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Multiscale Approximation With Hierarchical Radial Basis Functions Networks
Stefano Ferrari, Mauro Maggioni, and N. Alberto Borghese

Abstract—An approximating neural model, called hierarchical
radial basis function (HRBF) network, is presented here. This is a
self-organizing (by growing) multiscale version of a radial basis
function (RBF) network. It is constituted of hierarchical layers,
each containing a Gaussian grid at a decreasing scale. The grids
are not completely filled, but units are inserted only where the
local error is over threshold. This guarantees a uniform residual
error and the allocation of more units with smaller scales where
the data contain higher frequencies. Only local operations, which
do not require any iteration on the data, are required; this allows
to construct the network in quasireal time. Through harmonic
analysis, it is demonstrated that, although a HRBF cannot be
reduced to a traditional wavelet-based multiresolution analysis
(MRA), it does employ Riesz bases and enjoys asymptotic ap-
proximation properties for a very large class of functions. HRBF
networks have been extensively applied to the reconstruction of
three-dimensional (3-D)models from noisy range data. The results
illustrate their power in denoising the original data, obtaining
an effective multiscale reconstruction of better quality than that
obtained by MRA.

Index Terms—Multiscale reconstruction, range data, radial
basis function (RBF) networks, wavelet decomposition.

I. INTRODUCTION

MULTISCALE techniques are particularly suitable
to deal with nonstationary data, as the majority of

real-world interesting data are. Their appealing derives from
their ability to efficiently locate short-term events characterized
by high-frequency content, and events which have a larger
span, but vary slower. Multiresolution analysis (MRA) carried
out through wavelet decomposition [1], [2] is the most general
tool for multiscale data processing, thanks to its fast machinery.
Data processing comprehends a large set of problems, among
which hypersurface approximation from sparse noisy data
has been widely studied in the connectionist domain [3]. We
propose here, a new approach to this problem, alternative to
MRA, where multiscale approximation is achieved through a
neural-network model called hierarchical radial basis function
(HRBF) network. This is a particular multiscale version of
radial basis function (RBF) networks [3], which self-organizes
to allocate more units where the data contain higher frequen-
cies, guaranteeing a uniform residual error. The constructive
approach in HRBF networks is based only on local operations,
inspired by linear filtering theory and multiscale analysis, which
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do not require any iteration on the data. This allows to construct
the network in quasi-real time. Thanks to their properties,
HRBFs have been recently introduced in different applications
[4]–[6]; here, results on their application to three-dimensional
(3-D) scanners [7] are reported and discussed.

This paper is organized as follows. In Section II, the HRBF
network is formally introduced and it is compared with MRA in
Section III. The mathematical proof of convergence is worked
out in this section along with remarks on the degree of redun-
dancy of the bases and the convergence speed of the approxi-
mation. In Section IV, the reconstruction of a human face from
range data obtained with HRBF and MRA is reported. The re-
sults are discussed in Section V and in Section VI few con-
cluding remarks are reported.

II. HRBFN

HRBF networks operate a mapping , as the sum
of hierarchical approximations,

(1)

where is a linear combination of Gaussian units with

(2)

Every can be regarded as the output of a RBF network
itself [3], which is composed of Gaussians units having the
same scale parameter : . Hence, an HRBF net-
work can be described as a pool of hierarchical subnets, called
layers, which operate in parallel during the reconstruction [cf.
Fig. 1(d)].

The actual shape of depends on the number of Gaussian
units in each layer, , their variance and their
position , which constitute the structural
parameters of the network, and the which
are the synaptic weights. In this paper, a new fully constructive
approach to compute the parameters is presented. Starting
from the input data ,
the parameters are computed layer-by-layer. For each layer
[cf. Fig. 1(b)], the structural parameters are defined first,
the weights are then estimated node-by-node through local
operations.

A. Setting the Parameters of a Single Layer

Let us consider a single layer and assume for now that both
the data and the Gaussians are equally spaced on a regular grid,

, with the spacing of two adjacent Gaussians. In this case,
the RBF can be regarded as the Gaussian interpolation of the
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Fig. 1. In the constructive phase (a) MRA proceeds from fine to coarse, while (b) HRBF proceed from coarse to fine. In the reconstruction phase, (c) MRA and
(d) HRBF add J and J � 1 details to an approximation at a large scale, respectively. The difference is in the nature of the details. In MRA they are obtained
through projection of the input data over an adequate base. In HRBF the detail of layer j is obtained by projecting the residual of the previous layer (obtained by
difference) over the Gaussian basis associated to layer j.

discrete convolution on the grid of the weights sequence with
the discretized Gaussian kernel of scale [8]. It follows that the
RBF surface sampled on can be written as

(3)

where denotes the discrete convolution product [it is implic-
itly assumed outside the convex hull of ]. This has a
strong relationship with linear filtering theory [8]–[10]. In this
field, the Gaussian is regarded as a low-pass filter whose band-
width is inversely proportional to . The surface can be
reconstructed as

(4)

where is the surface height measured at the grid crossings
and . Comparing (3) and (4), it can be noticed
[8] that the weights can be obtained from the surface height
measured at the grid crossings.1

1More precisely w = s(xxx )�x due to discrete sampling of
s(�) [11]. In the following �x will be incorporated into g(�):
g(�) = (1= (�� ) ) exp (�(k � k =� ))�x .

Linear filtering theory suggests also a criterion to set a proper
value for and as a function of the spatial frequency content
[8]

(5)

where is the maximum frequency content of the recon-
structed surface and is the spatial sampling frequency

. Finer details can therefore be reconstructed at the price
of having more Gaussian units, more densely packed. From the
value of determined by (5), can be derived (or viceversa).
In turns, from , the number of Gaussians, , follows. At this
stage all the parameters of one layer have been defined.

In real applications, the surface height at the grid crossings,
, is not available [cf. Fig. 2(a)]. To preserve the schema in

(4), can be estimated through a local weighted mean [8],
[12] as

(6)

where selects a region around the point . As
there is no advantage in considering the data points very distant
from , only those in the neighborhood of are considered.
Hence, for each Gaussian, the receptive field, , has
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(a) (b)

(c) (d)

Fig. 2. Typical ensamble or range data. (a) A set of N = 12641 3-D data points were digitized by the Autoscan system on a human face [17]. (b) The direct
tessellation of the data points produces a poor model: the need of some sort of filtering is evident. (c) The mesh obtained by gridding the input data is plotted along
with (d) its Gouraud shaded version. This operation is not adequate to obtain a high-quality mesh and a better reconstruction schema is required.

been assumed here as the -dimensional hypersphere centered
in with radius .

Summarizing, the surface can be reconstructed at the
scale as [cf. (4)]

(7)

B. Constructing the Hierarchical Architecture

If a single layer were used, its scale should be small enough
to reconstruct the finest surface details. Unfortunately, a small
grid side may cause: 1) waste of resources in low frequency con-
tent regions; 2) overfitting; and 3) risk of unreliable estimate of

due to too few points in . To overcome these draw-
backs, HRBF networks stack grids of Gaussians with decreasing

scale. Units are inserted only in those crossings where the re-
construction error is greater than the measurement error. This
allows to achieve a uniform error over all the input domain with
a reduced number of units. In details: the first layer reconstructs
the surface with few Gaussians featuring a large scale, , which
catches only the outline of the surface. For each measured point

a residual is computed

(8)

The successive layers are devoted to reconstruct the details.
The th layer receives as input the residual of the
previous layer [Fig. 1(b)]

(9)
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Fig. 3. The reconstruction of the face from the range data in Fig. 2(a) through an HRBF network is reported (cf. Table I). (a) First layer alone. (b) Two layers.
(c) Three layers. (d) Four layers.

The scale, somehow arbitrarily, halved at each layer. In each
layer the residuals are analyzed node-by-node. For each node,
the local reconstruction error is computed using all the
points inside the receptive field of that node

(10)

where is the number of data points which fall inside
. An integral norm, like norm in error evalua-

tion, allows minimizing the impact of the outliers. has
been adopted here, but any other integral norm is suitable.
If is below the measurement error, no Gaussian
is inserted in . Otherwise, its associated weight is
computed through (6), where is substituted to
[cf. Fig. 1(b)]

(11)

This procedure is iterated, creating grids at smaller scales
and estimating their associated coefficients until goes uni-
formly under the measurement error (cf. Fig. 3). We explicitly
remark that the number of layers is not given a priori, but it
can be determined run time by going under threshold over
all the input domain.

In the reconstruction phase [Fig. 1(d)], the different layers
operate in parallel. The approximating surface, up to the scale

is obtained as the sum of the output of the first
layers. The first layer outputs a surface draft, which is corrected
with the details output by the higher layers

(12)

III. COMPARISON WITH MULTIRESOLUTION ANALYSIS

It is intuitively clear that the HRBF multilayer approach is
actually a multiscale approach: at each layer, finer details of
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the surface are reproduced by smaller scale Gaussian functions.
From this point of view, HRBF can be conceptually compared
with MRA [13].

In Section III-A, the basic definitions and properties of MRA
[1], [2] are reported. Then, it is shown that the Guassian basis is a
Riesz basis, and from this the uniqueness and the stability of the
coefficients in (4) are derived (Section III-B). In Section III-C, it
is shown that using a set of RBF grids a traditional MRA cannot
be obtained. Nevertheless, in Section III-D it is demonstrated
that HRBF multiscale reconstruction does enjoy approximation
capability for a very large class of functions. An estimate of the
convergence speed of a HRBF network, is given in Section III-E.

A. MRA Decomposition

MRA is a particular function multiscale decomposition,
which employs Riesz bases.

Definition 1: A collection of subspaces of is
a Multi-Resolution Analysis (MRA) if: 1) for all

; 2) and is dense in ; 3) ,
if and only if ; and 4) there exists a

scaling function such that is a Riesz
basis for . In particular, is also a Schauder basis
for .

Moreover, for every , a Riesz basis for , can be constructed
by dilating and scaling the basis function of . Every function

can be described as a linear combination of dilated
versions of The last assertion guarantees that for
every and for any there exists and is unique
a set of scalars such that [2]

(13)

Moreover, for every , is a Riesz basis for
.
Moreover, for every , a Riesz basis for , can be constructed

by dilating and scaling the basis function of . Every function
can be described as a linear combination of dilated

versions of

(14)

Hence, the set is a Riesz basis for .
One of the most important features of the collection of sub-

spaces of a MRA is the approximation property. This is
the ability of a MRA to approximate, to any prescribed degree
of accuracy, any function (in ), by projecting it on some sub-
space , with large enough. This property derives from
being dense in .

In practice, the MRA decomposition of a function is car-
ried out from the finest to the coarsest level [cf. Fig. 1(a)]. The
first level, , is itself [the function is assumed to belong
to , cf. Fig. 4(a)]. is then projected onto [spanned
by the scaling functions, , which fea-
ture half the scale of those in ], and on its complement in

, (spanned by the wavelet functions):
. The projections allow to compute the coefficients

and used to construct, respectively, the approximation of
in : [cf. (14)], and the detail

(15)

which lies in . This schema is iterated on the approxima-
tion , until the largest desired scale is achieved. The func-
tion is reconstructed as the sum of an approximation at a very
large scale plus details [cf. Fig. 1(c)]. When orthonormal
bases are used, each is orthogonal to and all the s are
orthogonal: . In this case, fast algorithms are avail-
able to compute the coefficients of the decomposition [1], [2],
based on projecting the input on the basis. The projections can
be interpreted as the convolution with a bank of two mirror fil-
ters, and the MRA as the iterative application of the filter bank
to the original function [14].

The fact that is a Riesz basis guarantees also that
there exist two constants and , independent from , such
that

(16)

This inequality is responsible for the numerical stability of the
decomposition/reconstruction (i.e., how errors in the data and in
the calculation affect the approximation at a given scale [14]).
In this respect, it is not important how large/small and are,
but how near to one is their ratio. This ratio is a measure of
the redundancy of the basis, in the sense of correlation between
its elements: implies no correlation (orthogonality),

implies large correlation. For an orthonormal basis
holds.

B. RBF Grids Are Riesz Bases

In the HRBF framework, the Gaussian can be assim-
ilated to a scaling function, and the HRBF approximation space

is the subspace generated by the translates of the Gaussian
with scale

(17)

In the next theorem, it is shown that each layer, , of the HRBF
network constitutes a Riesz basis for : this implies that the
decomposition of on through the th grid of the network
is unique and stable.

Theorem 1: The set of functions is a
Riesz basis for .

Proof: Let us introduce the function

(18)

where is the Fourier transform of . To be a Riesz basis
two constants such that [2]
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Fig. 4. The reconstruction of the same face as in Fig. 2(a) using MRA implemented by the Matlab package. Biorthogonal Wavelets 3.3, among the most commonly
used, are adopted.

for all , should exist. In our case, the existence of such con-
stants follows from the periodicity of , its continuity [a con-
sequence of the uniform convergence of the series in (18)], and
its being positive on the compact interval of periodicity.

The set of the coefficients in (7) is, therefore, unique.
We can now estimate the stability of the decomposition by deter-
mining the coefficients and . It can be shown that and
do not depend on , but only on the parameters and . Let
us consider the case . We observe that the series which
defines not only converges uniformly, but so do also all
its term-by-term derivatives. This implies that is a ,

periodic function, which is also even with respect to
zero and . Its maximum is clearly attained at 0 , while
the minimum is attained at , since this point is flat by
symmetry and it is the only flat point internal to the interval of
periodicity (this can be seen by taking the derivative of the se-
ries). All of this implies that

(19)

It follows from this relation that the ratio depends only
on which, in fact, controls the amount of overlap of the
Gaussians in each layer and, therefore, how much correlation is
there between adjacent Gaussians. The ratio is the same
in the higher layers as both and are halved at each step
[cf. (5)]. It follows that the Gaussian bases are uniformly (in )
stable. The degree of stability is determined by and which
can be estimated numerically or analytically from the series in
(18). For [cf. (5)], , which
indicates a considerable redundancy.

C. HRBF Does Not Perform an MRA

We show here that, although each grid of RBF is a Riesz basis,
stacking them does not produce a traditional MRA: the HRBF
approximating subspaces are not nested ( ).

Theorem 2: The subspaces of an HRBF do not satisfy
the inclusion relation: .

Proof: Suppose, by contradiction, that .
Suppose also, without loss of generality, . Since
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and are Riesz bases for
and , respectively, we should be able to write

for some sequence in . Passing to the Fourier
transform, there should exist a periodic, square integrable
function, , such that [2] , which is ab-
surd, as and are Gaussian functions.

D. Approximation Capabilities of HRBFs

Although HRBF cannot perform a traditional MRA, we
demonstrate here that the multiscale reconstruction produced
by HRBF does enjoy similar approximation capabilities. We
start from the continuous case2 and we analyze the th layer,
whose output can be written as [8], [10]

(20)

Theorem 3: The family of subspaces associated to the
HRBF has the approximation property, i.e., for any function

and for any we can choose a (large enough)
for which [cf. (13)] .

Proof: The claim follows immediately from the result in
harmonic analysis known as summability kernels or approxi-
mate identities (cf. [15]). For sake of completeness we give
here a simple proof, which takes advantage of the structure of
our particular spaces and introduces estimates which will be
useful in the Appendix. Suppose is , and compactly sup-
ported. We have the following pointwise estimate of the error:

(21)

which holds for every ; , being the
support of . Now we can choose small enough to make the
first term as small as we want. Fixed that , we can take large
enough ( small enough) so that the last integral is smaller than
any prescribed positive real number. This implies that we can
approximate, to any assigned degree of accuracy, any compactly
supported .

The approximation is not only pointwise, but is actually uni-
form (since the right member of the last inequality does not de-
pend on ), and hence is valid also in any , for

. Moreover, it can be shown that this result holds also in
a rather wide class of Banach spaces (e.g., Sobolev [15]).
This result is in accordance with [16] where Bochner and Chan-
drasekharan theorem was used. In the discrete case, we are ap-
proximating the convolution integral in (20) [cf. (3)]. This ap-

2This can be obtained from (4) for �x ! 0.

proximation is uniform and gets better and better as ,
which is exactly what happens when the number of layers, , in-
creases. This shows that the approximation property also holds
for the discrete case.

Let us remark that in the last theorem a single layer was
considered. This does not automatically imply that the HRBF
approximation converges. In fact, in the HRBF decomposition,
the function to be approximated changes at every layer, since
it is the residual of the previous layer to be projected on the
higher layers. However, in the Appendix, we provide the math-
ematical proof that the HRBF decomposition converges for all
the functions, , which have compact support, belong to
and for which there exists a value such that, for every ,

(equilimited derivatives). Most real surfaces
belong to this class of functions.

E. Approximation Spaces of HRBF

In biorthogonal MRAs, which are the most common, the
angle between two consecutive approximation spaces is zero
while the details spaces are orthogonal. As a consequence, a
large difference between two approximations is obtained [2]
(cf. Fig. 4 and Table II). In HRBF, the detail spaces are not
defined; the approximation is obtained by projecting on the
RBF grids at decreasing scale [Fig. 1(d) and Table I]. To get an
idea of HRBF speed of convergence, the angle between two
consecutive approximation spaces and is estimated

(22)
The angle is constant for all the layers of a HRBF; to estimate
its value, and can be assumed,
obtaining . This is quite small, which means that,
on one side, little more is added layer-by-layer, and, on the other
side, the convergence is slower. This property is useful in all the
cases when a given function should be approximated up to a
certain degree of accuracy. For example, when a function has
to be approximated from noisy data, the final residual should
match the measurement error (cf. Section IV) or when the level
of detail of the reconstruction should be controlled [cf. Results
Section and Fig. 1(b)].

IV. APPLICATION TO 3-D RECONSTRUCTION FROM RANGE

DATA

HRBF networks have been widely applied to reconstruct
3-D surfaces from range data. A typical ensemble of range
data points obtained through the Autoscan system [17] from
a human face is plotted in Fig. 2(a). The root-mean-square
(rms) measurement error was mm. Connecting the points
to form a triangular mesh produces an undesirable wavy mesh
[cf. Fig. 2(b)]. Traditional linear filtering cannot be applied to
clean the surface as data are not equally spaced; morevoer, the
highly variable spatial frequency content of a face makes the
adaptive approach of HRBF particularly suitable.

The face obtained through a HRBF network is shown in
Fig. 3. Four layers have been used, featuring scales ranging
from 16 to 2 mm. As it can be appreciated, HRBF is able to
give an effective progressive multiscale reconstruction. The
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TABLE I
QUANTITATIVE EVALUATION OF THE SURFACE RECONSTRUCTION THROUGH

HRBF WITH � = [16; 8; 4; 2; 1] mm

TABLE II
QUANTITATIVE EVALUATION OF THE SURFACE RECONSTRUCTION THROUGH

MRA WITH BIORTHOGONAL BASES 3.3

quality of the network output increases with the number of
layers, adding details mainly in the most difficult regions like
the nose, the eyes, and the lips (cf. Fig. 3). These details are
obtained by means of Gaussian clusters at smaller scales in
the higher layers. These clusters are created by the network
itself at configuration time by inserting a Gaussian only where
the local reconstruction error (10) is larger than measurement
error. The final reconstruction is obtained using only 5570 units
distributed over the four layers, while a RBF network with a
single grid, would have required 14 933 units ( ) (cf.
Table I). If an additional layer is introduced (fifth layer with

mm), the quality of the reconstruction is degraded.
Error falls to 0.68 mm, well below the measurement error,
clearly indicating overfitting.

MRA cannot be applied directly to the original data of
Fig. 2(a), as these are not equally spaced on a grid. For the sake
of comparison, these data have been transformed into gridded
data as follows. A grid, 109 137 with spacing
mm, is built (this is equal to a RBF grid featuring mm).
The surface height in the grid crossings, , is estimated
with the local weighted mean (6). The resulting gridded data
are reported in Fig. 2(c) and (d). Notice that gridding, by itself,
does not avoid the need of filtering. From the gridded data,
a multiscale surface is obtained applying a four levels MRA,
with biorthogonal 3.3 bases. This adopts short filters (eight
samples long), and the wavelet used in the reconstruction phase
closely resembles a quadratic spline [14]. The Matlab
wavelet package was used. The surface is reconstructed using
the scaling function at the coarser scale, , and the wavelets
of all the four levels [Fig. 1(c)]. To compare with HRBF, only
5570 coefficients have been used: all the coefficients of
and the 5398 largest wavelets coefficients [14] (cf. Table II).
All the others have been discarded.

As it can be seen from Fig. 4, a smooth reconstruction is
produced by MRA only at the first two levels while at the last
two, the surface is rather wavy. On the other side, the first two
levels are not able to sufficiently reconstruct the face details

(lips and eyes). Similar results were obtained if the discarded
wavelet coefficients were forced to belong only to the first two
levels (which contain the highest frequencies), or if they were
not discarded at all. The same applies if shrinkage [18] were
applied to the MRA procedure. Different bases offered by the
Matlab package have been tested with similar results. On the
other side, the reconstruction of the surface through HRBF from
the gridded data used to test MRA is equivalent to that shown in
Fig. 3. The greater ability of HRBF to produce a reconstruction
of good quality is evident.

Other wavelet based techniques, which produce an extension
of a traditional MRA, have been proposed to reconstruct 3-D
models from sparse noisy data points [19]. However, to be ap-
plied, they require a preprocessing stage to dispose the points
onto a two-dimensional (2-D) manifold mesh with semiregular
connectivity.

V. DISCUSSION

A. Structural Aspects

Although wavelet decomposition and HRBF networks both
offer a multiscale approximation, their operation is very dif-
ferent. While in MRA, approximations at different scales are
created from fine to coarse, HRBF operates the other way round.
Coarse-to-fine approach has the advantage that the adequate
number of layers has not to be determined a priori, but it is the
result of the learning process itself: the HRBF network, in fact,
grows until the reconstructed surface meets the required quality.
This allows saving time and resources as the creation of unuseful
dense layers (the highest ones) can be avoided. In MRA, instead,
the first level computed is the one which requires the maximum
number of coefficients [cf. Fig. 1(a) and Section III-A].

Another main difference is in the speed with which the resid-
uals are caught by the layers at smaller scales, which is related
to the angle between the spaces used in the reconstruction (Sec-
tions III-A and -E). In MRA, due to the almost orthogonality
of the basis, the detail added by each level is maximized. This
property is useful in signal analysis and compression, which
makes wavelets analysis the de facto standard in multidimen-
sional signal compression and has been incorporated in the new
JPEG2000 standard. This property is not as valuable when a cer-
tain degree of approximation is searched. HRBF, instead, adds
less detail at each layer, allowing to get closer to a desired de-
gree of approximation.

Reconstruction from noisy data makes this point clear. For
the face data of Fig. 2 HRBF proposes two approximations
close to the measurement error: the reconstruction error is 1.02
mm with three layers and 0.77 mm with four layers. MRA pro-
poses a third layer with an error of 0.76 mm and a fourth one
with 1.47 mm. To this larger numerical difference corresponds
a larger difference in the level of the details incorporated in the
reconstruction [cf. Fig. 4(c) and (d)]. This difference is larger
than that seen in the last two HRBF layers [Fig. 3(c) and (d)].
Notice that although the figure of 0.76 mm is common to the two
approaches (four layers HRBF and three levels MRA), it has
been obtained very differently: in HRBF the local reconstruc-
tion error is almost the same over all the input domain, while in
MRA, a slightly smaller error is achieved in most regions, but in
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few critical regions (like eyes and nose) it is clearly higher than
in HRBF approximation, with an overall lower quality.

We have experimentally verified that, the initial scale, , is
not critical as far as the construction of the network is ended
when the residual matches the measurement error. Starting from

twice the one used before and using five layers (i.e.,
mm) does not produce appreciable differences,

nor in the final reconstruction error, nor in the number of units.
The same is true if an intermediate value were chosen for
(e.g., mm). As the value of in each layer is not con-
strained to be an integer multiple of the previous layer (like in
MRA) we can even choose a value of on a layer-by-layer basis.
This flexibility can be exploited to improve the network perfor-
mance: the scale parameter of the last layer, , can be adjusted
through single parameter optimization procedure. However, the
very little gain in quality, is not worth the additional computa-
tional time required by optimization.

B. Coefficients Determination

Once the structural parameters of one HRBF layer have been
set, the structure of that layer has been completely defined, and
the “synaptic” weights are left to be determined. Equation (7)
represents a linear system, which could be solved by matrix ma-
nipulation techniques like singular-value decomposition [20],
[21]. However, the computation is demanding for the large pa-
rameter space, and overparametrization may produce numerical
instability and high-frequency oscillations in the reconstructed
surface [22]. This is related to the high redundancy of the basis
remarked in Theorem 1. The estimate schema adopted in HRBF,
instead, computes the weights, unit by unit independently. The
local correlation between the data points is therefore exploited
to get a better estimate of the weights. The accuracy in the esti-
mate depends on the number of samples which fall around a unit
[inside the receptive field of the corresponding Gaussian, (6)].
It is, therefore, critical that data are largely oversampled. This is
often the case in neural networks applications, at least in low-di-
mensionality problems, and, in particular, in reconstructing sur-
faces from range data.

Not all the HRBF weights and the MRA coefficients are re-
quired by the reconstruction. On the contrary, some of them are
superflous and may even bring noise into the reconstruction,
hence, they have to be discarded. In HRBF a novel elimina-
tion strategy is adopted. The weights are discarded (which cor-
responds to not inserting a Gaussian in the corresponding grid
crossing) during the learning phase, on the basis of the local
reconstruction error, (10). There is no analogous mecha-
nism for MRA. In fact, as the MRA coefficients are computed
directly projecting the original data on the scaling functions and
the wavelets bases, the elimination of one coefficient at a cer-
tain level, cannot be taken into account at the higher levels. This
drawback does not pertain to HRBF where the weights of each
layer are computed from the residuals, which incorporate the
effect of having cancelled some of the weights of the previous
layers. More elaborated schemas to eliminate wavelet coeffi-
cients, based on the statistics of each layer and soft thresholding,
have been developed [18]. However, these schemas slow down

wavelet decomposition, diminishing the appealing of the tech-
nique. Moreover, the threshold parameter cannot be directly re-
lated to any measure on the sampled data.

C. General Remarks

As the construction of an HRBF network requires only local
operations with no iterations, the resulting configuration algo-
rithm is very fast: less than 1 s are required to build the four-layer
3-D model reported in Fig. 3 on a Pentium III, 800 MHz. Be-
sides a hardware implementation [13], a real-time, biologically
inspired, “neural” implementation can be envisaged where the
Gaussian functions could be implemented in the dendritic trees
[23] or in ensembles of population elements [24], the weights
could be implemented in the synaptic connections and the local
weighted mean through lateral inhibition mechanisms [3]. The
price to be paid to the speed in the configuration algorithm, is
the number of units. However, this redundancy does not intro-
duce overfitting because each weight is estimated independently
and its associated unit is inserted only if the local reconstruction
error is overthreshold (cf. Section III-D). This approach differs
from constructive approaches based on orthogonalization (e.g.,
[20], [21], [25]), whose aim is to minimize the redundancy by
choosing a proper set of basis functions. Although these ap-
proaches are able to obtain a reconstruction of the same quality
with less units, they are based on an iterative machinery which
makes them much slower and prone to numerical instability.

The sparse structure of an HRBF network suggests a biolog-
ical interpretation of the HRBF learning machinery, related to
the primate cerebellum. One of the unsolved questions about the
cerebellar cortex is the origin of its fracturo-topic structure: the
same receptive field is represented in different distinct regions
on it [26]. One may hypothesize that the information conveyed
by each of these sites is at a different scale, and, in particular,
that these sites take shape at different times during learning, rep-
resenting the information at different level of details. This would
agree with the well-known findings in evolution psychology,
which describes learning as going through discrete steps [27].

VI. CONCLUSION

HRBF adopts a novel constructive approach to build an ap-
proximating network. The resulting architecture is not claimed
to be optimal (nevertheless it may be a good starting point for
optimization [28]), but it allows to build an effective network in
a very short time. Moreover, as the learning algorithm adopts
only local operations, HRBF machinery can be parallelizable.
HRBF appears a more suitable tool than MRA for multiscale
surface approximation from sparse noisy data as it is clear from
the results obtained for the construction of digital models from
range data. HRBF networks do not require any a priori infor-
mation and they fully self-organizes (by growing) to represent
the desired input/output mapping. This and the units allocation
mechanism do not require backpropagation of any error infor-
mation and suggest new learning schemes in real neural net-
works.
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APPENDIX

CONVERGENCE OF HRBF ARCHITECTURE

We show here that HRBF decomposition converges for all
the functions which are compactly supported, belong to
and have equilimited derivative. The estimate derived in The-
orem 3 (21) holds for any and for any , com-
pactly supported. If we choose for the level and

for the other layers, a simple substitution gives

(23)

where does not depend on . Equation (21) can be rewritten
as

(24)

which is again a uniform approximation. Let us see what hap-
pens at the second HRBF layer. We have to estimate how well
we approximate the residual , by convolving
it with

(25)

where we have applied (24) to . This esti-
mate, carried out in regularity hypotheses for the function ,
shows that the higher derivatives play an important role in con-
trolling how fast the error decreases in successive approxima-
tions. This is expectable since they control how fast the sur-
face varies locally. Let us introduce the quantity equal to
the norm of the th derivative of the error committed at
the th layer of the HRBF decomposition of . Suppose that
there exists a value such that, for every , we have

, i.e., the derivatives are equilimited in ; for
the following estimate holds

(26)

Since , for largeenough,wehavealso
and the products tend to zero. This implies the convergence of

the approximation. This is asymptotically geometric and uniform
for the function and all its derivatives, in all the spaces. The
uniformity of all estimates above is here used for the sake of sim-
plicity; in fact, one may think of as the supremum taken

over a ball or “receptive field” centered around a specific point,
and results about local convergency follow immediately.
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