i to be engaged in task j is
close to 0 and for sj � θi,j the probability is close to 1. Therefore, agents i with a lower threshold
θi,j are more likely to respond at a lower level of stimulus sj .

The fixed threshold model assumes that agent’s thresholds are fixed over time and so their
level of specialization for a given task does not change in time. As a consequence, this model does
not take into account the plasticity characteristic of the colony because it assumes that individuals
are differentiated by their preassigned threshold values. Therefore, it is valid only over sufficiently
short time scales, where thresholds can be considered constant. Finally, the model is not consistent
with experiments with honey bees [19, 6], showing that aging and/or learning play a role in task
allocation.

The dynamic threshold model In order to take these limitations into account, Theraulaz et
al. [22] extended the threshold model by allowing thresholds to vary in time following a simple
reinforcement process: the threshold associated to a task decreases when the corresponding task
is performed, and increases otherwise.

Let ξ be the coefficient that describes learning (specialization) and ϕ be the coefficient that
describes forgetting characteristics of an insect colony. If we consider a time-incremental model,
individual i specializes when performing task j during a time period of duration ∆t by changing
its threshold as follows:

θi,j → θi,j − ξ∆t, (5)

and it forgets if it does not perform task j during a time period of duration ∆t by by changing its
threshold as follows:

θi,j → θi,j + ϕ∆t. (6)

Now, let xi,j be the fraction of time spent by individual i in task j: within ∆t, individual i
performs task j during time xi,j∆t, and other tasks during (1− xi,j)∆t. Let ξ and ϕ be identical

6

for all tasks, and the dynamics of θi,j be restricted to an interval [θmin, θmax]. Therefore, threshold
values vary continuously in time according to:

∂θi,j

∂t
= [(1 − xi,j)ϕ − xi,jξ]Θ(θi,j − θmin)Θ(θmax − θi,j), (7)

where Θ(·) is the Heaviside function with Θ(y) = 0 if y < 0, Θ(y) = 1 if y ≥ 0.
The probability of an individual i to be engaged in task j is still described by equation 4, but

now θi,j is dynamic in time and therefore:

P (sj(t), θi,j(t)) =
s2

j(t)
s2

j(t) + θ2
i,j(t)

. (8)

As explained above, xi,j is the fraction of time spent by individual i in performing task j. Its
value increases according to the threshold θi,j of agent i for task j. xi,j varies in time according
to:

∂xi,j

∂t
= P (sj , θi,j)(1 −

m∑
k=1

xi,k) − pxi,j + Ψ(i, j, t), ∀k �= j, (9)

where 1 − ∑m
k=1 xi,k is the fraction of time potentially available for performing tasks. The term

pxi,j expresses that an active individual gives up task performance and becomes inactive with
probability p per unit time (identical for all workers and all tasks). The average time spent by an
individual in task j performance before giving up this task is 1/p. Ψ(i, j, t) is a centered Gaussian
stochastic process with variance σ2, which is uncorrelated in time, among individuals and among
tasks.

For simplicity, the stimulus dynamics for a task j increases at a fixed rate per unit time if no
agent bids for it. The differential equation that describes the variation of sj in time is

∂sj

∂t
= δ − α

N
(

N∑
i=1

xi,j), (10)

where δ is the increase in stimulus intensity per unit time, and α is a scale factor measuring the
efficiency of task performance. It is assumed that both factors are identical for all tasks, and that
α is fixed and identical for all individuals.

In reality, however, α could vary as a result of specialization. The amount of work performed
by active individuals is again scaled by the number of individuals N .

3.2.1 Campos’ Algorithm

Campos’ et al. [7] solved the DTAHom problem with an algorithm based on the dynamic threshold
model as shown in the previous section. They developed this algorithm to show similarities
between the insect-based approach and the market-based approach. We call their algorithm Ant-
Based Approach (ABA). In this approach agents are in charge of booths and autonomously bid
to paint trucks. In Campos’ model, a stimulus scj is associated to the color cj of a truck j. Each
agent k has a threshold value θk,cj for each available color. The stimulus scj for each color is given
by the sum of the stimuli of the unassigned tasks for each particular color. The equation that
describes the stimulus demand is:

scj =
∑

i

siδ(ci − cj), (11)

where ci is the color of truck i waiting in the storage and cj is the color of the considered truck j.
δ(·) is the Dirac function and the sum is taken over all trucks.

The probability of the booth k to get engaged in task j in given by:

P (scj , θk,cj) =
s2

cj

s2
cj

+ αθ2
k,cj

+ ∆T 2β
, (12)

7

where cj is the color of truck j and θk,cj is the threshold of agent (booth) k for color cj . α and
β are parameters and ∆T is the waiting time necessary before the truck starts to be painted by
that booth. ∆T is computed like in equation 3. If there are no bidders because all the queues are
full the truck stays in the storage. For this algorithm, values of P (scj , θk,cj) for different agents
are compared and the tasks is assigned to the booth with the highest value.

Only when a truck j is assigned to booth k, the threshold values are updated for all booths.
θk,cj decreases by an amount ξ:

θk,cj → θk,cj − ξ, (13)

and the thresholds θm,cj of all other paint booths for color cj increase by an amount ϕ

θm,cj → θm,cj + ϕ, ∀m �= k. (14)

Variations of θ∗,cj take place within the bounds θmin and θmax . Equation 13 expresses the fact
that booth k tends to specialize on color cj because it increases its probability of responding to a
truck with color cj by decreasing its response threshold θk,cj .

3.2.2 Cicirello’s Algorithm

Cicirello et al. [8] proposed a similar algorithm to solve the DTAHom problem called R-WASP
that is also inspired by the dynamic threshold model.

The algorithm incorporates aspects which have been ignored by Campos. In particular, in
Cicirello et al.’s algorithm, each task j in the system sends to all agents a stimulus sj that is equal
to the length of time the task is already waiting to be assigned to an agent and does not depend
on its color.

Campos’ algorithm uses the probability function to determine the booth to assign the truck.
Cicirello et al.’s model instead uses P (sj , θk,cj) as a pre-disposition to respond to a stimulus.
Therefore, P (sj , θk,cj) represents the probability for a booth to bid for a task. In the algorithm
of Cicirello et al., the pre-disposition to respond to a stimulus is given by:

P (sj , θk,cj) =
s2

j

s2
j + θ2

k,cj

, (15)

where cj represents the color or the type of task j.
Furthermore, in Campos’ approach, thresholds are updated only when a truck is assigned

to a paint booth and that rule involves only thresholds of the respective color. In Cicirello et
al.’s approach, each agent k, at each time step, updates its own thresholds θk,∗ according to the
following rules. At each time step, if the agent k is processing or setting up for a task j of color
cj the agents’ thresholds are updated according to:

θk,cj → θk,cj − ξ, (16)

θk,ci → θk,ci + ϕ, ∀i �= j. (17)

Otherwise, if the agent k is currently not processing any task, a third update rule is used for each
threshold:

θk,ci → θk,ci − δt, ∀i, (18)

where t represents the number of time steps in which the agent is already idle. The rule given in
Equation 18 increases the value of P (θk,cj , sj) to encourage an idle agent k to take whatever tasks
it can get rather than remaining idle.

When two or more agents of the colony want the same task, they interact with each other in
a dominance contest. If this interaction takes place, the agent with the higher social rank has a
higher probability of dominating in the challenge. Through such interactions, insects within the
colony self-organize into a dominance hierarchy. The dominance contest rules are applied if two
or more agents respond positively to the same stimulus. In this case there is a kind of challenge

8

between bidders and the winner is assigned the task. The idea is that each participant k has a
force value Fk:

Fk = 1 + Tproc + Tsetup, (19)

where Tproc is the sum of the processing times tproc for all the tasks in the queue of booth k and
Tsetup is the sum of their setup times tsetup. For a booth k, a lower force value Fk corresponds
to a shorter queue and leads to a higher probability to win in a dominance contest. The rule to
determine the probability for agent k to win against all the others competitors, is:

P (F1, ..., Fn) =

∑n
i�=k F 2

i

(n − 1)
∑n

i=1 F 2
i

. (20)

If more than one agent competes for a given task, a single dominance contest is used to
determine the winner.

4 ATA: An improved algorithm for the homogeneous case

The agent-based algorithm proposed by Cicirello et al. shows a good level of specialization of the
paint booths. This characteristic is desirable because it avoids unnecessary reconfigurations. The
way the solution is achieved is completely distributed and no global information is required. We
used the algorithm of Cicirello et al. initializing all working agents with the same threshold for all
types of tasks.

In general, we observed that during the experiment the agents become specialized in one type
of task and the performances of this algorithm are better than these obtained by one of the non-
adaptive algorithms. However, we have observed that R-WASP requires some amount of time
to initially adapt to the product mix as well as to dynamically re-adapt to a changing product
demand. For example, Cicirello et al. consider in their experiments a case with two types of
task, an asymmetric probability distribution and a product mix that changes at the half of the
simulation. They show that the adaptation process to the new probability mix takes more than
one third of the experimental time.

In order to overcome this problem we propose three modifications on the original algorithm
and one additional rule to speed up the adaptation process. We call this improved algorithm Ant
Task Allocation (ATA) and specify it in the following two sections. Afterwards, in Section 4.3 we
show the plasticity of ATA in a particularly dynamic environment by discussing an example.

4.1 Modifications of Existing Rules

Threshold Update Rules (TUR): The update rules proposed by Cicirello et al. depend on the type
of the task (the color cj) which is currently used by a booth. We remark that an agent may have
a queue of several tasks behind itself. These tasks in the queue are not necessarily of a same type.
For example, an agent might be processing a task of type 1 and have only one task in its queue
that is of type 2 like in Figure 2. This means that, as long as the task of type 1 is not finished, the
corresponding threshold for 1 is decreased and the threshold value for 2 is increased. If the agent
is offered two tasks, one of type 1 and one of type 2, the probability to take the task of type 1 is
higher than the probability to pick task 2. This is not desirable because it can cause additional
setups. We have chosen to modify the update rules by letting the last task in an agent’s queue
determine which threshold values are updated in order to reduce the number of necessary setup
and consequently, the makespan.

Calculation of the Force Variable (CFV): The dominance contest introduced by Cicirello et al.
tries to find a good solution to choose among several booths competing for a same task. The force
value is defined as the sum of the process times and setup times of the tasks waiting in the queue
of a booth. Figure 3 shows a situation where two agents with the same queue length bid for the
same task. In the algorithm of Cicirello et al the probability to win in the dominance contest is

9

A
ge

nt

Agent's queue

1 2

Figure 2: This agent is currently processing a task of type 1 and in its queue there is a waiting
task of type 2.

the same. This does not take into account a possibly required setup for the task they are bidding
for. We modify the force value according

Fk(j) = 1 + Tproc + Tsetup + tsetup,j , (21)

where tsetup,j represents the setup time between the last task in the booth’s queue and the current
truck j.

A
ge

nt
 1

A
ge

nt
 2

Agent 1: setup required

Agent 2: no setup required

A

1

2

11

22 2

2

1

Figure 3: Two agents with the same queue length that bid for the same task.

DOminance Contest (DOC): Using the dominance contest rule as specified in Equation 20, the
more machines compete with each other in a dominance contest, the smaller are the differences
between the probabilities to win. In general the probability for one competitor to win a dominance
contest with n competitors is never higher than 1

n−1 . In order to avoid this, we introduce this new
rule:

Pk(F1, ..., Fn) =
1

F 2
k∑n

i�=k
1

F 2
i

. (22)

4.2 Additional Rule to Optimize the Threshold Values

Idle Machine does not Bid (IMB): Equation 18 offers a threshold update rule for idle agents in
order to encourage them to bid for tasks of any type. This update rule decreases all threshold
values by a value that exponentially increases in time. The idea is that a machine may stay idle
for same time rather than being forced to take any task immediately. We observed that this can
cause agents to stay idle for very long and therefore has a negative effect on several performance
measures. We propose a new update rule, which is employed in case an idle agent refuses to bid
for a task it is offered:

θk,cj → θk,cj − γ. (23)

In this case, the corresponding threshold θk,cj of the refused task of type cj is decreased by the
fixed value γ. Variations of θk,cj takes place within the bounds θmin and θmax .

10

4.3 Example

In this section we present an example that shows the plasticity of ATA to the dynamic changes
on the DTAHom problem environment. In the paper of Cicirello et al. a very similar situation is
presented where the adaptation process to the environmental changes takes more than one third
of the experimental time. We will show using ATA that this process is very quick. We think that
the proposed improvement rules are essential to achieve this behavior.

In order to show this, we consider a simple problem instance with 4 identical agents. Each
agent has a queue size of 5 trucks. To paint a truck a booth requires 5 time steps. Another 10
time steps are needed for a setup. Trucks exit the assembly line during 420 time steps. If one
step is equal to a minute, trucks enter in the system during seven hours. The number of trucks
to be painted is in average equal to 336. This number is chosen because it is in the given time
the maximum number of trucks that 4 booths can paint considering the process time, no setups
and no idle states. The number of trucks that exit the assembly line is equally distributed during
the 420 time steps. In this example trucks can be painted in two colors only: type 1 and type 2.
In order to analyze the plasticity capability of the system, we chose a particular color probability
mix: for the first 210 time steps the tasks of type 1 appear three times more frequently than
those of type 2. Afterwards, these probabilities swap so that the type of task that appeared more
frequently appears more rarely. We refer to this probability mix as CHANGE. The parameter set
used for ATA is the same as those used in Section 6.1.3 for the DTAHom problem instances.

For this example we expect that for the first half of the experiment a higher number of agents
becomes specialized in task 1 and that this swaps for the second half. Figure 4 shows a typical ATA
behavior on this configuration. At the beginning agents that are in the same starting conditions
become specialized and start performing the tasks. From the time step 210 the demand of type
2 tasks becomes high and the relative stimulus increases (Figure 4(a)). At the same time, agents
working on type 1 tasks wait for more tasks of the same type but none becomes available. Initially
these agents do not bid for type 2 tasks. Until here the behavior of the agents of ATA is similar
to the agents of R-WASP . Then, in ATA the IMB rule takes effect and decreases the threshold
of each agent that prefers to rest idle and not bid for type 2 tasks. The effect of the stimulus
increment and of the IMB rule is that two agents become specialized for type 2 tasks (Figure 4(d)
and (e)). The others agents do not change their specialization level. This behavior do not change
until the end of the experiment.

5 Extension of the Algorithms to the heterogeneous case

The DTA problem definition considers agents that can have different processing times for different
task types. The insect-based algorithms presented give satisfying results on the homogeneous case
of the DTA problem but if they are applied on the heterogeneous case the performances are not so
acceptable. The problem is that agents bid for a task considering only their specialization level,
without taking into account their own characteristics, that is, their capacity to process a task
quickly or slowly. In order to have better results, we extend the algorithms so that the faster an
agent can perform a task, the higher is the probability to bid for it. In Section 5.1 we present
this extension that is applied to the presented insect-based algorithms and is inspired by the caste
subdivision of labor observed in social insects. Afterwards, in Section 5.2 we show its impact by
discussing an example.

5.1 Different Process Speed (DPS) Rule

In an insect colony different castes of agents have a different response to a considered task. Wilson
[25] observed a division of labor between insect casts studying ant species Pheidole. In normal con-
ditions some castes have higher probability of obtaining a task than others. If in the environment
there is a high demand to perform a particular task or a subset of castes is eliminated from the
environment, the behavior of the ants in the system changes so that they start to perform tasks
for which they are not predisposed. To reproduce this behavior in the considered insect-based

11

0 50 100 150 200 250 300 350 400
0

50

100

(a)

su
m

 o
f s

tim
ul

i Stimulus Task 1
Stimulus Task 2

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

(b)

nu
m

be
r

of
w

or
ke

rs

Task 1
Task 2

0 50 100 150 200 250 300 350 400
0

200

400

(c)

th
re

sh
ol

ds

θ
1,1

 Agent 1 Task 1
θ

1,2
 Agent 1 Task 2

0 50 100 150 200 250 300 350 400
0

200

400

(d)

th
re

sh
ol

ds

θ
2,1

 Agent 2 Task 1
θ

2,2
 Agent 2 Task 2

0 50 100 150 200 250 300 350 400
0

200

400

(e)

th
re

sh
ol

ds

θ
3,1

 Agent 3 Task 1
θ

3,2
 Agent 3 Task 2

0 50 100 150 200 250 300 350 400
0

200

400

(f)

th
re

sh
ol

ds

θ
4,1

 Agent 4 Task 1
θ

4,2
 Agent 4 Task 2

probability swap

Figure 4: The graphs show the sums of the tasks stimuli, the number of working agents for each
type of task and the dynamic of thresholds of each agent. Graphs (c), (d) and (e) show that for
the first half of the experiment agents 1, 2 and partially 3 are specialized on tasks of type 1 (low
thresholds). This behavior is confirmed by graph (b). Graph (f) shows that agent 4 becomes
specialized on tasks of type 2. At time 210 the probability mix reverse. Agents still remain
specialized to the previous mix. The stimulus of type 2 tasks increases (a) and the agents remain
idle. At time 250 (graph (d) and (e)) agents 2 and 3 adapt themselves to the new environment.
From this moment to the end of the experiment there are three agents working on tasks of type 2
and one on tasks of type 1 (b).

12

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

P
(s

,θ
)

θ
S1,1

 = 1
θ

S2,1
 = 1

θ
S1,1

 = 2000
θ

S2,1
 = 2000

Figure 5: The threshold response function that one agent of subset S1 and one agent of subset S2
have for a task of type 1 with different specialization levels.

algorithms, we introduce the process speed that an agent k has for a task j of type cj in the
probability function P (sj , θk,cj). The most promising probability function is obtained modifying
Equation 15 as follow:

P (sj , θk,cj) =
s2

j

s2
j + θ2

k,cj
∗ (tproc,k,cj − tminproc,cj + 1)

, (24)

where tproc,k,j is the processing time that agent k has for task j and tminproc,cj is the minimum
processing time in the system for the type of task cj . The added term performs like a weight to
the specialization level during the bidding process.

We study the probability function in a simple instance of the DTA problem where there are
two sets of working agents with two booths for each set and two types of task. The process time is
given in Table 1(a) whereas the relative probability function P (sj , θk,cj) is presented in Figure 5.
The figure shows that agents of subset S1 always have a higher probability to bid for tasks of type 1
than agents of subset S2. An important characteristic of this function is that the distance between
the response to a stimulus of an agent k of the first subset and the same response by an agent of
the second set is constant and independent from the specialization value θk,cj . This improvement
allows a correct distribution of work between agents with a behavior that still maintains a high
plasticity level to the environmental changes. When an insect-based algorithm uses the DPS rule,
we refer to it with a letter c at the end of the respective name (ABAc, R-WASPc, ATAc). Finally,
we observe that, if we use these extended algorithms on a DTAHom problem instance, they perform
as the original ones.

5.2 Example

The aim of this example is to analyze the division of labor among agents of a DTA instance using
ATAc algorithm. We consider a situation where there is an asymmetric demand of types of tasks.
The considered instance has 2 subsets of working agents (S1 and S2) with 2 booths within each
subset. Trucks can be painted in two colors: type 1 and type 2. Each agent has a queue size of 5
trucks. 10 time steps are needed for a reconfiguration. Trucks exit the assembly line during 420
minutes. Process times are described in Table 1(a). The number of trucks to be painted is on
average equal to 446. This number is the maximum number of trucks paintable in 420 minutes
by the system considering that three booths work for one type of task, the fourth one works on

13

Table 1: Values for a DTA problem instance with two subsets of working agents, two agents for
each subset and two different types of tasks.

(a) Process time matrix.

Type 1 Type 2
subset S1 3 9
subset S2 9 3

(b) Number of worked tasks.

Type 1 Type 2
subset S1 278 0
subset S2 30 138

the other type of task and no setups and idle times are necessary. The color probability mix is
asymmetric with a higher number of type 1 tasks: a truck of type 1 has probability 0.77619 to
appear at each time step and a truck of type 2 has probability 0.332. We refer to this probability
mix as DIFF. The parameter set used by ATAc is the same as that used in Section 6.1.3 for the
DTA problem instances.

Before running the example we expect this behavior:

• In a normal condition tasks are executed by agents that need short time to process them.

• If there is a high demand of a type of tasks and there are no more agents that perform it
quickly, agents that perform it slowly start working for it.

• If an agent that performs a type of task quickly and an other agent that performs the
same type slowly are both specialized for that type, the quicker agent should have a higher
probability to process it.

Figure 6 shows a typical ATAc behavior on this particular DTA problem instance. At the beginning
of the experiment agent 1 and 2 within subset S1 start to perform type 1 tasks and become
specialized on it (Figure 6(b), times 0-150). Instead, agent 3 and 4 within subset S2 that are able
to perform type 2 tasks quickly, become specialized on that type (Figure 6(c)).

The asymmetric probability mix at time 100 increases the demand of type 1 tasks (Figure 6(a))
but in the system all the agents of subset S1 are busy so at time 150 the high stimulus of type 1
leads agent 4 of the subset S2 to work on type 1 tasks (Figure 6(g), time 150). From time step 150
agent 4 becomes specialized in tasks of type 1. In fact, its threshold for that type of task is close
to 0 (Figure 6(g), time 150-end). Agent 3 still works on tasks of type 2. In fact, its threshold value
for that type of task is close to 0 (Figure 6(f), time 0-end). Table 1(b) represents the number of
worked tasks at the end of the experiment and confirms that type 1 tasks are performed principally
by subset S1 and type 2 tasks by subset S2, that is, agents that are able to perform tasks quickly,
using the DPS rule, really process them.

6 Empirical Analysis

Previous works on the homogeneous case of the DTA problem [7, 8, 15] analyze few and sometimes
simple instances of the problem where it is difficult to show that an algorithm performs better
than another one. It is possible that a simple modification of the instance leads to a drastic
performance decrease. Moreover, little or no analysis has be done to show the contribution of the
proposed rules.

The aim of this section is to compare all the presented algorithms on the DTA problem and
analyze the influence of each presented rule on the makespan.

We have introduced two type of rules with the objectives to:

1. improve the algorithm of Cicirello et al. to particularly dynamic DTAHom problem instances.

2. extend all the insect-based algorithms with the DPS rule to improve the performance on
DTA problem instances.

14

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

(a)

su
m

 o
f s

tim
ul

i Stimulus Task 1
Stimulus Task 2

0 50 100 150 200 250 300 350 400
0

1

2

3

(b)

nu
m

be
r

of
w

or
ke

rs

Cast 1 Task 1
Cast 2 Task 1

0 50 100 150 200 250 300 350 400
0

1

2

3

(c)

nu
m

be
r

of
w

or
ke

rs

Cast 1 Task 2
Cast 2 Task 2

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

(d)

th
re

sh
ol

ds

θ
1,1

 Agent 1 Task 1
θ

1,2
 Agent 1 Task 2

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

(e)

th
re

sh
ol

ds

θ
2,1

 Agent 2 Task 1
θ

2,2
 Agent 2 Task 2

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

(f)

th
re

sh
ol

ds

θ
3,1

 Agent 3 Task 1
θ

3,2
 Agent 3 Task 2

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

(g)

th
re

sh
ol

ds

θ
4,1

 Agent 4 Task 1
θ

4,2
 Agent 4 Task 2

Figure 6: The graphs show the tasks stimuli, the number of working agents for each type of task
and the dynamics of the threshold values of each agent. At the beginning of the experiment only
agents 1 and 2 work on type 1 tasks (Figure (b)), and only agents 3 and 4 on type 2 (Figure (c)).
Type 1 stimuli increases from time 100 to 150 (Figure (a)) until when the agent 4 (Figure (g))
starts to work on this type. From time 150 to the end of the experiment type 1 stimuli become
low (Figure (a)). From this time on, all the agents of the subset S1 (Figure (b)) and one agent
of the subset S2 work for tasks of type 1. Agent 3 is enough to satisfy the low demand of type 2
tasks.

15

Table 2: Summary of the classes of instances of the DTA and DTAHom problem considered in the
experiments.

DTAHom Class DTA Class
Subsets of agents 1 2
Max. number of agents 24 12
Broken probability 0.02 0.02
Queue length 10 5
Process Time 5 3-9
Setup Time 10 10
Simulation Time 420 420
Number of Tasks 2016 840
Avg. types of tasks 12 10
Types mixes 1)P (1..n/4) = 3P (n + 1/4..n) 1)P (1..n/2) = 3P (n + 1/2..n)

2)like 1, switch after 210 steps 2) like 1, switch after 210 steps
Probability between mixes 0.5 0.5

According to this, we present two experiments: one that uses a class of instances of the homoge-
neous problem and another one that uses a class of instances of the heterogeneous problem.

In the following section we describe the instance generators, a summary of the algorithms we
use in the experiments and the methodology to tune their parameters. Afterwards, Section 6.2
describes the obtained results.

6.1 Setup

A lot work has been done to make a strict configuration and evaluation of the experiments. First
of all in our experiments we consider classes of instances of the problem. A class contains problem
instances that differ by variables such as the number of working agents, the task types and the
color probability mix. In this section we define two problem classes in order to describe two
real-world painting environments. Afterwards, for each considered algorithm we present the best
combination of the parameter values tuned by an Evolutionary Algorithm (EA). Moreover, we
summarize all the algorithms we use in the experiments and we introduce a simple, non-adaptive
algorithm in order to emphasize during the results analysis the differences between adaptive and
non-adaptive systems.

6.1.1 Instance Generators

An instance generator is a tool able to generate various instances from a class of the problem. We
consider two instance generators able to obtain two classes of instances of the DTA problem. While
the first one creates instances of the homogeneous problem, the second one creates instances of the
heterogeneous problem. The first class of instances contains all instances with identical agents.
On this class we are able to compare all the presented algorithms and to study the performance
of each rule introduced in ATA. The second class of instances contains two subsets of agents, the
first one able to perform quickly half of the types of tasks, while the second one has the opposite
behavior. Applying on this class the original algorithms for the DTAHom problem and the insect-
based algorithms with the DPS rule, we are able to compare the performance of each algorithm
and to understand the contribution of the introduced rule. Table 2 summarizes the configurations
of the two considered classes of instances. Instances within a same class may differ by the number
of agents, the number of task types and the type of the probability mix of the tasks. In the
following we describe each class separately.

16

10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of colors

P
ro

ba
bi

lit
y

0.08 0.08

0.02 0.02

0.8

Figure 7: Probability distribution of the number of colors for the DTAHom experiment.

DTAHom Class This class contains all instances of the homogeneous problem where the agents
are identical. In this class we try to simulate a typical working day of a big painting factory.
According to this, the experimental time is equal to 420 minutes, that is, 7 working hours. The
agents are 24 identical painting booths. In order to simulate the possibility to have some booths
broken we introduce a variability on the number of maximum booths each instance has. We refer
this variability to as broken probability. The broken probability for this class of the problem is
equal to 0.02. Here the agents have a queue size equal to 10. The process time of each booth is
equal to 5 minutes, 10 minutes are needed for a reconfiguration.

The number of trucks that exit the assembly line is equal to 2016 and is independent of the
number of agents. This number is chosen because it is the maximum number of trucks that 24
booths can paint considering the process time, no setups and no idle time.

For this class we extract the number of colors from the probability distribution presented in
Figure 7. Color types are assigned to the trucks according to the two mixes:

1. A part of the n colors have an higher probability than the others:
⎧⎨
⎩

∑�n/4�
i=1 P (i) = 3

∑n
j=�n/4�+1 P (j)

P (1) = · · · = P (�n/4)
P (�n/4	 + 1) = · · · = P (n)

2. like the previous one, but after 210 minutes types that appear more frequently appear more
rarely and vice versa.

Each instance uses with the same probability one mix or the other.

DTA Class This class contains instances of the heterogeneous problem where the agents differ
by their processing speed. In this class we try to simulate a typical working day of a medium
painting factory. Trucks exit from the assembly line for 420 minutes. We consider 12 painting
booths with a probability of being broken that is equal to 0.02. Each agent has a queue size equal
to 5. In this case there are two subsets of agents: one needs 3 minutes to process the first half
of the available types of tasks and 9 minutes for the other half instead the other subset has the
opposite behavior. For both the subsets the setup time is equal to 10 minutes.

The number of trucks exiting the assembly line is always equal to 840, which is the maximum
number of trucks that 12 booths can paint considering an average process time of 6 minutes, no
setups and no idle time.

For this class we extract the number of colors from the probability distribution presented in
Figure 8. Color types are assigned to the trucks according to the two mixes:

17

8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of colors

P
ro

ba
bi

lit
y

0.8

0.08 0.08

0.02 0.02

Figure 8: Probability distribution of the number of colors for the DTA experiment.

Table 3: Summary of the algorithms applied in both the experiments.

DTAHom Class DTA Class
MBA MBA -
ABA ABA ABAc

LOCUST LOCUST -
R-WASP R-WASP R-WASPc

ATA ATA ATAc

1. A part of the n colors have an higher probability than the others:

⎧⎨
⎩

∑�n/2�
i=1 P (i) = 3

∑n
j=�n/2�+1 P (j)

P (1) = · · · = P (�n/2)
P (�n/2	 + 1) = · · · = P (n)

2. like the previous one, but after 210 minutes types that appear more frequently appear more
rarely and vice versa.

Each instance uses with the same probability one mix or the other.

6.1.2 Algorithms Summary

Table 3 summarize all the algorithms we use during the empirical analysis. We consider a class
of instances of the homogeneous (DTAHom) problem and a class of the heterogeneous (DTA)
problem. We run on the DTAHom problem instances the market-based algorithm MBA of Morley
described in Section 3.1.1, the insect-based algorithm ABA of Campos et al. described in Section
3.2.1, the insect-based algorithm R-WASP of Cicirello et al. described in Section 3.2.2 and our
proposed algorithm ATA described in Section 4. For the DTA problem we run all the original
algorithms and the three insect-based algorithms with the DPS rule.

In the following we present LOCUST , a dummy, non-adaptive algorithm used as a base-line
for evaluationg the performances of the presented algorithms. In both the experiments we apply
also this algorithm in order to have a comparison between adaptive and non-adaptive systems.
LOCUST has functionalities inspired by the presented algorithms but it does not consider the
specialization of each agent. It is described in the following.

18

The LOCUST algorithm: In this algorithm agents are independent units that autonomously
bid to obtain tasks using a force value which is obtained by the sum of the time the agent needs to
finish the working task plus the sum of processing times of each task in its queue and the current
task plus the possible setup times between each queued task. At each time step agents bid to
obtain tasks if their queue are not full. The agent with the lower force is assigned the task at the
end of its queue. If two or more agents have the same force, the winner is chosen randomly. If
no agents bid for a task, the task remains in the storage. For this simple algorithm no parameter
tuning is necessary.

6.1.3 Parameters Tuning

The aim of the tuning is to find a good set of parameter values for each algorithm. We apply
the tuning for all the algorithms considered in this paper because each one has some parameters
to determine. In the MBA algorithm we tune the three constants in Equation 2. In the ABA
algorithm we tune the constants α and β of Equation 12 and the two constants used in the update
rules. In the R-WASP algorithm we tune the constants presented in the three update rules and
in the ATA algorithm the same constants of R-WASP plus the one for the new IMB rule. For
the insect-based algorithms we fix the range of the thresholds to θmin = 1 and θmax = 500. The
initial threshold θinit is fixed to 1.

Table 4 describes for each algorithm used in this experiment which parameters are tuned,
the relative range and the values found. To tune the parameters of the algorithms we use an
Evolutionary Algorithm (EA). The evaluation has been done as follows: we define a cost function,
that in our case is the makespan to be minimized. Each population of the EA is composed by
20 individuals. An individual represents a set of values of the parameters to be tuned. Each
individual is evaluated on 40 instances of the considered problem class and the average of the
makespan values is its cost value. For each instance we execute a single run of the algorithm to be
tuned. Individuals of a population are evaluated on the same 40 instances of the considered class.
In this tuning we stop after 40 generations because normally after 15 generation the cost function
becomes stable. Between generations the instances are changed to avoid using not representative
instances of the class. Additionally, the tuning considers the elitism between generations so that the
best 4 individuals of the previous generation are used in the new one and the other 16 individuals
are generated using a self-adaptive (µ + λ) evolutionary strategy [21, 1]. If an algorithm is used
in both the experiments we apply the parameters tuning twice.

Data show a kind of symmetry in the insect-based algorithms between the increment and the
decrement of threshold update factors. It means that the agents become specialized during the
experiment. Further information concerning the EA, the tuning logs, the generations values, the
best individual of each generation and all the cost function values, are available at the paper web
page with address http://iridia.ulb.ac.be/∼rghizzioli/dta/.

6.2 Results

In this section we present and compare the results obtained by the algorithms in the two sets
of experiments: the homogeneous case is presented in Section 6.2.1 and the heterogeneous case
is presented in Section 6.2.2. The results are achieved running the algorithms of Table 3 on the
classes of instances summarized in Table 2 using the parameters of Table 4 on 1000 problem
instances. Our main performance measure is the makespan. For completeness and for a better
understanding we also present the number of setups per agent and the storage dimension. For
each experiment we show the contribution to the makespan given by each introduced rule.

6.2.1 DTAHom Class

The homogeneous case of the DTA problem considers a single set of identical agents. In this case
agents should specialize on one type of task in order to minimize the required number of setups.
A good distribution of the task types between the agents allows a low makespan. Results about

19

Table 4: Summary of the parameter values for all algorithms used in the empirical analysis for
both experiments. In the first column there is the names of the algorithm and the names of the
tuned parameters. The second column contains the range for each parameter. The third and the
fourth column contain the values tuned by the Evolutionary Algorithm. If a value is equal to 0,
this means that for that contest the respective rule is not important.

Range DTAHom Class DTA Class
MBA
P (0-100) 46 11
C (0-10000) 7200 5710
L (0-5) 2.78 2.25
ABA
ξ (0-500) 475 215
ϕ (0-500) 67.5 30
α (0-100) 44.6 78
β (0-50) 2 2.5
R-WASP
ξ (0-500) 345 310
ϕ (0-500) 480 26
δ (0-500) 490 0
ATA
ξ (0-500) 165 224
ϕ (0-500) 205 115
δ (0-500) 1.2 0
γ (0-500) 34 0
ABAc
ξ (0-500) - 430
ϕ (0-500) - 450
α (0-100) - 98
β (0-50) - 2.95
R-WASPc
ξ (0-500) - 395
ϕ (0-500) - 6
δ (0-500) - 0.5
ATAc
ξ (0-500) - 95
ϕ (0-500) - 65
δ (0-500) - 0
γ (0-500) - 25

20

Table 5: Summary of the makespan values for all the algorithms run on the class of instances
of the DTAHom problem. The table shows the quantile values, the mean, the minimum and the
maximum values achieved by each algorithm. The median values show that ATA performs better
than the other algorithms. ATA, compared with the other algorithms, is also a stable algorithm
because has smaller difference between the 1st and the 3rd quantile. For a graphical view see
Figure 9. For a statistical analysis see Table 6.

ATA R-WASP ABA LOCUST MBA
Min. 472.0 588.0 717.0 803.0 464.0
1st Qu. 497.0 749.0 843.8 944.0 484.0
Median 509.0 812.5 887.0 980.0 531.5
Mean 513.4 808.0 895.9 984.1 599.2
3rd Qu. 525.0 864.0 940.3 1017.0 706.0
Max. 699.0 1066.0 1156.0 1217.0 1042.0

Table 6: Paired Wilcoxon Rank Sum Test applied on the makespan values of the algorithms on
the class of instances of the homogeneous problem. Values are obtained with a confidence level
of 95%. All results given by this table assure that differences between algorithms on the median
values of the makespan are significant.

ABA R-WASP LOCUST MBA
R-WASP < 2.2e−16 - - -
LOCUST < 2.2e−16 < 2.2e−16 - -
MBA < 2.2e−16 < 2.2e−16 < 2.2e−16 -
ATA < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16

the makespan are shown in Table 5 and in Figure 9. ATA achieves the best results because, as
we showed, it has a high level of plasticity to the environmental changes. Furthermore, the 1000
makespan values produced by ATA are very similar and compared with the results obtained by
the other algorithms it seems that ATA is not influenced by the variability between instances in
the class. In the next paragraph we show the significance of each rule introduced in ATA. As
can be observed, the algorithm of Campos et al. does not obtain good results for this class of
instances of the DTAHom problem. It is also interesting to show a linear performance improvement
in time of the insect-based algorithms. Moreover, the market-based algorithm MBA reaches good
performance for this class of instances.

To be sure of the real significance of the obtained results we apply a Wilcoxon Paired Rank
Sum Test as presented in Table 6. The values show that different results of the makespan between
algorithms are significantly different with a confidence level of 95%.

Figure 10shows the box plot of the number of setups per agent and the storage dimension for
each algorithm applied to the DTAHom class. These graphs have are similar to the makespan
box plot of Figure 9. They reconfirm that ATA has the best performances also considering the
number of setups and storage dimension.

The average number of setups of an agent for the ATA algorithm is 3.939 and, on average,
61.47 trucks wait in the storage.

The significance of the introduced rules for the DTAHom problem ATA is the solution
we propose to solve the homogeneous case of the DTA problem. ATA is an extension of R-WASP
with all the proposed rules TUR,CFV, DOC and IMB activated. Here we perform a statistical
analysis to understand the contribution that each rule gives to the makespan.

First of all, as shown in Figure 11, we use a binary notation for each possible configuration of

21

ATA R.WASP ABA LOCUST MBA

60
0

80
0

10
00

12
00

Values of the Makespan

Algorithms

M
ak

es
pa

n

Figure 9: Box plot of the values and of the ranks of the makespan for all the algorithms run on the
class of instances of the homogeneous problem. ATA is the algorithm that has the lower makespan
and the smaller quantile representation area.

22

ATA R.WASP ABA LOCUST MBA

0
10

20
30

40
50

60
70

Number of Setups

Algorithms

S
et

up
s

ATA R.WASP ABA LOCUST MBA

0
20

0
40

0
60

0
80

0
10

00

Size of the Stock

Algorithms

S
to

ck

Figure 10: Number of setups per agent and storage dimension for the homogeneous experiment.
Both figures have a form similar to Figure 9. Obviously, a low makespan implies a low number of
setups and a low storage usage.

23

1 1 1 1

TUR CFV DOC IMB

Figure 11: Coding system used to indentify the 16 configurations of the proposed algorithm.

Table 7: Analysis of variance. The asterisks indicates significance.

Df Sum Sq Mean Sq F -value Pr(> F)
TUR 1 4258.2 4258.2 60415.9493 ¡ 2.2e-16 ***
CFV 1 0.1 0.1 1.1285 0.2881
DOC 1 31.3 31.3 444.1618 ¡ 2.2e-16 ***
IMB 1 107.5 107.5 1525.5993 ¡ 2.2e-16 ***
TUR:CFV 1 9.5 9.5 134.4396 ¡ 2.2e-16 ***
TUR:DOC 1 0.001543 0.001543 0.0219 0.8824
CFV:DOC 1 3.4 3.4 48.7311 3.051e-12 ***
TUR:IMB 1 10.9 10.9 155.3420 ¡ 2.2e-16 ***
CFV:IMB 1 3.7 3.7 51.7992 6.421e-13 ***
DOC:IMB 1 2.4 2.4 34.5107 4.323e-09 ***
TUR:CFV:DOC 1 29.5 29.5 418.5021 ¡ 2.2e-16 ***
TUR:CFV:IMB 1 3.6 3.6 50.5260 1.226e-12 ***
TUR:DOC:IMB 1 2.0 2.0 28.4315 9.839e-08 ***
CFV:DOC:IMB 1 16.1 16.1 228.8127 ¡ 2.2e-16 ***
TUR:CFV:DOC:IMB 1 2.1 2.1 30.1007 4.164e-08 ***

Residuals 15984 1126.6 0.1

ATA. For example 0000 indicates that no rules are activated, 1000 only TUR, 0100 only CFV, 0010
only DOC, 0001 only IMB, 0110 CFV and DOC, etc. Makespan data are collected by running
all these 16 configurations on 1000 instances on the DTAHom problem after a parameter tuning
of each of them. The evolutionary algorithm and the methodology used are described in Section
6.1.3. Parameters belonging to unused rules are not tuned.

A first analysis of these data is shown in Figure 12(a) and in Figure 12(b). Our results show
that, on average, configuration 1011 performs better than all the others and that ATA is very close
to it. Moreover, all possible configurations have a lower makespan than the solution of Cicirello
et al. (configuration 0000). Figure 12(b) shows that results in the right part of the graph, with
the TUR rule activated, are significativelly better than those in the left part of the graph where
the rule is deactivated.

Figure 13 and Figure 14 show the contribution that each rule gives to the makespan averaged
on all configurations where a considered rule is activated independently the other rules. We clearly
observe that if TUR is activated there is a large difference on the makespan values. Instead, the
CFV rule does not give any apparent contribution to the results. Finally, DOC and IMB give
similar contribution to the makespan.

In order to formally assess the contribution of the different rules and their interactions, ac-
cording to [23], we have considered an ANOVA analysis. As it can be observed in Figure 15, the
residual of the makespan data does not meet the hypothesis of the ANOVA test, that is, linearity
and heteroskedasticity. Therefore, the analysis was not conducted on makespan data but on the
following transformation: x′ = log(420 − x) where x represents a single makespan result. Figure
16 shows that after transforming the makespan values the residuals are reasonably fine.

24

Figure 12: Makespan values obtained by each configuration of ATA activating and deactivating
the proposed rules on the DTAHom problem class. For the coding system used to refer to the
algorithms see Figure 11.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0000 588 749.0 812.5 808.0 864.0 1066
0001 544 644.0 703.5 714.5 774.3 1020
0010 476 650.8 709.0 717.4 772.0 1003
0011 521 612.0 669.0 684.0 741.0 999
0100 546 660.0 716.5 725.3 784.0 1040
0101 511 625.0 682.0 693.4 751.0 992
0110 554 699.0 756.0 760.8 817.3 1060
0111 517 607.0 665.0 678.8 738.0 976
1000 488 515.0 526.0 533.3 544.0 702
1001 474 500.0 513.5 516.1 527.0 687
1010 481 512.0 525.0 530.5 541.3 714
1011 474 496.0 508.0 512.6 523.0 681
1100 487 515.0 528.0 533.4 543.0 714
1101 489 518.0 531.0 537.6 548.0 740
1110 473 510.0 522.0 526.9 537.0 706
1111 472 497.0 509.0 513.4 525.0 699

(a)

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

50
0

60
0

70
0

80
0

90
0

10
00

M
ak

es
pa

n

(b)

25

50
0

60
0

70
0

80
0

90
0

10
00

Instances

M
ak

es
pa

n

1 38 81 131 187 243 299 355 411 467 523 579 635 691 747 803 859 915 971

 Rule TUR

0
1

(a)

55
0

60
0

65
0

70
0

75
0

80
0

85
0

Instances

M
ak

es
pa

n

1 38 81 131 187 243 299 355 411 467 523 579 635 691 747 803 859 915 971

 Rule CFV

1
0

(b)

Figure 13: Makespan values on the ranked instances considering the rules TUR and CFV.

26

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

Instances

M
ak

es
pa

n

1 38 81 131 187 243 299 355 411 467 523 579 635 691 747 803 859 915 971

 Rule DOC

0
1

(a)

55
0

60
0

65
0

70
0

75
0

80
0

85
0

Instances

M
ak

es
pa

n

1 38 81 131 187 243 299 355 411 467 523 579 635 691 747 803 859 915 971

 Rule IMB

0
1

(b)

Figure 14: Makespan values on the ranked instances considering the rules DOC and IMB.

27

−4 −2 0 2 4

−
4

−
2

0
2

4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(a)

550 600 650 700 750 800

−
20

0
−

10
0

0
10

0
20

0
30

0

Fitted

R
es

id
ua

ls

(b)

Figure 15: Residual check of the linear model using makespan data.

28

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(a)

4.6 4.8 5.0 5.2 5.4 5.6 5.8

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Fitted

R
es

id
ua

ls

(b)

Figure 16: Residual check of the linear model using a transformation of the makespan data.

29

Table 8: Summary of the makespan values for all algorithms run on the class of instances of the
heterogeneous problem. We compare the original algorithms and the insect-based algorithms with
the Different Process Speed (DPS) rule activated. The median values show that algorithms with
the DPS rule perform better than the respective algorithms without this rule. Again, ATA is
the algorithm that has better performance compared with the others original algorithms. For a
graphical view of these results see Figure 17. For a statistical test on these data we refer to Table
9.

ATA R-WASP ABA LOCUST MBA ATAc R-WASPc ABAc
Min. 427.0 487.0 428.0 647.0 429.0 428.0 426.0 426.0
1st Qu. 521.0 795.0 884.0 928.0 861.8 471.0 460.0 678.0
Median 548.0 847.0 941.5 952.0 906.0 486.0 506.0 837.0
Mean 557.5 845.6 917.8 959.5 896.4 485.6 525.6 790.7
3rd Qu. 578.0 897.3 979.0 977.3 944.0 499.0 561.0 913.0
Max. 956.0 1273.0 1341.0 1329.0 1321.0 622.0 1018.0 1311.0

Table 9: Paired Wilcoxon Rank Sum Test applied on the makespan of the algorithms on the class
of instances of the heterogeneous problem. Values are obtained considering a confidence level of
95%. The table assures that differences between algorithms on the median values are significant.

ABA R-WASP ABAc R-WASPc ATAc LOCUST MBA
R-WASP < 2.2e−16 - - - - - -
ABAc < 2.2e−16 < 2.2e−16 - - - - -
R-WASPc < 2.2e−16 < 2.2e−16 < 2.2e−16 - - - -
ATAc < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 - - -
LOCUST < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 - -
MBA < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 -
ATA < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16

An ANOVA analysis on this model is show in Table 7. The data show that TUR gives a large
contribution to the makespan while CFV does not. Furthermore, also IMB and DOC bring a
contribution less important than TUR but still significant.

6.2.2 DTA Class

This experiment considers two subsets of agents: one performs fast in half of the available types
of tasks and slow in the second half and the other one vice versa. Agents should bid for tasks
that they are able to process quickly. Moreover, they take into account the task type in their
queue to minimize the number of setups. If an algorithm achieves this behavior it should obtain a
low makespan. A low makespan implies a low number of setups and a low storage usage. In this
experiment are compared all the original algorithms presented and the insect-based algorithms
with the DPS rule activated. The algorithms used in the previous experiments are applicable to
the heterogeneous case of the DTA problem. In fact they consider the different process times
during the dominance contest. Comparing the algorithms with and without the DPS rule we are
able to study its contribution.

Table 8 summarizes the makespan values achieved by each algorithm for this class of instances.
The respective box plot is presented in Figure 17. For this experiment ATAc obtains the best
results concerning the makespan and it is very close to the makespan lower bound (420 minutes).
Moreover, we observe that the performance order of the original algorithms is the same as observed
in Figure 9. Again, we confirm that adaptive algorithms perform better than the non-adaptive

30

ATA R.WASP ABA LOCUST MBA ATAc R.WASPc ABAc

40
0

60
0

80
0

10
00

12
00

Values of the Makespan

Algorithms

M
ak

es
pa

n

Figure 17: Box plot of the makespan values for all the eight algorithms run on the class of instances
of the DTA problem. The figure confirms that ATAc is the algorithm that achieves the best results
and that the extended algorithms perform better than the original ones. The DPS rule gives a high
improvement of the performance especially to the R-WASP algorithm. Moreover, considering the
relative position of the first five box plot with that ones in Figure 9 we can show that the MBA
algorithm performs worse in this experiment and is near the ABA performance.

31

algorithm LOCUST . Only MBA has a worsening of performance. Algorithms with the DPS rule
applied perform better than the respective algorithms without this rule. A deeper analysis about
the makespan contribution of this rule is in the following paragraph.

To be sure of the real significance of the obtained results we applied a Wilcoxon Paired Rank
Sum Test. The results presented in Table 9 show that different results of the makespan between
algorithms are significantly different with a confidence level of 95%.

Figure 18 shows a box plot of the number of setups per agent and the storage dimension.
Again, the trend is similar to the makespan plot of Figure 17. MBA has bad performances for
setups and storage.

The significance of the DPS rule on the DTA problem The introduced rule gives a high
bid probability to an agent that has a low process time for the current task. In this experiment
we saved for each instance the makespan value that each algorithm achieves. For each pair of the
insect-based algorithms and for each of the 1000 instances we evaluated and sorted the makespan
differences. The results are presented in Figure 19. In most cases, differences are positive so
the makespan of the original algorithm is higher than the extended algorithm. This behavior
is similar for all the three algorithms considered. R-WASPc is the algorithm that receives the
highest advantage from this rule.

7 Conclusions

In this paper we presented Ant Task Allocation (ATA), an algorithm inspired by the division of
labor of social insects and based on the work presented by Cicirello et al. [8]. ATA introduces four
rules in order to speed up the adaptation process for particularly unpredictable instances of the
homogeneous case of the Dynamic Task Allocation (DTA) problem. Moreover, we presented the
Different Process Speed (DPS) rule inspired by the division of labor observed in castes of social
insects and applied to all the insect-based algorithms. Its aim is to increase the performance for the
heterogeneous case of the DTA problem. This rule takes into account the different process time that
agents have for different types of tasks during the bidding process. To understand the impact of the
proposed algorithm we conducted a comparison with other solutions available in the literature for
the DTA problem. We considered two possible real-world situations: a big painting factory with
identical working agents and medium factory with two heterogeneous subsets of working agents.
Particular attention was put on the experimental conditions and on the statistical analysis.

We have shown that ATA achieves the best results for the considered class of homogeneous
problems and that ATA with the DPS rule activated (ATAc) achieves the best results for the con-
sidered class of heterogeneous problems. We have also observed that all adaptive algorithms always
achieve better results than the non-adaptive LOCUST algorithm. Furthermore, we have shown
that the Market Based Approach (MBA) achieves interesting results for the homogeneous case of
the problem but not for the heterogeneous case. Moreover, the performance of the insect-based
algorithms are ranked according to the time they was made. In fact the algorithm of Campos’ et
al. does not obtains good results, the algorithm of Cicirello et al. gives a significant improvement
to the performance obtained by Campos’ et al. as they show in paper [8] and our algorithm
improves again the results of the solution of Cicirello et al.

Another important contribution of this paper has been the understanding the contribution of
each introduced rule to the makespan. We have shown that ATA with the four active rules per-
forms better than the original algorithm proposed by Cicirello et al. [8]. Moreover, our results
show that the introduced rule Threshold Update Rule (TUR) gives a large contribution to the
makespan while the rule Calculation of the Force Variable (CFV) does not. Furthermore, also
the rule Idle Machine does not Bid (IMB) and the rule DOminance Contest (DOC) bring a con-
tribution less important than TUR, but still significant. Finally, we showed that the DPS rule
significantly improves the performances of all insect-based algorithms on the heterogeneous case
of the DTA problem.

32

ATA R.WASP ABA LOCUST MBA ATAc R.WASPc ABAc

0
20

40
60

80

Number of Setups

Algorithms

S
et

up
s

ATA R.WASP ABA LOCUST MBA ATAc R.WASPc ABAc

0
10

0
20

0
30

0
40

0
50

0

Size of the Stock

Algorithms

S
to

ck

Figure 18: Number of setups per working agent and storage dimension for the experiment with
heterogeneous working agents. Both the graphs show a trend similar to that one in Figure 17.
Again, values of ATAc algorithm are the best ones. The DPS rule gives a significant increment
also on these performances.

33

0 200 400 600 800 1000

0
10

0
20

0
30

0

Performance differences between ATA and ATAc

Number of instances

D
iff

er
en

ce

0 200 400 600 800 1000

0
20

0
40

0
60

0

Performance differences between R−WASP and R−WASPc

Number of instances

D
iff

er
en

ce

0 200 400 600 800 1000

−
40

0
−

20
0

0
20

0
40

0
60

0

Performance differences between ABA and ABAc

Number of instances

D
iff

er
en

ce

Figure 19: Makespan differences for the three insect-based algorithms without and with the DPS
rule. The graphs show that for all the algorithms and for the major number of the 1000 instances
considered the difference between the algorithm without and with the DPS rule is positive. This
means that the DPS rule gives clearly a benefit to the makespan values.

34

We believe that this paper, beside introducing some original algorithms, also gives a clear and
simple methodology to perform the experiments. Furthermore, it summarizes the work made
until now on the DTA problem.

To complete this paper we have built a web site http://iridia.ulb.ac.be/∼rghizzioli/
dta/ where it is possible to find the results, the source code of the instance generator, the algo-
rithms and the EA tuner with interesting literature links. We hope other researchers will use this
work as a starting point for new DTA problem extensions or to propose new algorithms to solve
it.

References

[1] H.-G. Beyer. The Theory of Evolution Strategies. Springer, Berlin, Germany, 2001.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, New York, NY, 1999.

[3] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J.-L. Deneubourg. Adaptive Task Allocation
Inspired by a Model of Division of Labor in Social Insects. In D. Lundh, B. Olsson, and
A. Narayanan, editors, Biocomputing and Emergent Computation, pages 36–45, Singapore,
1997. World Scientific.

[4] E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Quantitative Study of the Fixed Thresh-
old Model for the Regulation of Division of Labour in Insect Societies. In Proceedings Roy.
Soc. London B, volume 263, pages 1565–1569, 1996.

[5] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters: An Introduction
to Design, Data Analysis, and Model Building. Wiley-Interscience, 1978.

[6] N. W. Calderone and R. E. Page. Temporal polyethism and behavioural canalization in the
honey bee. Apis mellifera. Anim. Behav., 51:631–643, 1996.

[7] M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Dynamic Scheduling and
Division of Labor in Social Insects. Adaptive Behavior, 8:83–96, 2000.

[8] V. A. Cicirello and S. F. Smith. Wasp-like Agents for Distributed Factory Coordination. Tech-
nical Report CMU-RI-TR-01-39, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, Pittsburgh, PA, December 2001.

[9] S.-H. Clearwater. Market-Based Control: A Paradigm for Distributed Resource Allocation.
World Scientific, Singapore, 1996.

[10] E. H. Durfee and V. Lesser. Negotiating Task Decomposition and Allocation Using Partial
Global Planning. Distributed Artificial Intelligence, 2:229–244, 1989.

[11] B.-A. Huberman and S.-H. Clearwater. Thermal markets for controlling building environ-
ments. Energy Engineering, 91:26–56, 1994.

[12] B. A. Huberman and T. Hogg. Distributed Computation as an Economic System. Journal
of Economic Perspectives, pages 141–152, 1995.

[13] J. F. Kurose and R. Simha. A microeconomic approach to optimal resource allocation in
distributed computer systems. IEEE Transactions on Computers, 38:705–717, 1989.

[14] R. Morley. Painting Trucks at General Motors: The Effectiveness of a Complexity-Based
Approach. Embracing Complexity: Exploring the Application of Complex Adaptive System to
Business, pages 53–58, 1996.

35

[15] S. Nouyan. Agent-Based Approach to Dynamic Task Allocation. In M. Dorigo, G. Di Caro,
and M. Sampels, editors, Proceedings of ANTS 2002 – Third International Workshop on Ant
Algorithms, volume 2463 of Lecture Notes in Computer Science, pages 28–39. Springer Verlag,
Berlin, Germany, 2002.

[16] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood Cliffs,
Englewoods Cliffs, NJ, 1995.

[17] G. E. Robinson. Modulation of alarm pheromone perception in the honey bee: evidence for
division of labor based on hormonally regulated response thresholds. J. Comp. Physiol., A
160:613–619, 1987.

[18] G. E. Robinson. Regulation of division of labor in insect societies. Annu. Rev. Entomol.,
37:637–665, 1992.

[19] G. E. Robinson, R. E. Page, and Z.-Y. Huang. Temporal polyethism in social insects is a
developmental process. Anim. Behav., 48:467–469, 1994.

[20] R. Schwartz and S. Kraus. Bidding mechanisms for data allocation in multi-agent environ-
ments. Lecture Notes in Computer Science, 1365:61–76, 1998.

[21] H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, Technische
Universität Berlin, 1975.

[22] G. Theraulaz, E. Bonabeau, and J.-L. Deneubourg. Response Threshold Reinforcement and
Division of Labour in Insect Societies. In Proceedings of the Royal Society of London B,
volume 265, pages 327–335, 1998.

[23] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S-PLUS - Third Edition.
Springer, New Your, USA, 1999.

[24] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O. Kephart, and W. Scott
Stornetta. Spawn: A distributed computational economy. Software Engineering, 18(2):103–
117, 1992.

[25] E. O. Wilson. The relation between caste ratios and division of labour in the ant genus
phedoile. Behav. Ecol. Sociobiol., 16:89–98, 1984.

[26] M. Wooldridge and N. Jennings. Intelligent Agents: Theory and Practice. The Knowledge
Engineering Review, 10, 1995.

36

