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We propose a network architecture which uses a single internal layer
of locally-tuned processing units to learn both classification tasks and
real-valued function approximations (Moody and Darken 1988). We
consider training such networks in a completely supervised manner,
but abandon this approach in favor of a more computationally effi-
cient hybrid learning method which combines self-organized and su-
_pervised learning. Our networks learn faster than backpropagation for
two reasons: the local representations ensure that only a few units re-
spond to any given input, thus reducing computational overhead, and
the hybrid learning rules are linear rather than nonlinear, thus leading
to faster convergence. Unlike many existing methods for data analysis,
our network architecture and learning rules are truly adaptive and are
thus appropriate for real-time use.

Neurons with response characteristics which are “locally-tuned” or
“selective” for some range of the input variables are found in many
“parts of nervous systems. For example, the cochlear stereocilia cells have .._
locally-tuned response to frequency, while cells in somatosensory cortex
respond selectively to stimulation from localized regions of the body sur-
face. The orientation-selective cells in visual cortex respond selectively
to stimulation which is both local in retinal position and local in angle of
object orientation, while cells in nucleus laminaris of barn owl are tuned
to specific interaural time delays. Populations of locally-tuned cells are
typically arranged in cortical maps in which the values of the variables
to which the cells respond vary with position in the map.

The locally-tuned response of the stereocilia cells is a consequence of
their biophysical properties. In the three other examples, however, the
locality of response is a consequence of the network architecture of each
of the various systems. In these cases, the response is local not in specific
pre-synaptic activities, but rather in variables which have meaning only
at a systems level. This locali% a computational property of the system
and should not be confused with the biophysical response properties of
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cells, which are usually treated in the abstract as a thresholding of a
_weighted sum of inputs.

In this letter, we present a simple, idealized network model based
upon abstract processing units with locally-tuned response functions. We
consider training such a network using purely supervised learning, but
conclude that this offers no significant adva ntaEe:s over backpropagation.
We then show that such a network can be efficiently trained to perform
computationally interesting tasks via a combination of linear supervised

' and linear self-organizing techniques. The combination of locality of rep-

resentation and linearity of learning offers tremendous speed advantages

relative to backpropagation.
As will become apparent, our model is best suited for leamning to
approximate continuous or piecewise continuous real-valued mappings
[: R* =" R™ where n is sufficiently small. This class of functions in-
cludes classification problems as a special case. The model is not well
suited to learning logical mappings such as parity, because such map-

pings are not usually piecewise continuous. Loy o
It should be noted at the outset that local methods for density esti-
mation (for example, Parzen Windows), classification, interpolation, and
approximation have been widely used for many years and are known to
have attractive computational properties including in some cases straight-
forward parallelizability and rapid speed of solution. However, most of

the local methods which have been studied are intrinsically “non-nétrall”
meaning that they can not be easily implemented in an adaptive network
of fixed architecture and size.
A network of M locally-tuned units (Moody and Darken 1988) (see

figure 1a) has an overall response function:

I= .34 T
fir) = z A*R*(1)

a=]

R = R(IE - 2] /o).

(1.1)

(1.2)

Here, £ is a real-valued vector in the input space, R” is the response
function of the a-th locally-tuned unit, Ris a1ad i'aug-s%.r_n' etric function
with a single maximum at the origin and which drops off rapidly to zero

at Targe radii, I° and o° are the center and width in the input space of
the a-th unit, and A® is the weight or :ﬁfﬁ:&iﬁ'ﬁfé wuaﬁ each
unit. For this work, we have chosen gaussian response functions with
unit normalization: TR

R°(1) = (1.3)

One can think of the functional representation in equation (1.1) as a de-
composition into basis functions which are not orthonormal, not uni-
formly distributed over the input space, and do not have uniform width
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Figure 1: A network of locally-tuned processing units (a) and a three layer
perceptron (b). Unit response functions are depicted graphically. Both networks
“have linear inputs and outputs. The network of locally-tuned units has a single
internal layer, while the perceptron has two internal layers of sigmoidal units.

With the addition of lateral connections between the processing units,
the network can djganucally jmduce the normalmed response function
(Moody 1989b): y
AR
_ b o -
This is essentially a weighted average or interpolation between weights
or learned function values A® of nearby processing units.
The locality of the unit response functions is important for attainin
| fast simulation speeds on serial machines. For any given input, only the
small fraction of processing units with centers very close (in the mput
space) to the input will respond with activations which differ significantly
from zero. Thus, only those with centers close enough to the input need

f(@) = (1.4)

to be evaluated and trained. We efficiently identify these units by par-
titioning the input space with an adaptive gnd (Omohundro 1987) and
doing a short search.

The functional forms given by equations (1.1) to (1.4) are special cases
of the kernel representations developed by statisticians. A number of
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powerful estimation and regression techniques exist for finding the best
“values of the parameters {z°,0°, A°}. However, many of these methods
are off-line, global, and are not easily adapted to real-time use.

We consider two styles of learning in our networks, a fully super-
vised method and a hybrid method which combines supervised with
self-organizing methods. We consider the fully supervised method first,
but abandon it in favor of the hybrid method. Both the supervised and
hybrid methods are easily implemented adaptively.

The fully supervised method uses an error measure £ defined at the .
output to vary all parameters {*,0°, A°} in a network of form (1.1). The
fotal squared error for an entire training set is: '

N
E=33 (@) - [, 15
i=1

where #; is the i-th training pattern, f is the total network output, and

f* is the desired result. The supervised method yields high precision

results, but places no architectural restrictions on the network parame-

ters. In particular, the widths ¢ are not restricted to remain small, so

a locally-tuned representation is not guaranteed. Thus, the supervised

learning method does not obtain the computational advantages of local-

ity. Furthermore, the supervised method casts learning as a non-linear

optimization problem; this results in both slow convergence and unpre-
dictable solutions (locally-tuned units are sometimes “squeezed out” of
the region of the input space which contains data).

It is interesting, however, to compare the learning performance of a
supervised network of gaussian units with a backpropagation network
of comparable size. Following Lapedes and Farber (Lapedes and Farber
1987), we consider a simple quadratic approximation problem, predicting
the evolution of the logistic map: zlt + 1] = 4z[t](1 — z[t]). The networks
of type (1.1) have 4, 5, or 6 internal gaussian units. The backpropaga-
tion network has a single internal layer with 5 sigmoidal units, a linear
output unit, and an additional linear connection between the input and
the output. All networks were trained using the conjugate gradient op-
timization procedure for 200 iterations (line minimizations) on a data set
of 1000 points and were tested on a data set of 500 points. The number of
modifiable network parameters, training set error, test set error, and total
computation time in Sun 3/50 CPU seconds is shown in the following
table:

Network #Par Time Train Ermor Test Error

5 Sigmoidal Units 17 3802 sec 0.58% 0.59%
w/ Linear Term

4 Gaussian Units 12 3137 sec  0.62% 0.64%
5 Gaussian Units 15 4278 sec  0.38% 041%

6 Gaussian Units 18 4945 sec -10.26% +0.27%
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Figure 2 Supervised learning solution found by a network of § gaussian units
(dashed lines) for the quadratic logistic mapping. The envelope of the gaussians
(solid line) for the region in which training data is present (the interval (0.1D
is bracketed by the rectangle. Notice that two of the gaussians have inverted

and flattened out to provide a nearconstant offset.

formance than the more traditional sigmoidal network and do 5o with

- —

Note that the networks with § and 6 gaussian units achieve better per-
2 comparable number of network parameters. This is ﬁﬂf.ﬁmﬂ

the gaussian shape Is better suited o0 3

Unfortupately, the gaussian units do not leam apprecabiy faster
the Backpropagation network, and there is no reason why they should
‘have. Furthermote, the gaussians assumed large widths, thus losing the
lecality intended in equation (L.1). A sample solution is shown in fig-
ure 2; mthﬂdﬂm for a sample solution found by a

sigmaodal net.

map.
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Since the supervised leaming method with gaussian units seems to
ofier no dramatic advantages over a standard backpropagation network,
we now consider a hybrid leaming method which yields linear learning

. rules and truly local representations. ' N e
' The hybrid learning process works as follows. First, the processing
un.t centers and widths are determined in a bottom-up or self-organizin
‘manner. Second, the amplitudes are found in 3 lopju-.-m manner using
the supervised LMS rule. The bottom-up component serves to allocate
network resources in a meaningful way by placing the unit centers in
only those regions of the input space where data is nt. It also dra-
matically reduces the amount o; computational time required by super-
vised learning, since only the output weights (unit amplitudes) must be
\_cll_ ing an eﬁn'u:Lg'ru]._"'“”"' P ’
1" Although our overall network response functions in equations (1.1)
" and (T3 are nonlinear, each of our learning rules is based on minimizing
] a purely quadratic objective function. This reduces the learning proce-
. dure t0 a set of simple linear update rules. el e
The standard k-means clustering algorithm (Lloyd 1957; MacQueen
1967) is used to find a set of k processing unit centers which represent
2 local minimum of the total squared euclidean distances £ between the
N_exemplars (training vectors) 7, and the nearest of the K centers ,: -

E=Y ¥ M. -2, (1.6

aslh =lLN

1

‘Here, M, is the cluster membershi function, which is a k x N' matrix of

0's and 1’s with exactly one 1 per column which identifies the processing
unit to which a '_F;vtgl_ggm"gl_ui_bthng&' The (local) minimization of
E can be formulated as an iterative process on a complete training set
(Lloyd 1957) or as a real-time, adaptive process (MacQueen 1967). A
variant of adaptive k-means is presented below in equation (1.7).

The processing unit widths are determined using various “P nearest-
neighbor” Eﬁnsnn.'i These heuristics vary the widths in order fo achieve
5 Ceriain amount of response overlap between each unit and its neigh-
bors so that they form a smooth and contiguous interpolation over those
regions of the input space which they represent. The heuristics can
be formulated in an adaptive fashion and <an be shown to minimize
various objective functions with respect to the o™'s or (e*)'s and are
' thereby stable. Some of the possible objective functions are quadratic,

[' leading to simple linear update rules. A particularly simple example is
Eﬁ?ﬁmﬁm neamt-m%ﬁﬁr" Reuristic. It uses a uniform average
width @ = (Az,4) for all units where Ar,, is the euclidean distance in
the input space between each unit a and its nearest-neighbor 3 and ()
indicates a global average over all such pairs. Other heuristics based on
purely local computations yield individually-tuned widths o”.
‘The response function amplitudes {output weights A® in equations
(1.1) or (1.4)) are v to minimi ither.the total i ation
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the case of real ime implementations, an instantaneous esti-
s error. We have found that convergence occurs very quickly.
ssible because the self-organized learning which precedes the
sed [eamning has already done most of the work.

. To demonstrate the practical use of the hybrid learning method, we
' consider two representative test problems: the classification of phonemes
and the prediction of a chaotic ime series.

The phoneme classification problem is to classify 10 distinct vowel
sounds on the basis of their first and second formant frequendies. The
data (provided by Huang and Lippmann (1988)) consists of a training set
with 338 phoneme exemplars and a test set with 333 exemplars. Using
standard -(off-line) k-means, an overlap parameter P = 2, and off-line
LMS, the classification results for the hybrid leaming system are:

#GaussianUnits 20 40 60 80 100
% Error on Test Set 267% 249% 21.3% 195% 18.0%

These results are comparable to those found by Huang and Lippmann
using a variety of techniques. For convenience, we reproduce their results

here:

Classification Method % Error on  Number of
Test Set Training Tokens
“~ "K Nearest Neighbors (Non-Adaptive) 18.0% 338 &
Gaussian Classifier (Non-Adaptive)  20.4% L e e i
2-Layer Back Prop (Adaptive) 159.8% 50,000
Feature Map, 100 Nodes (Adaptive) 22.8% 10,000 (Feature Map
Nedes)
50 (Output Nodes)

The most similar model to ours is the feature map classifier (Kohonen
1588). Our model achieves better classification results given the same
number of nodes (in this case 100), because the gaussian response func-
tions yield smooth interpolations of the classification regions, rather than
sharp disconfinuities from one cluster region fo the next. (Furthermore,
the feature map classifier makes an intrinsic assumption about the un-
derlying dimensionality of the problem, typically producing either a one
__or two-dimensional map. A two-dimensional map is appropriate for this
phoneme classification problem, but is unlikely to be the optimal choice
for arbitrary domains. In contrast, the k-means algorithm discovers the
intrinsic dimensionality of the input data.) Both the feature map and the
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locally-tuned networks learn substantially faster than backpropagation
nets (typically factors of hundreds in CPU time).

Although our results above are for off-line learning, the adaptive k-
means clustering algorithm is actually simpler than the off-line version
and yields solutions of similar quality. Furthermore, adaptive clustering

methods are being implemented in special purpose hardware, and are
likely to be very important for real-time learning systems. Figure 3 shows
an example of real-time clustering using the phoneme training exemplars.
The inifial cluster centers are randomly chosen exemplars. At each time
step, a random exemplar " is chosen and the nearest cluster center Z° is
“moved by an amount:

AF® = n(F — T, ' 1D

where n = 0.03 is the learning rate. The resulting trajectories for 20
- Taster centers are shown for a run of 3000 exemplar samples. The final
positions are indicated by triangles, and the circles represent the widths
of the gaussians as determined by the P = 2 nearest neighbors heuristic.

As a|second representative test problem, we follow Farmer and Sidor-
owich (1987) and consider the prediction of chaotic time series. As it is
usually formulated, this problem requires finding a real-valued mapping
f - R* — R which takes a sequence of n recent samples of a time series
and predicts the value of the time series at a future moment. It is assumed
that the underlying process which generates the time series is unknown.
We shall compare our network’s learning and generalizing capabilities
to a three-layer perceptron studied by Lapedes and Farber (1987) (see

figure 1b). The particular time series we use for comparison results from
Integrating the Mackey-Glass differential delay equation:

dz(t)

z{t = 7]

= -"bI{t] + am.

(1.8)

Figure 4 shows the resulting time series fort=17,a=02 and b =

0.1; note that it is quasi-periodic since no two cycles are the same. The

characteristic time of the series, given by the inverse of the mean of the
power spectrum, is t.ner =~ 50. Note that classical techniques like global
linear autoregression or Gabor-Volterra-Wiener polynomial expansions
typically do no better than chance at predicting such a time series beyond
tr}mrv

For our numerical comparison, both networks (Fig: 1) have four real-
valued inputs (zlt], zlt — Al.rlt — 24, z[t — 3A] and one real-valued
output z{t + T] with A=6and T =85 > tehar- The network of locally-
tuned units (Fig. 1a) has between 100 and 10,000 internal units arranged
in a single layer, while the backpropagation network (Fig. 1b) has two
internal layers each containing 20 sigmoidal units. The backpropagation
network thus has 541 adjustable parameters (weights and thresholds)
total.
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" Figure 5 contrasts the prediction accuracy E (Normalized Prediction -~
Error) versus number o.f internal units for three versions of our algorithm
tothe backpropagation benchmark (A) of Lapedes and Farber (1987). The

‘three versions of the learning algorithm are:

training set is used as a predictor. This behavior is actually a spe-
“cial case for the network of equation 1.4 where each input/output
training pair {F,, f;} defines a processing unit {£°, [*} of infinitely
narrow width (¢® — 0).

1. Nearest neighbor prediction. Here, the nearest data point in the

2. Adaptive processing units with one unit per data _point. Here, the
Eﬁ_ ﬁ_eéi ] ;

ampli are determined by LMS, the widths by the global first

Frequency of first formant

Figure 3: Adaptive k-means clustering applied to phoneme data.
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Figure 4 Une thousand successive integer timesteps for the Mackey-Glass
chaotic time series with delay parameter + = 17.

nearest neighbors heuristic, and the centers are fixed to be training
data vectors.

3. Self-organizing, adaptive processing units. Similar to 2, but the
fraining set has ten times more exemplars than the network has
processing units and the processing unit centers are found wsing
k-means clustering. o

The backpropagation benchmark used a training set with 500 exemplars,
For all methods, prediction accuracies were measured on a 300-member
beat set.

Mote that versions 1 and 2 require storage of past time series data;
version I assigns a processing unit to each data point. Hence, nefther of
these methods is appropriate for real-time signal processing with fixed
memory. However, version 3 is fully adaptive in that a fixed set of
network parameters can be varied in response to new data in real time
and does not, in principle, require storage of previous data. In order
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Figure 5 Comparison of prediction accuracy va rumber of internal units for
fmum:dﬁdﬂmﬁﬂlnﬂlﬂtnﬁgﬁﬂ:.mﬂlpﬁﬂunmmmmﬂprmm
vector), (3) self-organizing units (ten training vectors per procesaing unith, and
(A} backpropagation. The methods are described in the text. For backpropa-
pmmmmrﬂnmﬂﬂﬁuﬂrﬁmw. The horizontal
Iiuummmmwupmﬂd-dhvhuirdmmdhmthuﬂdﬂm

suggest a scaling law. In fact, the scaling law is not kaown.
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as much data to reach equivalent sccuracy. These differences in training
dita requlrements siem From the 3 backpropagation network is
fully supervised, learns 2 global 6t to the functlon, and is thus 3 more
powerul generalizer, while the network of locally-tuned units bearns only

local representat
~ However, the Targer data requirements of the networks of locally-

tuned processing units are outweighed by dramatic improvements in
computational efficency. The following lable shows E versus computa-
tional time measured in Sun 3/60 seconds for each of the three methods
described above in the 1000 internal units case.

Locally-Tuned  Normualized Computation Time
Network Model Prediction Ermoe  (Sun 3740 CPU seca)

1 1% e Y [ 1]
Verson 2 5= L7 wecs 000 Phoun)
3 — A% B — W q

The Lapedes 2nd Farber backpropagation results required 2 few minutes
o a fracuon of &n hoar of Cray X/MP time running at an impressive 30
MFlops (Lapedes 1585). Their implemwntation used the conjugate gradi-
ent minimizaton technique and achirved approcdmanely 5% Normalized
Error. Our simulations on the Sun 3/60) schieved no more than
%0 KFlops (the LINPACK benchmark), these differences into ac-
count, the networks of locally-tuned processing units bearned hundreds
to thousands of times faster than the backpropagation network.

Our own experiences with backpropagation applied 1o this problem
are consistent with this difference. Using a variety of methads includi

i pﬁﬁam """ |

W._%nn-ﬂm learning, off-line Jearning, , and conjugate gra-
o matching the prdicion SCATAEy ST Tany e aeAeOT s
close to matching the prediction accuracy y-tuned nefworks in a

few hours of Sun 3 fime.
Although our discussion has focused on algorithms which can be
implemented as real-time adaptive syatems, such as backpropagation and
the networks of locally-tuned units we have presented, a number of off
line algonithms for muitidimenstonal furetion modeling achieve excellent
performance both in terms of efficiency and
These include methods of exact interpolation based on rational radially-
symmetric basis functions (Powell lﬁhm-ﬂﬂyaw becality
of theis functional representations, these methods are actually global since
require a separate basis function for esch data a
puting time which scales as N7 in the size of the dats set. %ﬂiﬁt

292



earning in Networks of Locally-Tuned Processing Units " 293

Approximation methods based on local linear and local quadratic fit-
1z have been championed recently by Farmer and Sidorowich (1987).
hese algorithms utilize local representations in the input space, but are
ot a iate for real-time use since they require multi-dimensional
tree data structures which are WTE@L"-E to modify on the fly and
would be extremely difficult to implement in special purpose hardware.
" The off-line methods require explicit storage of past data and assume
that all such data is retained. In contrast, the neural net approach requires
storage of only a fixed set of tunable network parameters; this number .
is independent of the total amount of data observed over time.
An alternative adaptive approach based upon hashing and a hierarchy

of locally-tuned representations has been explored by Moedy (198%)
with very favorable results.

Note Added in Proof

After this manuscript was accepted for publication, we learned that Han-
son and Burr (1987) had suggested using a single layer of locally-tuned
units in place of two layers of sigmoidal or threshold units. This was also
suggested independently by Lapedes and Farber (1987b). These authors,
along with Lippmann (1987), describe constructions whereby localized
“bumps” or convex regions can be built from two layers of sigmoidal or
threshold units respectively.
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