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Human upright posture is an unstable position: Continuous activation of postural muscles is required
to avoid falling down. This is the output of a complex control system that monitors a very large

number of inputs, related to the orientation of the body segments, to produce an adequate output as

muscle activation. Complexity arises because of the very large number of correlated inputs and out-
puts: The finite contraction and release time of muscles and the neural control loop delays make the

problem even more difficult. Nevertheless, upright posture is a capability that is learned in the first

year of life. Here, the learning process is investigated by using a neural network model for the control-
ler and the reinforcement learning paradigm. To this end, after creating a mechanically realistic digital

human body, a feedback postural controller is defined, which outputs a set of joint torques as a func-

tion of orientation and rotation speed of the body segments. The controller is made up of a neural net-

work, whose “synaptic weights” are determined through trial-and-error (failure in maintaining upright
posture) by using a reinforcement learning strategy. No desired control action is specified nor particu-

lar structure given to the controller. The results show that the anatomical arrangement of the skeleton

is sufficient to shape a postural control, robust against torque perturbations and noise, and flexible
enough to adapt to changes in the body model in a short time. Moreover, the learned kinematics

closely resembles the data reported in the literature; it emerges from the interaction with the environ-

ment, only through trial-and-error. Overall, the results suggest that anatomical arrangement of the
body segments may play a major role in shaping human motor control.

Keywords reinforcement learning · posture · neural networks · learning with a critic

1 Introduction

Upright human posture is an unstable position. It can
be compared to the vertical position of an inverted
pendulum: Small external perturbations do produce
falling down. To avoid this, postural muscles are con-
tinuously activated to compensate for perturbations.
Their activation is the output of a complex control

system, whose complexity arises from several rea-
sons, both structural and functional. Because of the
articulated nature of the skeleton, the torque produced
by a single muscle affects all the body segments: In
control theory terminology, this is a multi-input/multi-
output system, with a very large control space (e.g.,
the leg has 56 major muscle groups); due to its nonlin-
earity it cannot be dealt with using classical control
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algorithms (Astrom & Wittenmark, 1989). From the
functional point of view, the control system has to
take into account the finite power and bandwidth of
muscles (Kashima & Isurugi, 1998) and the time delay
produced by the neural control loops (Ghez, 1991).
Moreover, it has to take into account the geometrical
arrangement of the body segments and the mass distri-
bution inside the segments (de Leva, 1996). Neverthe-
less, maintaining upright posture is a capability that is
learned in the first year of life and maintained with no
conscious mental effort throughout life (Forssberg,
1999).

Several experimental studies have tried to investi-
gate the strategies used by the central nervous system
(CNS) to accomplish this task (Massion, 1994; Lac-
quaniti 1997; Winter, Patla, Prince, Ishac, & Gielo-
Perzak, 1998; Forssberg, 1999). According to one
point of view (Winter et al., 1998), CNS sets an ade-
quate stiffness value for the postural muscles, mainly
the ankle ones: When the body sways, its vertical
position is restored by visco-elastic torques elicited by
muscle stretch. This pure passive behavior has been
questioned by Morasso and Schieppati (1999) who
showed that active mechanisms are indeed required to
stabilize body sway. According to a different point of
view, the CNS tries to keep the center of mass inside
the support base (the feet). The center of the foot line
on the floor acts as an attractor of the body: Fluctua-
tions around this point have been shown to obey cha-
otic attractor laws (Collins & De Luca, 1994). Although
this is a good description of postural kinematics, it
does not explain how upright posture is maintained.1

Further experimental investigation has been aimed at
understanding this. The results support the original
proposal of Nicolaj Bernstein (1967) of the CNS con-
trolling synergies. Synergies are ensembles of ele-
ments that act as a single entity, a unicum, for a given
goal. The group of Lacquaniti has stressed the impor-
tance of kinematic synergies (Lacquaniti & Maioli,
1995; Lacquaniti, 1997). In this view, the orientation of
the body segments both in humans and in cats is the var-
iable controlled by the CNS to maintain upright pos-
ture. Moreover, the observation of covariations among
the different segments has led some researchers to
postulate the presence of kinematic synergies, which
would simplify the control task even more (e.g., Mah,
Hulliger, Lee, & O’Callaghan, 1994). This stress on the
kinematics follows from the postulate of a body scheme
(Gurfinkel, Levik, Popov, Smetanin, & Shilkov, 1988)

that persists even when external conditions change
(e.g., in microgravity, Mounchino, Cincera, Fabre,
Assainte, Amblard, Pedotti, & Massion, 1996).

A further question can be posed: Are these syner-
gies hardwired in our genetic code (ontogenetically
developed), or are they the result of the interaction of
our body (as a dynamical model), with the environ-
ment? Are there genetic synergies that shape the pos-
tural control, or is it the postural control that shapes
the synergies? In this article the possibility that pos-
tural synergies are shaped by the interaction of the
human body with the environment with no a priori
constraint is investigated. To this aim, learning upright
posture has been studied using a neural network model
for the controller (Miller, Sutton, & Werbos, 1990) and
the reinforcement learning paradigm (Kaelbling et al.,
1996; Doya, 2001). No information is given to the sys-
tem but failure in maintaining upright posture. Results
show that the controller does learn to maintain upright
posture and that the resulting time course of the kine-
matics resembles the one described in the literature.

The article is organized as follows. The controller
and the dynamical model of the muscles and the body
are introduced in Section 2. Section 3 describes the
reinforcement learning procedure and Section 4 the
simulations. Results are described in Section 5, where
results of experiments with torque disturbances and
modification of the body model are also reported. The
results are discussed in Section 6 and a brief conclu-
sion with possible further developments is drawn in
Section 7.

2 Methods

The schematization of the postural control task is
shown in Figure 1. The dynamical model of the human
body is subjected to a set of torques, the muscular tor-
ques T(t), which are obtained by the transformation,
through a dynamical model of the muscles, of a set of
neural signals, n(t). These neural signals are produced
by the controller, as a function of the body segments’
orientation, a(t), and rotation speed, (t). The n(t) are
then transformed into torques, T(t), through a dynami-
cal model of the muscles. The controller is a paramet-
ric adaptive model whose parameters have to be
adequately set to maintain the body upright. No infor-
mation is available about good values for the parame-
ters; the only information available is the failure of the
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task. This is an instantaneous bit of information that
has to be transformed into a signal continuous in time,
suitable to adapt the controller parameters. This is the
job of a second module called the critic. The different
modules are examined in more detail below.

2.1 The Dynamical Model of the Human Body

To achieve a high reliability in the simulation, an
accurate dynamical model of the skeleton and of the
musculo-skeletal system has been implemented. The
human skeleton has been modeled as an articulated
chain, composed of a set of rigid segments connected
by hinges (Pedotti, 1977; Winter, 1990; de Leva, 1996).
Although human joints exhibit complex motions and
cannot be defined as simple spherical joints, their rep-
resentation as hinges is usually accepted in simula-
tions related to whole-body motion control (Winter,
1990; Anderson & Pandy, 2001). The hinges are aligned
along the vertical so that gravity is counterbalanced by

the vinculum reaction generated by the support of the
feet and the body is in equilibrium. This is an unstable
equilibrium position.

To describe the dynamics of the body model, the
length and the mechanical properties of each segment
(mass, center of mass position, and inertial moment)
are required: These quantities were derived from the
biomechanics literature (Zatsiorsky, Raitsin, Seluy-
anov, Aruin, & Prilutzky, 1993, de Leva, 1996; cf.
Table 1).

On one side, this is a large number of parameters
that makes mechanical simulations slow, while on the
other side, the relative motion of some of these seg-
ments is not relevant to problems related to posture. In
this work, the upper trunk, the arms, and the head are
lumped into a single segment, the HAT (head, arms,
and trunk), as it is referred to in the literature (e.g.,
Winter, 1990; Anderson & Pandy, 2001). The mechan-
ical parameters of the HAT have been computed from
the parameters of its constituent segments. As a result,
the body model considered here in the simulations is
constituted of seven segments: the HAT and the two
legs composed of three segments each: the thigh, the
leg, and the foot. The dynamics of the body model can
therefore be represented as

ä(t) = k(T(t), a(t), (t) | z) (1)

where a(t), (t) and ä(t) represent respectively the
position, the rotation speed, and the acceleration of the
body segments at time t, T(t) is the torque input for
each segment, and z is the anthropometrical parame-
ters reported in Table 1. The knee joint (between
lower and upper leg) extension has been limited to
180° according to anatomy. The motion of the skele-
ton is computed by numerical double integration of
Equation 1 to find the actual position and speed [a(t)
and (t); cf. Figure 1].

2.2 The Dynamical Model of the Muscles

Particular care has also been taken in modeling the
muscles and the neuromuscle control loop. Muscles
can be considered a low-pass filter as the increase and
decrease in the contraction force require a finite amount
of time (Ghez, 1991). This is mainly due to the mechan-
ical properties of cross-bridges in the muscles and can
be well captured by the biomechanical models (Zange-
meister, Lehman, & Stark, 1981; Kashima & Isurugi,

Figure 1 The model. The feedback controller produces
a set of neural signals, n(t), as function orientation and
rotation speed of the body segments. The n(t) are trans-
formed into muscle torques, T(t), according to a dynami-
cal muscle model. Torques, in turn, produce a change in
the kinematics of the body model. The dynamical model
of the body is composed of nine macro-segments: the
HAT (head, arms, and trunk) and the two legs (upper and
lower leg, and foot). The controller action depends on a
set of parameters that are tuned by a higher module: the
critic. This monitors the time sequence of the orientation
and rotation speed of the body segment and produces an
internal reinforcement signal, r(t), which is used to adapt
the parameters of the controller. Tn represents the torque
used as a a perturbation in the experiments described in
Section 5.1.
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1998). In these models, muscles are represented as
linear dynamical systems (Figure 2a), which develop
a force (contraction) as a function of the associated
neural input and shortening rate. It results in a first-
order model whose activation function m(.) can
assume two different shapes depending on the input
signal n(t):

(2)

where b() is the viscous resistance and tj is the time of
transition of n(t) from negative to positive or vice versa.
Every time there is such a transition, Mo is defined as
the tension value at that instant; rapid changes in n(t),
are filtered out by the low-pass filter implemented in
Equation 2.

The transformation of muscle tension into joint
torque is itself nonlinear as it depends on the moment

arm, which varies with joint orientation (Winter, 1990).
However, for small angular variations, like those in
maintaining vertical posture, the moment arm can be
approximated as constant.

Moreover, in the following we will not consider
each muscle on its own; rather, the ensemble of mus-
cles acting on the same joint will be treated as a single
entity, a unicum (Pedotti, 1977; Winter, 1990; Lac-
quaniti, 1997; Anderson & Pandy, 2001). As a result
the overall torque, generated by all the muscles acting
on the joint i, can be represented in a general form as

(3)
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Table 1 The anthropometric data used in the dynamical model of the human body. They have been derived from de
Leva (1996) and they refer to a man, 1.73 cm tall, weighing 73 kg; r is gyration radius.

Segment Length Mass
CM 

position
r 

sagittal
Inertia 
sagittal

r 
transversal

Inertia 
transversal

r 
longitudinal

Inertia 
longitudinal

mm kg (%) mm kg*m2 mm kg*m2 mm kg*m2

Head 242.9 5.0662 50.02 73.60 0.03759237 76.51 0.04062895 63.40 0.02789302

Trunk 603.3 31.7258 51.38 197.88 1.70178253 184.61 1.48115062 101.96 0.45178289

Upper 
trunk

242.1 11.6508 50.66 122.26 0.23856417 77.47 0.09579050 112.58 0.20226855

Medial 
trunk

215.5 11.9209 45.02 103.87 0.17618739 82.54 0.11124443 100.85 0.16610107

Inferior 
trunk

145.7 8.1541 61.15 89.61 0.08968556 80.28 0.07199055 85.53 0.08170497

Arm 281.7 1.9783 57.72 80.28 0.01746758 75.78 0.01556136 44.51 0.00536855

Forearm 268.9 1.1826 45.74 74.22 0.00892308 71.26 0.00822599 32.54 0.00171501

Hand 86.2 0.4453 79.00 54.13 0.00178757 44.22 0.00119283 34.57 0.00072884

Thigh 422.2 10.3368 40.95 138.90 0.27320680 138.90 0.27320680 62.91 0.05603666

Calf 434.0 3.1609 44.59 110.67 0.05303319 108.07 0.05056687 44.70 0.00865250

Foot 258.1 1.0001 44.15 66.33 0.00602786 63.23 0.00547808 32.00 0.00140327

m t( )

Mo Mmax Mo –( ) 1 e t tj–( ) τ⁄––( )n t( ) b a· t( )( )–+

if n t( ) 0>
Mo Mmin Mo –( ) 1 e t tj–( ) τ⁄––( )n t( ) b a· t( )( )+ +

if n t( ) 0<







=

m t( )

To i
Tmaxi

To i
–( ) 1 e t τ⁄––( )ni t( ) b a· i t( )( )–+

if ni t( ) 0>
To i

Tmini
To i

–( ) 1 e t τ⁄––( )ni t( ) b a· i t( )( )+ +

if ni t( ) 0<







=
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2.3 The Postural Controller

The feedback postural controller receives as input the
orientation, a(t), and rotation speed, (t), of the body
segments (cf. Figure 1). This is a common choice in
the study of motor control (e.g., Massion, 1994; Lac-
quaniti, 1997) and it is based on the observation that
muscle and tendon receptors code stretch and stretch
rate (Ghez, 1991). The vectors a(t) and (t) will be
referred to with a single vector: the state of the sys-
tem, s(t) = [a(t) | (t)]. The controller transforms the
state into a vector of binary signals, n(t) = [–1 1], out-
put to the joints, and ni(t) represents a “neural spike”
for the flexors or extensors muscles acting at joint i at
time t. Muscles act therefore as an integrator (low-pass
filter) of the “neural spike” train: To build up consist-
ent muscle activity n(t) should maintain the same sign
for a certain amount of time; when n(t) change sign
often, no appreciable change in torque can be observed.

The highly nonlinear multi-input/multi-output
transformation realized by the controller has been
implemented here as a neural network (Figure 2b).

This is a parametric model, h(.), described by the fol-
lowing equation:

n(t) = h(a(t), (t) | wc) (4a)

where wc represents the parameters, called “synaptic
weights”: These weights tune the contribution of each
input to each output variable in a nonlinear way.

To increase even more the reliability of the con-
trol function, a neural delay, ∆t, has been added
between the output of the controller, n(t), and its
input, s(t), (Figure 1) leading to a reformulation of
Equation 4a:

n(t) = h(a(t – ∆t), (t – ∆t), wc) (4b)

This delay in the controller output, n(t), with respect
to its input, s(t), simulates the spinal reflex loop
(Ghez, 1991; Massion, 1994): Considering that each
synapse introduces a propagation delay of 1–3 ms,
and that few interneurons are present in the spinal
loop, a delay of 4–20 ms is usually accepted for the
spinal control loop. This is in accordance with short
latency reflexes recorded in reactive postural tasks
(e.g., Lacquaniti, Carrozzo, & Borghese, 1993).

���� 
�����.
���	�*� �	
��	����� ��
� ,�� "������ ��
�
� ���!��"�� �����
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Table 2 The maximum extension, Tmax, and flexion torques, Tmin, used in this work. They were derived from Pedotti et
al. (1978). CM, center of mass

Maximum torque (extension) Minimum torque (flexion)

Hip 384 nm –/0/�
�

Knee 512 nm –����
�

Ankle 552 nm –1��
�

Figure 2 (a) Muscles are schematized here as linear visco-elastic models (Kashima and Isurugi, 1998). (b) The con-
troller is implemented as a neural network. Its output depends on the value of the “synaptic weights,” {wij

c}.
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2.4 The Critic

The only information available to the system is when
the body falls down, which can be viewed as an exter-
nal reinforcement signal, R. This is an instantaneous
signal: It could be used to correct the weights that pro-
duced the last control action but it would be of little
help in finding where the control action was particu-
larly wrong (this problem is called temporal credit
assignment). R has to be transformed into continuous
information suitable to modify the controller weights.

How to transform R into a weight update, {∆wij
c},

is the role of a second specialized unit, called the critic
(Miller et al., 1990; Kaelbling et al., 1996). This unit
monitors the state of the system and produces as out-
put a scalar quantity, called internal reinforcement,
r(t). To this aim, the critic first builds a risk map, p(t),
of the system state: This map is not available to the
system and has to be learned. In this perspective, the
critic has been realized as a second neural network,
which implements the following function:

p(t) = g(s(t) | wr) (5)

This risk p(t) is transformed into the internal rein-
forcement taking into account the risk history and the
external reinforcement (cf. Equation 10). The weights
of this second network, {wr} have to be estimated
with the following criterion: They are modified in
such a way that the more a state, s(t), is visited far
from failure, the more secure is the control action,
n(t), associated to that state. This strategy implicitly
solves the credit assignment problem.

The resulting control structure is hierarchical
(Figure 3). The critic supervises the interaction of the

controller with the environment, sending to the con-
troller a correction signal to improve its performance.
On the other side, the critic learns a high-level model
of the task in the form of a risk map for the system state
by monitoring the controller–environment behavior.

From the implementation point of view, the two
neural networks, which realize the feedback controller
(Equation 4b) and the critic (Equation 5), as well as
the muscle model (Equation 3), have been imple-
mented in Visual basic; the solution of the dynamics
equation of the body motion (Equation 1) and the
numerical double integration of ä(t) are carried out in
the Working Model simulation environment.

3 The Implemented Reinforcement 
Learning Paradigm

Different machineries have been proposed to imple-
ment this hierarchical adaptive control scheme. The
learning strategy considered here is a modification of
the ACE/ASE (adaptive critic element/adaptive search
element) model proposed by Barto, Sutton, and Ander-
son (1983). This remains one of the most simple and

Figure 3 The hierarchical structure of the reinforcement
learning controller. Both the controller and the critic are
constituted of a neural network whose weights, {wij

c} and
{wi

r} have to be adequately set. To this aim, the only infor-
mation available is the external reinforcement, R, which
occurs when the controller fails to keep the body upright.
From this instantaneous information, a continuos signal
is estimated, the internal reinforcement r(t). This, in turns,
is used to tune the controller parameters. The dimension
of the controller network is N input × M output, that of the
critic N input × 1 output.
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powerful scheme and retains a higher degree of sim-
plicity with respect to recent more elaborate schemes
of reinforcement learning (Kaelbling et al., 1996; Doya,
2001). In this model the state space is subdivided into
intervals creating a single vector of N state compo-
nents, S, called boxes. Each box is characterized by an
interval of speeds and orientations for each of the
body segments. The neural networks are perceptrons
whose input–output transfer function can be repre-
sented, for the controller and the critic, as

(6a)

(6b)

where f(.) is considered here as a threshold function:
f(x) = +1 if x ≥ 0 and f(x) = –1 if x < 0; si(t) = 1 only if
the system state is in the ith box, si(t) = 0 otherwise.
ν (t) is a random quantity that serves to promote explo-
ration of the state space. As learning proceeds, the
absolute value of the weights increases, from 0.5 to
40–50, with peaks of one order of magnitude larger
for the boxes, which represent central values for the
state variables. Therefore, as learning progresses, the
impact of ν (t) on Equation 6 decreases and the system
increases the exploitation of the most successful con-
trol actions.

The determination of the weights is done through
a learning procedure as follows. At each time step t,
the critic measures the actual state, s(t), and outputs
the corresponding internal reinforcement value r(t).
This is used by the controller to compute the {∆wij

c}
and by the critic to compute the {∆wi

r}. The strategy
used to update the weights is described below.

The controller weights are updated at time t accord-
ing to

∆wij
c  =  αeij(t)r(t) (7)

where α represents the updating rate, r(t) the internal
reinforcement produced by the critic, and eij

c(t) an eli-
gibility measure for the state s(t). This expresses the
run-time estimate of the correlation between the ith
state and the jth torque:

eij
c(t + 1)  =  δeij

c(t) + (1 – δ )Tj(t)si(t) (8)

where 0 ≤ δ ≤ +1. When the torque at the jth joint, Tj,
produced at the ith state, si, is variable over time [Tj(t)
changes sign often in the previous time instants], the
eligibility of that state is low and little updating is given
to the associated weight, wij

c. The same is true if the
state was seldom visited in the recent past [si(.) = 0].

The critic internally represents the risk map of the
states and uses this to compute the internal reinforce-
ment, r(t), to be delivered to the controller. The risk
level, p(t), of the state s(t), at time t, is computed as

(9)

Then the internal reinforcement, r(t), is computed
from p(t) as

r(t)  =  R(t) + γp(t) – p(t – 1) (10)

Upon failure (R = –1), there is no state associated to
failure, p(t) = 0, and the internal reinforcement, r(t),
will be negative and equal to r(t) = –1 + p(t – 1).
Instead, as long as the controller succeeds in maintain-
ing the upright posture (R = 0), r(t) is positive when
the system moves from a risky state to a less risky
state p(t) : p(t – 1); r(t) is negative vice versa. In
Equation 10 a margin γ (γ ≤ 1) is introduced and a
state is considered less risky if γp(t) : p (t – 1).

It remains to be defined how the critic learns the
risk map. This is done by again using the internal rein-
forcement:

∆wi
r  =  βei

r(t)r(t) (11)

where β represents the updating rate (β ≤ 1) and ei
r(t)

is the eligibility trace for state si; it is computed as (cf.
Equation 8)

ei
r(t + 1)  =  λei

r(t) + (1 – λ)si(t) (12)

where 0 ≤ λ ≤ +1; ei
r(.) represents the frequency with

which the state si has been visited in the recent past
and it allows us to attribute a larger weight to those
boxes that are occupied more recently.

4 Simulations

The ACE/ASE control system was used to control
posture in the loop schematized in Figure 1, wereas

nj t( ) f wi j
c t( )si t( ) ν t( )+

i

∑ 
 =

p t( ) f wi
r t( )si t( ) ν t( )+

i

∑ 
 =

p t( ) f wi
r t( )si t( )

i

∑ 
    with 1 p .( ) +1≤≤–=
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the estimate of the critic and the controller weights
was carried out through the reinforcement learning
strategy described in Section 3. The state of the body
was discretized into 3,402 boxes with the following
partition of the state variables: [–24, –12, –4, 0, +4,
+12, +24] degrees for the orientation and [–∞, –50,
+50, +∞] degrees/s for the rotation speed of each body
segment. The body was considered out of balance,
somewhat arbitrarily, when the orientation of one of
the body segments fell outside the orientation range:
[–24 +24] degrees. The learning parameters were set
as follows: α = 1,000, β = 0.5, γ = 0.95, δ = 0.9, and
λ = 0.9, with the following rationale. The parameters
α and β have a role similar to synaptic plasticity. The
large value of α determines a large modification of the
controller weights (Equation 6a), such that, when the
control action is successful for a certain amount of
time, the {wij

c} quickly reach a value that makes noise
contribution to Equation 6a negligible. Lower values
of α  make learning slower with no improvement in the
performance. β (Equation 11), instead, is more con-
servative: For a given state, si, many concordant critic
outputs are required for the weights associated to that
state, wi

r, assuming a large value (cf. Equations 9 and
10). δ and λ represent the time constant in the decay
of the eligibility trace, which is slow. The integration
step was set to 4 ms, and in all the simulations,
weights were updated (Equations 7 and 10) every 4 ms.

5 Results

Several experiments have been carried out and the
results have been evaluated qualitatively and quantita-
tively in detail for eight of them. Each experiment
comprises a set of trials, where each trial ends when
the body falls down or when the system succeeds in
maintaining upright posture. In each trial, the subject
starts vertically: Although in this position the joints
are aligned vertically and the body is in equilibrium,
small errors introduced in the numerical solution of
the dynamics (Equation 1) are sufficient to move the
body out of equilibrium position; in fact, accelerations
in the order of 10–12 degrees/s2 are observed when the
segments are in vertical position. In the first trial of
each experiment the weights of the controller and of
the critic are initialized randomly, and in the subse-
quent trials they are set to the value that thy had at the
end of the previous trial. Similar results were obtained

when the weights were set to zero in the first trial of
each experiment.

Learning was considered successful, somewhat
arbitrarily, when the system was able to maintain
upright position for at least 20 s in five consecutive
trials. This was achieved, in all experiments but one,
in between 700 and 1,200 trials, corresponding to
about 10 hr of computational time on a Pentium III,
800 Mhz. The typical learning curve is reported in
Figure 4a: As can be seen, after few trials of immedi-
ate failure, the system learns to balance for longer and
longer times, until the learning curve becomes steeper.
It has to be remarked that both the minimum and max-
imum trial duration increase with the number of trials;
the variability in the intertrial duration can be ascribed
to the noise in Equation 1, which promotes the exploi-
tation of new control strategies. The learning curve
shows that the learned strategy is indeed robust with
respect to noise in the controller. Furthermore, analyz-
ing the vector of the states, it can be observed that
around 50% of the total states have been visited after
500 trials; at 1,000 trials most of the states have been
visited at least once, while only less than 20% have
never been visited; these correspond to the most
extreme situations in orientation and rotation speed.

Upon learning completion, noise is removed from
the controller (Equation 6a) and the updating of the
controller weights through the critic output is halted.
In this situation the system was able to maintain upright
posture for a long time consistently (60 s of simula-
tion were observed with no falling down).

After the controller learned to maintain the upright
posture, the kinematics of the model was analyzed.
The typical time course of the state variables (HAT,
upper leg and lower leg orientation) is reported in Fig-
ures 5 for two different experiments.

The covariation between upper and lower leg time
course is evident. The statistical analysis of the time
course of the two variables gives a correlation coeffi-
cent, r = 1 up to the fourth decimal digit. However, a
closer analysis of the time course collected in the vari-
ous experiments has shown that, at some points in
time, this correlation is disrupted. This can be high-
lighted in the homogeneous plots of Figure 6. A fur-
ther insight on the kinematics time course can be
gained from the relative angles (Figure 7): the ankle
angle (between the foot and the lower leg), the knee
angle (between the lower and the upper leg), and the
hip angle (between the upper leg and the HAT). The
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ankle and hip angles have a complex time course,
whereas the knee angle shows a peculiar pattern: It is
always at full extension (180°), except in a few instants,
when peaks of a few degrees are observed. Knee flex-
ion/extension was not present in all the experiments:
In one it was absent and in two others knee flexion
remained below 1°.
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It should be remarked that the difference in the
kinematics of the knee, the ankle and the hip, as well
as the fact that the knee remains close to 180° most of
the time, are the result of the learning process and are
not specified a priori. Furthermore, during learning,
the time course of the knee is quite variable: In partic-
ular, knee flexion/extension occurs more frequently
and with a larger amplitude, up to 20°, especialy in the

Figure 4 (a) A typical learning curve. Learning can be considered completed here after 991 trials. (b) The learning
curve of a system that has to tune its control action, to balance the body when the knee was blocked. As can be seen, a
few successful trials alternate with failures, until trial 476, after which the system is balanced consistently over 20 s.

Figure 5 The time course of the HAT, the upper leg orientation, and the lower leg orientation [a(t) in Equation 1] plotted
for two different experiments.
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first learning trials. However, a complete analysis of
how these synergies emerge through learning goes
beyond the scope of the present article.

5.1 Robustness and Adaptability

To test the robustness of the emerging kinematics pat-
tern, a statistical evaluation has been carried out through
the principal components analysis or Karhunen–Loeve
transform (Mah et al., 1994; Borghese, Bianchi, &
Lacquaniti, 1996), which is aimed in quantifying the
variability of a set of signals, S(t). This identifies three
orthogonal basis signals, which explain progressively
smaller portions of the signals total variability. Mathe-
matically the principal components are obtained
through the singular value decomposition of the dis-
persion matrix, S(t) – mean(S(t)). In this context, prin-
cipal components analysis has been applied to the

anatomical angles’ time course: the hip, h(t), the knee,
k(t) and the ankle, a(t):

(13)

V is and orthonormal matrix, whose columns, Vj, indi-
cate the orientation of the principal directions; and W
is a diagonal matrix, whose elements describe the var-
iability in each principal component. SVD is singular
valve decomposition. The jth principal component
(PC) can be obtained by projecting the orientation
angles over the direction Vj as

PC j(t) = Vj * A(t) (14a)

Figure 6 The upper versus lower leg orientation plotted for two different experiments.

Figure 7 The time course of the anatomical angles plotted for two different experiments. Notice that the knee is com-
pletely extended most of the time. Flexion of a few degrees can be seen in certain selective instants.

U W V[ ] svd A t( )( )

  where  A t( )
h t( ) mean h t( )( )–

k t( ) mean k t( )( )–

a t( ) mean a t( )( )–

=

=



PROOF O
NLY

Borghese & Calvi Learning Posture 11

and, similarly, A(t) can be obtained from the principal
components as

Aj(t) = VTj * PC(t) (14b)

The direction of the three principal components and
the variability explained by each of them are reported
in Table 3; their time course is plotted in Figure 9 for
two experiments. The first component, which alone
explains, on average, 75.7% of the variability, has a
time course very similar to that of the hip: It can recon-
struct the hip time course with a residual error measured
as mean(abs(PC1(t) – h(t))), of 0.655°, on average.
The ankle reconstruction has a significant residual
(1.524° on average, cf. Figure 9), and the second com-
ponent is required to obtain an almost complete recon-
struction (98.2% of the variability explained). Knee
flexion/extension, instead, is completely absent and is
captured by the third principal component alone: The

first two components are related to the hip and ankle
motion, whereas the third is related to the knee time
course. This result is very robust as can be appreciated
from the extremely low standard deviation reported in
Table 3 for all the analyzed experiments: The standard
deviation of the variations in angle orientation was
1.59° with a maximum difference between the direc-
tions of two principal components of 3.35°.

The ability of the controller to cope with sudden
perturbations was tested by delivering unforeseen
torque inputs to the body model. Torques of different
duration (40 ms, 100 ms, 200 ms) and amplitude (10%,
30%, and 50% of the maximum torque deliverable to
the joints by the ensemble of muscles) were used. The
results are reported in Figure 10 and show that the
controller is indeed robust against perturbations. Tor-
ques of 60% of maximal value have to be delivered to
consistently destabilize the system. Torques up to
30% of the maximal value have to be delivered for

Figure 8 (a) The time course of the forward/backward displacement of the center of mass (CM): Dashed lines indicate
the feet boundary. (b) Its projection over the time course of the sagittal plane. (c, d) The amplitude of the Fast Fourier
Transform (FFT) of the horizontal position of the center of mass (HCM) for two different experiments.
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400 ms to destabilize the system. Perturbations of shorter
duration make the body sway (see the local peak in
the HAT orientation between 1 s and 1.5 s in the cen-
tral panel), but they can be absorbed by the controller.
No appreciable variation can be seen when the torque
perturbation is as low as 10% of maximum torques.

The adaptability of the controller to different body
structures has been investigated by blocking the knee
joint when learning has been completed. As can be
seen by comparing Figure 4b with Figure 4a, the con-
troller learns to balance this modified model, but the
learning curve is completely different: A few consecu-

Table 3 The parameters of the singular value decomposition applied to all the analyzed experiments. PC1, PC2, and
PC3 are the three principal components, where each of them is identified by its director cosines in the anatomical angles
space. The “Residual” expresses the mean value of the reconstruction error when using only one principal component;
the percentage of total variability taken into account by each principal component is reported in the column “Variability”.
Notice that the third principal component, PC3, is always oriented along the knee angle.

Experiment PC1 PC2 PC3 Residual Variability (%)

1
0.465
0.0

–0.885

0.885
0.0

–0.465

0.0
–1.0

0.0

0.697
0.0
1.325

72.6
27.3

0.1

2
0.371
0.0

–0.929

–0.929
0.0

–0.371

0.0
–1.0

0.0

0.535
0.0
1.341

75.17
24.8

0.03

3
0.363
0.009

–0.885

–0.933
0.0

–0.371

0.0
–1.0

0.0

0.771
0.126
2.003

77.2
20.14

2.66

4
0.372
0.0

–0.928

–0.928
0.0

–0.372

0.0
–1.0

0.0

0.535
0.0
1.340

75.1
24.83

0.07

5
0.49
0.0

–0.872

–0.872
0.0

–0.49

0.0
–1.0
–0.0

0.585
0.0
1.043

77.0
22.99

0.01

6
0.381
0.01

–0.924

–0.924
0.015

–0.381

0.0
–1.0
–0.0

0.723
0.185
1.755

75.1
20.2

4.7

7
0.372
0.006

–0.928

–0.928
0.003

–0.372

0.0
–1.0
–0.0

0.612
0.02
1.351

77.7
17.24

0.06

8
0.355
0.01

–0.935

0.355
0.01

–0.935

0.0
–1.0
–0.0

0.748
0.182
1.862

75.5
24.3

0.2

Mean (SD)

0.402
(0.052)
0.004

(0.005)
–0.914
(0.025)

–0.914
(0.025)
0.003

(0.005)
–0.401
(0.053)

0.002
(0.004)
–1.0
(0.0)
0.005

(0.006)

0.655
(0.1)
0.071

(0.089)
1.524

(0.351)

75.7
(1.75)
22.5
(3.5)
1.8

(2.1)
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tive successful trials are alternated with failures until
balancing becomes stable. In this experiment this was
achieved at the 476th trial, but in other experiments
this number was even lower. This behavior is consist-
ent and can be studied in the context of interfering
motor patterns (e.g., Shadmehr & Holcomb, 1999).

6 Discussion

Simulations show that the control system is consist-
ently able to learn to maintain upright posture. The
kinematics strategies learned in different experiments
are quite similar: They all share the characteristic that
the controller tends to block the knee and to act at the
ankle and the hip level. This mechanism aligns the

lower and upper leg, and it can be interpreted as a con-
trol simplification since the entire leg can be control-
led as a single inverse pendulum instead of a double
one, made of the upper and lower leg. Therefore two
kinematics synergies can be postulated. The first syn-
ergy is aimed at maintaining the upright posture by
balancing the trunk over the leg, considered as a sin-
gle segment rotating over the ankle: Forward/back-
ward bending of the trunk is compensated by counter-
rotation of the ankle and the hip. The fact that the knee
stays at the maximal extension simplifies the overall
control by reducing the number of degrees of freedom
to be controlled (cf. Mah et al., 1994; Lacquaniti, 1997).
In the second kinematics synergy, the knee rapidly
flexes and it is extended again shortly after; this move-
ment is not correlated with hip or ankle motion as

Figure 9 Principal components analysis. The reconstruction of the time course of the anatomical angles, obtained with
only one principal component (PC), is plotted with a dotted line, superimposed on the true time course in the upper pan-
els. Notice that hip reconstruction is almost complete, ankle reconstruction has a significant residual, and knee flexion/
extension is completely missing. In the lower panels, the time course of the three principal components is reported.

Figure 10 Effect of the perturbations. The kinematics of the HAT and of the lower leg elevation is plotted, with dotted
lines, when a torque input is activated on the body model. The torque is applied at t = 0.6 s and lasts, from top to bottom,
100 ms, 200 ms, and 400 ms, respectively. Different level of torques have been used; from left to right: 60%, 30%, and
10% of maximum joint torques. For the sake of comparison the unperturbed kinematics from the two variables in the
same experiment is plotted as a continuous line.
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shown by the fact that the third principal component is
aligned with the knee angle (Table 3 and Figure 9),
and it can be considered as a different kinematics syn-
ergy. This is activated mainly when large trunk dis-
placement occurs, destabilizing the whole body, as
can be appreciated comparing Figures 7 and 9 (cf. also
Forssberg, 1999).

The overall data suggest that the hip and the ankle
angles (with the knee extended) are the variables con-
trolled in normal postural control, while knee flexion/
extension is recruited in “emergency” situations. The
role of hip and ankle was first put forward by Nashner
(1977), who defined a “hip strategy” and an “ankle strat-
egy” for postural control. The two strategies were
named after the joints, which were mainly in charge of
compensating for perturbations, coming as tilt or dis-
placement of the support base. In the present experi-
ments, the controller tends to privilege a “hip strategy”
as can be seen by analyzing Table 3. In fact, the first
principal component, which explains most of the vari-
ability (75.7% on average), allows the reconstruction
of the hip rotation in details (an average residual of
0.655° was observed), while the second principal com-
ponent is required for reconstructing the ankle motion
in detail (cf. also Figure 9). Instead, the ankle strategy
is privileged in experiments where subjects have to
learn balancing on a tilting platform, since the ankle
motion become prominent in the control.

The presence of two synergies, which cope with
two different situations, has also been described exper-
imentally in other motor tasks, for instance, in gait
(Borghese et al., 1996). There, a covariation between
segments has been described and it has been shown
that it is robust in all the gait phases and for different
velocities, except in the push-off. In this gait phase the
ankle angle shows a large variability, which is paral-
leled by the variability in the push-off force; shortly
afterward the kinematics pattern resumes its stereotype.

This framework suggests an interpretation of pos-
tural control in terms of prime movers (Bouisset &
Zattara, 1987). These are the elements (muscles or
joints) that are active in starting a given movement,
whereas the other muscles are functional in maintain-
ing the body configuration. In this view, in normal
functioning, hip and ankle joints are the prime movers
in the control of posture, whereas when a large dis-
placement of the skeleton is required, knee joint enters
into play.

6.1 Methodological Issues

Two types of controllers of upright posture are dis-
cussed in the literature. According to one view, bal-
ancing could be maintained by setting the stiffness of
each limb (Winter et al., 1998): By making more stiff
antagonistic muscles act on a joint, the overall stiff-
ness of that joint increases (Lacquaniti et al., 1993).
Muscle stiffness can be controlled by directly regulat-
ing the stiffness (Bizzi, 1980) or the resting position
(Feldman & Levin, 1995) of each muscle. In this frame-
work, the observed kinematics is the result of the
interaction of the body dynamics with the muscle
dynamics. Although this pure passive control model
has the merit of not being subjected to the control loop
delays, it does not fit the stiffness data reported in the
literature (Morasso & Schieppati, 1999), and the active
control paradigm is considered in this work (e.g., Lac-
quaniti, 1997; Morasso & Schieppati, 1999). In this
scheme, the controller outputs a set of proper spikes or
torques for each joint, as a function of the whole body
state, s(t) (Section 2.3). However, besides active con-
trol, a possible role of stiffness cannot be ruled out,
and more complex controllers are required to investi-
gate the possible interplay between stiffness and pos-
tural control.

Particular care has been put in dimensioning the
torques: The data were derived from the work of
Pedotti et al. (1978), where the maximum deliverable
torque as a function of maximum contraction force,
cross-sectional area, moment arm, and muscle length-
ening were carefully estimated.

The model of the body introduced here responds
to a minimalist principium: The head, the arms and
the trunk are lumped into a single rigid body called
the HAT in the biomechanics community (Winter,
1990). This model is used to simplify the analysis of
those body movements that do not require the motion
of the arms or of the head to accomplish the motor
tasks (e.g., Anderson & Pandy, 2001): An increase in
computational time of two orders of magnitude are
observed when all the segments described in Table 1
were allowed to move. The HAT approximation has
been supported by evidence, at least in gait, that kine-
matics data of the trunk and of the legs are not altered
when arms are blocked (Borghese et al., 1996; cf. For-
ssberg, 1999). The release of this constraint and the
analysis of a possible role of other segments, and in
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particular of the arms, in learning successful postural
control strategies is the goal of a future study.

6.2 Oscillatory Behavior

Oscillatory behavior has been described in the control
of upright posture in adults (Collins & De Luca, 1995)
and children (Forssberg, 1999). However, the oscilla-
tions’ amplitude found in these experiments, although
within a limited range, is larger than that observed in
the real case.

This suggests that a more refined model for com-
puting the internal reinforcement (Equation 9) has to
be put forward. One possibility is to introduce a meas-
ure of energy consumption as an additional input to
the critic, besides the external reinforcement, R. In
control theory, for infinite horizon problems such as
upright balancing, a measure of energy consumption
widely used is some Lloc norm of the torques developed
through time (Bryson & Ho, 1975).2 A second possibil-
ity is that stabilization of the optical flow on the retina
plays a major role in learning upright posture. It has
been demonstrated that humans stabilize head and gaze
during different motor tasks, possibly to get a stable
representation of the external world (Pozzo, Berthoz,
& Lefort, 1990). This stabilization cannot be achieved
when, like in the present case, the trunk continuously
moves over the support. A retinal slip error, again in
some Lloc norm, can therefore be hypothesized as addi-
tional input to the critic. Testing these hypotheses goes
beyond the scope of this article, whose main focus is
on the analysis of kinematics synergies learned in a
pure reinforcement learning setting.

6.3 Neurophysiology Remarks

The active controller used here is ideally located at the
level of the spinal cord, which introduces a maximum
delay of the order of 20 ms between sensory input and
motor output (muscle contraction; Ghez, 1991). The
delay is a critical element in any control system (Astrom
& Witthenmark, 1989); it has been shown by simula-
tions that a delay of the order of 50 ms is sufficient to
destabilize a postural controller (Morasso & Schiep-
pati, 1999). This same result was found here, where
the controller had extreme difficulty in learning upright
posture for delays larger than 20 ms. Therefore higher
centers, which have response latencies of the order of
50–80 ms (brain stem or cerebellum) or >80 ms (cere-

bral cortex) cannot host the feedback controller pro-
posed here.

However, this picture does not rule out an involve-
ment of the higher centers in the control of posture; in
particular, when perturbations can be foreseen, feed-
forward control schemes based on internal models can
be used (Wolpert & Kawato, 1998). Moreover, higher
centers, and in particular the basal ganglia, can host
the critic module, and the basal ganglia–cortex loop
can host the reinforcement learning machinery (Doya,
2001). In fact, the critic does not need to operate syn-
chronously with the controller: It is only required that
its output, the internal reinforcement, is delivered to
the right state/control pair, although this signal can be
delayed in time. 

7 Conclusion and Future Work

A new methodology to study learning complex human
behavior has been presented here. Overall, the results
show that the anatomical arrangement of the skeleton
is sufficient to shape a postural control, robust against
torque perturbations and noise, and flexible enough to
adapt to changes in the body model in a short time.
Moreover, the learned kinematics closely resembles
the data reported in the literature; it emerges from the
interaction with the environment, through trial-and-
error; no a priori information is given as a hard-wired
property of the control system.

The system can be extended in several ways by
modifying the body model or the controller. The HAT
hypothesis can be released and all is macro-segments
in Table 1, and in particular the arms, can be allowed
to move; this might highlight finer control mecha-
nisms in balancing and allows studying the influence
of the different body segments on learning upright
posture. As far as the controller is concerned, it can be
made more complex, by using multiple neural net-
works in parallel, each with a different input/output
function, competing to produce the correct control
action sequence (cf. Jordan & Jacobs, 1994). In an inter-
esting experiment, one neural network can be the one
used in this article, and a second one can implement a
stiffness control, receiving as input the position and
rotation velocity of the limbs and outputting for a
given joint a signal that activates opposing pairs of
muscles acting on that joint. This kind of controller
might help in elucidating the relative role of passive
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stiffness controller versus active torque controller in
maintaining upright posture, which is still under debate
(Winter et al., 1998; Morasso & Schieppati, 1999).

The methodology introduced here can be of inter-
est in fields other than motor control. In robotics it can
be useful to teach complex robots and in the new field
of digital animation it can be fruitfully adopted to cre-
ate digital stunts, which would replace the costly motion
capture sessions made with real stunts (e.g., Popovic,
Seitz, Erdmann, Popovic, & Witkin, 2000).

Notes

1 It should be remarked that maintaining the center of mass
inside the support base is the definition itself of equilib-
rium and not an explanation!

2 Given a sequence X = {xk ∈Rp} with –∞ < k < +∞, its Lloc

norm is defined over a subset Y ⊆ X, as .
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