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Abstract

While different optical flow techniques continue to appear, there has been a lack of quantitative
evaluation of existing methods. For a common set of real and synthetic image sequences, we report
the results of a number of regularly cited optical flow techniques, including instances of differential,
matching, energy-based and phase-based methods. Our comparisons are primarily empirical, and
concentrate on the accuracy, reliability and density of the velocity measurements; they show that

performance can differ significantly among the techniques we implemented.

1 Introduction

Without doubt, a fundamental problem in the processing of image sequences is the measure-
ment of optical flow (or image velocity). The goal is to compute an approximation to the 2-d
motion field — a projection of the 3-d velocities of surface points onto the imaging surface — from
spatiotemporal patterns of image intensity [30, 58]. Once computed, the measurements of image
velocity can be used for a wide variety of tasks ranging from passive scene interpretation to
autonomous, active exploration. Of these, tasks such as the inference of egomotion and surface
structure require that velocity measurements be accurate and dense, providing a close approxi-
mation to the 2-d motion field. Current techniques require that relative errors in the optical flow
be less than 10% [9, 35]. Verri and Poggio [58] have suggested that accurate estimates of the 2-d
motion field are generally inaccessible due to inherent differences between the 2-d motion field
and intensity variations, while others (e.g. [4]) argue that the measurement of optical flow is an
ill-posed problem. For these reasons it has been suggested that only qualitative information can
be extracted.

Many methods for computing optical flow have been proposed — others continue to appear.
Lacking, however, are quantitative evaluations of existing methods and direct comparisons on a
single set of inputs. Kearney et al. [36] discussed sources of error with gradient-based methods.
Little and Verri [38] compared properties of differential and matching methods and reported
some quantitative comparisons, but only on two relatively simple, synthetic test cases; the
accuracy they reported was not encouraging, with average relative errors of 10%-20%, and
average angular errors of 7°—12° in the best cases. More recently, Willick and Yang [62] have
examined the merits of the gradient constraint used by Horn and Schunck [31] compared to the
constraints suggested by Schunck [49, 50] and Nagel [44]. Of these three, they argue that the
original gradient constraint is superior. This paper reports a comparison of widely cited optical
flow methods. We implemented nine techniques including instances of differential methods,
region-based matching, energy-based and phase-based techniques, namely those of Horn and
Schunck [31], Lucas and Kanade [39, 40], Uras et al. [57], Nagel [43], Anandan [5, 6], Singh
[53, 54], Heeger [29], Waxman et al. [61] and Fleet and Jepson [19, 22].

Despite their differences, many of these techniques can be viewed conceptually in terms of
three stages of processing:
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1. prefiltering or smoothing with low-pass/band-pass filters in order to extract signal structure
of interest and to enhance the signal-to-noise ratio,

2. the extraction of basic measurements, such as spatiotemporal derivatives (to measure nor-
mal components of velocity) or local correlation surfaces and

3. the integration of these measurements to produce a 2-d flow field, which often involves
assumptions about the smoothness of the underlying flow field.

Our selection of techniques for comparison was motivated in part by a desire to examine prop-
erties of these individual stages; for example, we have two first-order differential techniques that
differ only in the method used to integrate measurements. Where applicable, we also report
results concerning the measurement of normal velocity since there is growing interest in the use
of normal velocity, thereby side-stepping some of the assumptions inherent in current methods
for integrating measurements to find 2-d velocity [3, 4, 9, 15, 32, 46].

We have used both real and synthetic image sequences to test the techniques. In both cases
however, we have chosen sequences that are not severely corrupted by spatial or temporal alias-
ing. This enables us to test basic implementations of differential methods and matching methods
on the same data without the complexities of hierarchical coarse-fine control and warping tech-
niques. For example, we do not consider stop-and-shoot sequences [17].

This paper concentrates on the accuracy and density of velocity estimates produced by the
nine methods. Confidence measures have been used to extract subsets of estimates for which
we report error statistics. While confidence measures are rarely addressed in the literature, we
find that they are crucial to the successful use of all techniques. Thus we have also examined
the use of several different confidence measures.

2 Optical Flow Techniques

We begin with a brief description of the different techniques, and several of the implementation
specifics. Although most of the important issues are addressed here, the interested reader should
consult the original papers for further details. In addition, our source code and our image
sequences are available via anonymous f{tp from ftp.csd.uwo.cain the directory /pub/vision.

2.1 Differential Techniques

Differential techniques compute velocity from spatiotemporal derivatives of image intensity or
filtered versions of the image (using low-pass or band-pass filters). The first instances used
first-order derivatives and were based on image translation [18, 31, 42], i.e.

I(x,t) = I(x—vt0), (2.1)

where v = (u, v)!. From a Taylor expansion of (2.1) [31] or more generally from an assumption
that intensity is conserved, dI(x, t)/dt = 0, the gradient constraint equation is easily derived:
VI(x,t)-v + L(x,t) = 0, (2.2)
where I;(x, t) denotes the partial time derivative of I(x,t), VI(x,t) = (I.(x,t), I,(x, 1))T,
and VI -v denotes the usual dot product. In effect, (2.2) yields the normal component of motion
of spatial contours of constant intensity, v,, = sn. The normal speed s and the normal direction
n are given by
—Ii(x, 1) VI(x,1t)
s(x, ) = =7 n(x,t) = ———7—. (2.3)
’ | VI, )" ’ | VI(x,1) |

There are two unknown components of v in (2.2), constrained by only one linear equation.
Further constraints are therefore necessary to solve for both components of v.
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Second-order differential methods use second-order derivatives (the Hessian of ) to constrain
2-d velocity [42, 43, 56, 57]:

La(x, 1) I(x, 1) ] ( vy ) N (LI(X, 1) ) _ ( 0 ) (2.4)

LIoy(x, 1) Iyy(x, 1) Vg Iiy(x, 1) 0 /" ’
Equation (2.4) can be derived from (2.1) or from the conservation of VI(x, t), dVI(x, t)/dt = 0.
Strictly speaking, the conservation of VI(x, t) implies that first-order deformations of intensity
(e.g. rotation or dilation) should not be present. This is therefore a stronger restriction than
(2.2) on permissible motion fields. To measure image velocity, assuming dVI(x, ¢)/dt = 0, the
constraints in (2.4) may be used in isolation or together with (2.2) to yield an over-determined
system of linear equations [23, 47]. However, if the aperture problem prevails in a local neigh-
bourhood (i.e. if intensity is effectively one-dimensional), then because of the sensitivity of
numerical differentiation, 2"¢-order derivatives cannot usually be measured accurately enough
to determine the tangential component of v. As a consequence, velocity estimates from 27-
order methods are often assumed to be sparser and less accurate than estimates from 1%¢-order
methods.

Another way to constrain v(x) is to combine local estimates of component velocity and/or
2-d velocity through space and time, thereby producing more robust estimates of v(x) [53].
There are two common methods to accomplish this: The first method fits the measurements in
each neighbourhood to a local model for 2-d velocity (e.g. a low-order polynomial model), using
least-squares minimization or a Hough transform [18, 36, 40, 53, 60]. Usually v(x) is taken to
be constant, although linear models for v(x) have been used successfully [60, 19]. The second
approach uses global smoothness constraints (regularization) in which the velocity field is defined
implicitly in terms of the minimum of a functional defined over the image [31, 42, 43, 45].

Of course, one requirement of differential techniques is that I(x, ¢) must be differentiable.
This implies that temporal smoothing at the sensors is needed to avoid aliasing and that nu-
merical differentiation must be done carefully. The often stated restrictions that gradient-based
techniques require image intensity to be nearly linear, with velocities less than 1 pixel/frame,
arise from the use of 2 frames, poor numerical differentiation or input signals corrupted by tem-
poral aliasing. For example, with 2 frames, derivatives are estimated using 1%*-order backward
differences, which are accurate only when 1) the input is highly over-sampled or 2) intensity
structure is nearly linear. When aliasing cannot be avoided in image acquisition, one way to
circumvent the problem is to apply differential techniques in a coarse-fine manner, for which
estimates are first produced at coarse scales where aliasing is assumed to be less severe, with
velocities less than 1 pixel/frame. These estimates are then used as initial guesses to warp finer
scales to compensate for larger displacements. Such extensions are not examined in detail here.

This paper reports results from four differential techniques; they include first-order and
second-order constraints, as well as local and global methods of combining the local constraints.
We found that all these techniques, as described in the literature, require some confidence
measure as a means of separating reliable from unreliable measurements. Although we have
used such thresholds to obtain the results reported below, it is important to note that they were
not taken from the original literature in all cases, but rather are a first attempt on our part
to improve the accuracy of the measurements. They are discussed below and in more detail in
Section 4.5, with quantitative results shown in Appendix G.
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Horn and Schunck

Horn and Schunck [31] combined the gradient constraint (2.2) with a global smoothness term
to constrain the estimated velocity field v(x, t) = (u(x, t), v(x, t)), minimizing

lJVI-v+102+A%HVuH§+HVvH@dx (2.5)

defined over a domain D, where the magnitude of A reflects the influence of the smoothness term.
We used A = 0.5 instead of A = 100 as suggested in [31] because it produced better results in
most of our test cases. Iterative equations are used to minimize (2.5) and obtain image velocity:

P N N e 11
U = U —
a? + I2 + I?

(2.6)
I A A AR 0

v =7 ,

a? + I2+ 12

where k denotes the iteration number, u° and v" denote initial velocity estimates which are
set to zero, and @* and ©* denote neighbourhood averages of u* and v*. We use at most 100
iterations in all testing below.

The original method described in [31] used first-order differences to estimate intensity deriva-
tives. Because this is a relatively crude form of numerical differentiation and can be the source
of considerable error, we also implemented the method with spatiotemporal presmoothing and
4-point central differences for differentiation (with mask coefficients 11—2(—1,8,07 -8,1)). We
used a spatiotemporal Gaussian prefilter with a standard deviation of 1.5 pixels in space and
1.5 frames in time (1.5 pixels-frames), sampled out to three standard deviations. Results from

both the original and our modified method are reported below.

Lucas and Kanade

Following Lucas and Kanade [40, 39] and others [2, 36, 51, 52], we implemented a weighted
least-squares (LS) fit of local first-order constraints (2.2) to a constant model for v in each small
spatial neighbourhood 2 by minimizing

E WZ(X) [VI(X7 t) "V o+ It(xv t)]z g (27)
XEQ
where W(x) denotes a window function that gives more influence to constraints at the centre of
the neighbourhood than those at the periphery. The solution to (2.7) is given by

ATw?2Av = ATw?p (2.8)
where, for n points x; €  at a single time ¢,
A = [VI(x1), ..., VI(x)]F,
W = diag[W(x1), ..., W(x,)],
b = —(I(x1), ..., I(x,)) .
The solution to (2.8) is v = [ATW?2A]~! ATW?2b, which is solved in closed form when ATW?2A
is nonsingular, since it is a 2 X 2 matrix:

[ SR SWALEL)
AW = | S gL nx)  SWEEE) | (29)
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where all sums are taken over points in the neighbourhood 2.
Equations (2.7) and (2.8) may also be viewed as weighted least-squares estimates of v from
estimates of normal velocities v, = sn; i.e. (2.7) is equivalent to

Z W2(x) w?(x) [v-n(x) — s(x)]? (2.10)

xXeN

where the coefficients w?(x) reflect our confidence in the normal velocity estimates; here, w(x) =
| VI(x, 1) .

Our implementation first smooths the image sequence with a spatiotemporal Gaussian fil-
ter with a standard deviation of 1.5 pixels-frames. This helps attenuate temporal aliasing
and quantization effects in the input. Derivatives were computed with 4-point central dif-
ferences with mask coeflicients —( 1,8,0,—-8,1). Spatial neighbourhoods Q were 5 x 5 pix-
els, and the window function W?2(x) was separable and isotropic; its effective 1-d weights are
(0.0625, 0.25,0.375,0.25,0.0625) as in [51]. The temporal support for the entire process was 15
frames. In a more recent implementation, Fleet and Langley [21] have replaced the FIR filters
with IIR recursive filters and temporally recursive estimation. This method requires only three
frames of storage, delays of only 2 or 3 frames, and yields results of similar accuracy.

Simoncelli et al. [51, 52] present a Bayesian perspective of (2.7). They model the gradient
constraint equation (2.2) using Gaussianly distributed errors on gradient measurements, and
a Gaussianly distributed prior on velocity v. The resulting mazimum a posteriori solution is
similar to (2.8), and yields a covariance matrix for the velocity estimates. We found that this
modification does not change the accuracy significantly but it does suggest that unreliable esti-
mates be identified using the eigenvalues of ATW?2A, A; > Ay, which depend on the magnitudes
of the spatial gradients, and their range of orientations. Although Simoncelli et al. suggested
using the sum of eigenvalues, we found that the smallest eigenvalue alone was somewhat more
reliable. Therefore, in our implementation, if both A; and A are greater than a threshold 7, then
v is computed from (2.8). If Ay > 7 but Ay < 7, then a normal velocity estimate is computed,
and if Ay < 7 no velocity is computed. Unless stated otherwise, we used 7 = 1.0. Interestingly,
this also gives us two ways of computing normal velocities: 1) from the gradient constraint (2.3)
and 2) from this LS minimization. Results from both methods are given below.

Nagel

Nagel was one of the first to use second-order derivatives to measure optical flow [42, 43, 45]. Like
Horn and Schunck, the basic measurements are integrated using a global smoothness constraint.
As an alternative to the constraint in (2.5), Nagel suggested an oriented-smoothness constraint
in which smoothness is not imposed across steep intensity gradients (edges) in an attempt to
handle occlusion [42, 43, 45] The problem is formulated as the minimization of the functional

// vity + Ls m [( =1y uylz)2 + (ve1y — vyII)2 + 6(ui + u;‘; + vf,_ + vg)] dzdy.
(2.11)

Minimizing (2.11) with respect to v attenuates the variation of the flow, Vv, in the direction
perpendicular to the gradient. As suggested in [43] we fix § = 1.0. ! Also, unless otherwise
stated we set a = 0.5.

1Smaller values of § were tested but they produced numerical instabilities unless greater blurring was used.
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Appendix A shows that a solution to this minimization may be expressed with Gauss-Seidel
iterations as follows:

uk—l—l —

oy L(LE(u") + LE(WR) + 1)
£(u”) — 1.2 +Iy2 T a?

bl

(2.12)
1, (1E(uk) + 1,E(0F) + 1)
L+ 1, 4 o '

oM = g (o) -

In these equations, k represents the iteration number, and £(u*) and £(v*) are given by
f(uk) = af - 20 1y ugy — qT(Vuk)
E(0F) = oF - 20, 1yvgy — al (voF)

where
1 T 1 _Il? Iz‘z Iz‘
N A raan!
uzyk and vak denote estimates of the partial derivatives of v¥, @* and #* are local neighbourhood
averages of u* and v* and W is the weight matrix

W:(Ig§+Lj+2(5)—1(IyZ*"5 _L@)

—LI, I?2+§

In our implementation, all velocities are set to zero initially. The image sequence is pres-
moothed with a Gaussian kernel with a standard deviation of 1.5 pixels in space and time?
Intensity derivatives were computed using 4-point central-difference operators, cascaded in dif-
ferent directions to get the second derivatives. First-order velocity derivatives were computed
using 2-point central-difference kernels, %(1, 0,—1),and 27? order derivatives were computed as
cascades of 1°¢ order derivatives. We used 100 iterations to obtain the results reported here.
Further details of our implementation are given in Appendix A.

Uras, Girosi, Verri and Torre

The other 2"%-order technique considered here is based on a local solution to (2.4). Following
Uras et al. [57], (2.4) may be solved for v wherever the Hessian H of I(x, t) is nonsingular. In
practice, for robustness, they divide the image into 8 X 8 pixel regions. From each region they
select the 8 estimates that best satisfy the constraint | MV || < || VI; ||, where M = (Vv)T.
Of these they choose the estimate with the smallest condition number x(H ) of the Hessian (2.4)
as the velocity for the entire 8 X 8 region.

Our implementation presmooths the image sequence with a Gaussian kernel with a standard
deviation of 3 pixels in space and 1.5 frames in time.? Derivatives of I(x, t) and v were computed
using 4-point central-difference operators, cascaded in different directions to get the second
derivatives. Although Uras et al. suggest that x(H ) be used as a confidence measure for the
velocity estimates, we found that the determinant det(H ) (the spatial Gaussian curvature of the
smoothed input) is more reliable, as is discussed in Section 4.5. Therefore, when reporting error
statistics, we extract subsets of velocity estimates using the constraint: de{(H) > 1.0 (unless
stated otherwise).

2The real image sequences required more smoothing with a standard deviation of 3.0 in space instead of 1.5 to obtain
good results. The synthetic test data produced better results with less smoothing.

3In the original paper [57] the authors used standard deviations of 5 in space and 1 frame in time.
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2.2 Region-Based Matching

Accurate numerical differentiation may be impractical because of noise, because a small number
of frames exist or because of aliasing in the image acquisition process. In these cases differential
approaches may be inappropriate and it is natural to turn to region-based matching [24, 6, 13,
37, 38]. Such approaches define velocity v as the shift d = (d;,d,) that yields the best fit
between image regions at different times. Finding the best match amounts to maximizing a
similarity measure (over d), such as the normalized cross-correlation or minimizing a distance
measure, such as the sum-of-squared difference (SSD):
n n
SSDip(x;d) = Y Y W(inj) [hi(x+(i,5) = L(x+d + (i, /)

= W(x) * [L(x) - L(x+d)?, (2.13)

where W denotes a discrete 2-d window function, and d = (dg, d,) take on integer values.
There is a close relationship between the SSD distance measure, the cross-correlation similar-
ity measure, and differential techniques. Minimizing the SSD distance amounts to maximizing
the integral of product term I;(x)/3(x + d). Also, the difference in (2.13) can be viewed as a
window-weighted average of a first-order approximation to the temporal derivative of I(x, t).

Anandan

The first matching technique considered here, reported by Anandan [5, 6], is based on a Laplacian
pyramid and a coarse-to-fine SSD-based matching strategy. The Laplacian pyramid [12] allows
the computation of large displacements between frames and helps to enhance image structure,
such as edges, that is often thought to be important.

We begin at the coarsest level where displacements are assumed to be 1 pixel/frame or
less. SSD minima are first located to pixel accuracy by computing (i.e. sampling) SSD values
in 3 x 3 a search space (i.e. d; and d, take values -1, 0 and 1 pixel/frame), using a 5 X 5
Gaussian for W(x). Subpixel displacements are then computed by finding the minimum of a
quadratic approximation to the SSD surface (about the minimum SSD value found with integer
displacements d). As suggested by Anandan, Beaudet operators [11] were used to estimate
the quadratic surface parameters. Confidence measures, ¢,,;, and ¢,,.., are derived from the
principle curvatures, C),;, and C,45, of the SSD surface at the minimum:

Cmax _ szn
) Cmin = ’
k1 + k2Smin + k3Cnaz k1 + k2Smin + k3Cmin
where kq, ko and k3 are normalization constants, and 9,,;, is the SSD value at the minima.
Anandan uses k; = 150, k; = 1 and k3 = 0 (see page 130 in [5]).
Anandan also employs a smoothness constraint on the velocity estimates, taking c¢,,;, and

(2.14)

Cmazr =

Cmaz 1Mto account, by then minimizing
//(ui + u?/ + UZ‘ + U;) + Cmaz(v *€maz — VO emaz‘)2 + Cmin(v *€min — Vo - emin)2 (215)

where e, ., and e,,;, are the directions of maximum and minimum curvature of the SSD surface
at the minimum, and vg denotes the displacements propagated from the higher level in the
pyramid. Using Gauss-Seidal iterations Anandan derives the following equation

Cmi _
min [(vo — Vk) “€minl€min (2.16)

Cmin + 1

Cmal?

m[(VO - Vk) . emaz]emaz’ ‘|’

Vk—l—l — Vk +
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where v* is the neighbourhood average of vF computed using mask

1

o = o

1
0
1

o = o

Initially, v is set to vg. Anandan allows 10 iterations to achieve convergence.

Matching and smoothing are performed at each level of the Laplacian pyramid. When moving
from coarser to finer levels the initial 3 x 3 SSD search area is determined by projecting the
coarser level estimate at each pixel to all pixels in a 4 X 4 region at the next finer level so that
each pixel at the finer level has 4 initial guesses. The SSD search area is then the union of
the 3 x 3 areas centered at each of the 4 initial displacements. We used a Laplacian pyramid
with two or three levels depending on the range of speeds in the image sequence we examine.?
We attempted to extract subsets of estimates using a threshold on the confidence measures
suggested by Anandan, i.e. ¢in and ¢4, However, as discussed below, we did not find such

measures to be reliable.

Singh

We also implemented Singh’s two-stage matching method [53, 54]. The first stage is based on
the computation of SSD values with three adjacent band-pass filtered images,® I_y, Iy and I;1:

SSD()(X, d) = SSDOJ(X, d) + SSD07_1(X, —d) 5 (217)

where 55D, ; is given in (2.13). Adding 2-frame SSD surfaces to form 55Dy tends to average
out spurious SSD minima due to noise or periodic texture. Singh then converts 55Dy into a

probability distribution using
R.(d) = ek 55D (2.18)

where k = —1n(0.95)/(min(S5Dg)).% The subpixel velocity ve = (uc,v.) is then computed as
the mean of this distribution (averaged over the integer displacements d:

Ue = 2 Re(d)d, , and v, = 2 Re(d)d, . (2.19)

> Re(d) > Re(d)
As this only works well when the R.(d) is nearly symmetrical about the true velocity, Singh
suggests a coarse-to-fine strategy using a Laplacian pyramid as in [5, 6] so that the effective
SS5D surface is centered at the true displacement. This also allows for large speeds and produces
computational savings. Finally, Singh suggests the eigenvalues of the inverse covariance matrix

as measures of confidence, where the covariance matrix is given by

6 o 1 ( > Re(d)(d, — u.)? ERc<d><dz—“c)(dy);”c)). (2.20)

T Y R(A) \ D R(d)(dp — ue)(dy —v.) Y R(d)(dy — v,

In our implementation of step 1 we use a single resolution: The SSD surface is computed for
a wide range of integer displacements, with —2N < d,,d, < 2N, where N is as large as 4 pixels.
Like Singh we use a uniform window W in (2.13) of width 5 (unless specified otherwise). From
this (4N + 1) X (4N + 1) SSD surface we extract a (2N 4+ 1) x (2N + 1) subregion about the

*We tested our implementation of Anandan’s algorithm on the same Mandrill set of images he used (page 132 in [5]).

This involves a translation of the second image by V = (7,5). Our results were almost identical to those reported in [5].
5With impulse response §(x) — G(x) where §(x) is a Dirca delta function and G(x) is an isotropic Gaussian with standard

deviation 1.0.

5 When min(SSDgy) = 0 we choose the smallest non-zero value of SSDj to compute k.
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minimum? found within the central portion of the original search window (i.e. for displacements
between —N and N). Our goal was to extract the SSD surface sampled symmetrically about the
minimum, to better satisfy the symmetry assumption for the distribution that was mentioned
above. For N = 4 this yields a 9 x 9 SSD patch about the integer velocity from within the
17 x 17 original SSD surface.

The second step in the algorithm propagates velocity using neighbourhood constraints. That
is, it is assumed that a weighted least-squares velocity estimate v,, = (u,,v,) could be derived
from velocities v; = (w;, v;) in its local (2w + 1) X (2w + 1) neighbourhood as follows:

w, = =ifnlvou Y Ba(viJoi (2.21)
>i Ba(vi) 2i Bn(vi)
where R, (v;) is a Gaussian function of the distance between the centre of the neighbourhood
and the location of the estimate v;. Although Singh used w = 1, we found better results with
w = 2. The corresponding covariance matrix is

S : ( 22 Bn(vi)(ui = up)? 2 Bonlve)(ui = un)(w); . ) - (222)

T T Ra(vi) \ X Ba(vi)(ui — wn)(vi— v) 3 Ra(vi)(vi — v

The final velocity estimate, v = (u, v), is chosen to minimize

//(V —v )L ST v = vo) + (v = vo) T 57 (v — v.)dzdy. (2.23)

Here, v. and 5, are derived directly from intensity data in step 1, while v,, and 5,, require the
velocities to be known at each neighbouring point and cannot be computed explicitly. Singh
therefore derives iterative equations using the calculus of variations:

0 _
v, = Ve

VE = [t sh T[S e+ (5B TVE]. (2.24)

We use a maximun of 25 iterations (less if all velocity differences between adjacent iterations is
1072 or less). Singh uses an SVD to compute the matrix inverse in (2.24), replacing singular
values less than 0.1 by 0.1 to avoid singular systems.

Finally, eigenvalues of the covariance matrix [S;! + 51 _1, denoted Ay and Ay, where A; >
Ag, serve as confidence measures estimates for step 2. In reporting error statistics, we threshold
the 2-d velocities, rejecting those velocities where Ay > 7, for 7 being some constant. We also
report error statistics for subsets of the velocity estimates from step 1 (2.19), with a threshold
based on the largest eigenvalue of 5, (2.20).

2.3 Energy-Based Methods

A third class of optical flow techniques is based on the output energy of velocity-tuned filters
[2, 7, 10, 26, 29, 33]. These are also called frequency-based methods owing to the design of
velocity-tuned filters in the Fourier domain [1, 22, 48, 59]. The Fourier transform of a translating
2-d pattern (2.1) is

Ik,w) = Iy(k) 6(w+vTk), (2.25)

where Io(k) is the Fourier transform of I(x,0), é(k) is a Dirac delta function, w denotes tem-
poral frequency and k = (k;, k) denotes spatial frequency. This shows that all nonzero power
associated with a translating 2-d pattern lies on a plane through the origin in frequency space.

"In the event there are two or more SSD minima (with a small threshold) we choose the SSD minimum that corresponds

to the smallest displacement.
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Interestingly, it has been shown that certain energy-based methods are equivalent to correlation-
based methods [1, 48] and to the gradient-based approach of Lucas and Kanade [2, 52]. Indeed,
as mentioned below, results reported in [26, 52] with our image sequences are close to those for
our implementation of the Lucas and Kanade gradient-based method and therefore support this
claim.

Heeger

Here we consider the method developed by Heeger [28, 29|, formulated as a least-squares fit of
spatiotemporal energy to a plane in frequency space. Local energy is extracted using Gabor-
energy filters, with 12 filters at each of several spatial scales, tuned to different spatial orienta-
tions and different temporal frequencies. Ideally, for a single translational motion, the responses
of these filters are concentrated about a plane in frequency space. Heeger derives the expected
response R(u, v) of a Gabor-energy filter tuned to frequency (k;, ky, w) for translating white
noise as a function of velocity:

—4n*ololo}(uk, + vky + w)
(00200 + (60,0, F (020,)?
where 0, 0, and oy are the standard deviations of the Gaussian component of the Gabor filter.

To derive Heeger’s solution, let M;, 1 < ¢ < 12, denote the set of filters with the same

orientation tuning, and let 7m; and R; be the sum of measured and predicted energies, m; and
R;, from filters j in the set M;:

m; = Z m; and R; = E Ri(u,v) . (2.27)
JeM; JeM;

R(u,v) = exp , (2.26)

A least-squares estimate for (u,v) that minimizes the difference between the predicted and
measured motion energies is given by the minimum of

12  Ri(u,v) 2
flu,v) = Z: [nu —mzm] . (2.28)
=1

Heeger [28, 29] has outlined two ways of minimizing (2.28): We implemented the nonlinear
minimization using Newton’s method but the results were unsatisfactory; in addition to requiring
a good initial guess we rarely obtained convergence if the measurement error was much over 10%.

For the results reported below we estimated v using a modified version of Heeger’s parallel
method: We construct a distribution g(v) = exp=®9/(V) for a range —N < (u,v) < N, the
minima of which gives the subpixel velocity estimate, unless the aperture problem occurs in
which case the minima forms a trough. To compute the sub-pixel minima we devised an ad hoc
method that involves multi-resolution minima selection. At the coarsest resolution we compute
g(u,v) values in the range —N < uw,v < N in 0.2 increments. If the spread of the lowest 30
values (their average distance from the global minima denoted here as (us, vas)) is within some
threshold (we used a value of 3), we assume a 2-d velocity and re-compute (u,v) at a finer
resolution about the minima. That is, we compute g(u,v) values for upr — 0.2 < u < ups + 0.2
and vy — 0.2 < v < wvpr+0.21in 0.01 increments and determine the full velocity as the location
of the resulting minima. If the spread of the smallest 30 values at the coarsest resolution is large
(> 3) we assume a normal velocity and fit a straight line through the minima, determining the
normal velocity as the vector from the origin to the closest point on the line.

Like Heeger, we apply the Gabor filters to each level of a Gaussian pyramid; the filter
parameters were taken from [29]. Our implementation permits the use of any level of the



Barron, Fleet, Beauchemin and Burkitt 1993 11

pyramid and, as Heeger suggests, we choose the estimate of v from the level that best satisfies
expected range of speeds for that level. Level 0 (the image) should be used for speeds between
0-1.25 pixels/frame, while levels 1 and 2 should be used for speeds between 1.25-2.5 and 2.5-5
pixels/frame.

2.4 Phase-Based Techniques

We refer to our fourth class of methods as phase-based, because velocity is defined in terms of
the phase behaviour of band-pass filter outputs. For this report we have classified zero-crossing
techniques [14, 16, 27, 61] as phase-based methods because zero-crossings can be viewed as level
phase-crossings. The generalized use of phase information for optical flow was first developed
by Fleet and Jepson [19, 22].

Waxman, Wu and Bergholm

Waxman, Wu and Bergholm [61] apply spatiotemporal filters to binary edge maps to track
edges in real-time. Edge maps E(x,t), based on DOG zero-crossings [41], are smoothed with a
Gaussian filter to create a convected activation profile A(x, t):

A(x, t) = G(x,l;04,04,0¢) % E(x,1) . (2.29)

Level contours of A(x,t) are then tracked using differential methods. However, because the
spatial gradient of A(x, ¢) will be zero at edge locations, a second-order approach is adopted,
applying the constraints in (2.4) to A(x, t). Velocity estimates at edge locations are then given

by
(AxtAyy - AytAxy ’ AytAa:a: - Aa:tAxy)
= 2.
v A Ay, — A2 , (2.30)

ry

where the second derivatives of A(x, ¢) are computed by convolving the appropriate Gaussian
derivatives with the edge maps.

In our implementation, the central Gaussian of the DOG had a standard deviation of 1.5
pixels-frames and the ratio of surround to centre sizes was 1.6. For the activation profile we used
oy = 0y = 2.0 and oy = 1.0 (we require 7 frames for our implementation). Waxman et al. also
proposed a multiple 0 method which attempts to choose the best velocity at an edge location.
For various o, = o, values (we use 1.0, 1.5 and 2.0) we choose the velocity that maximizes

max (ﬂnvni,) . (2.31)

or+ 0y

Finally, as suggested by Waxman et al., the Hessian of A (i.e. the Gaussian curvature of A given
in the denominator in (2.30)) provides a confidence measure for the velocities: If the Hessian is
greater than or equal to a threshold 7 (here we use 7 = 0.5), then full velocity is computed at
the edge location. If it is less than 7 we can proceed with a normal velocity calculation

1

_VQA(AItv Ayl‘) : (2'32)

(unv Un) =

Fleet and Jepson

The method developed by Fleet and Jepson [19] defines component velocity in terms of the
instantaneous motion normal to level phase contours in the output of band-pass velocity-tuned
filters. Band-pass filters are used to decompose the input signal according to scale, speed and
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orientation. FEach filter output is complex-valued and may be written as
R, 1) = plx, ) explig(x, 0)] (2.33)
where p(x, t) and ¢(x, t) are the amplitude and phase parts of R. The component of 2-d velocity

in the direction normal to level phase contours is then given by v, = sn, where the normal
speed and direction are given by
- 2 2
s = Hxd o VelxD) (2.34)
| Vé(x, 1) | | Vo(x, 1) |l

where Vo(x, 1) = (du(x, 1), ¢y(x, 1)), In effect, this is a differential technique applied to
phase rather than intensity. The phase derivatives are computed using the identity
Im[R*(x, 1) Rz(x,1)]

|R(x, 1)[? ’

be(x, 1) = (2.35)

where R* is the complex conjugate of R.

The use of phase is motivated by their claim that the phase component of band-pass filter
outputs is more stable than the amplitude component when small deviations from image trans-
lations that regularly occur in 3-d scenes are considered [20]. However, they show that phase
can also be unstable, with instabilities occurring in the neighbourhoods about phase singulari-
ties. Such instabilities can be detected with a straightforward constraint on the instantaneous
frequency of the filter output and its amplitude variation in space-time [20, 22, 34]:

|| Vlog R(x,t) — i(k,w) || < or7, (2.36)

where (k,w) denotes the spatiotemporal frequency to which the filter is tuned, o is the standard
deviation of the isotropic amplitude spectra they use and 7 denotes a threshold that can be used
to reject unreliable component velocity measurements. As 7 decreases the filter output is more
tightly constrained and therefore larger singularity neighbourhoods are detected. Like Fleet and
Jepson we normally set 7 = 1.25. A second constraint on the amplitude of response is also used
to ensure a reasonable signal-to-noise ratio.

Finally, given the component (normal) velocity estimates from the different filter channels,
a linear velocity model is fit to each local region. Estimates that satisfy the stability and SNR
constraints are collected from 5 x 5 neighbourhoods, to which the best linear velocity model, in a
LS sense, is determined. To ensure that there is sufficient local information for reliable velocity
estimates, they introduce further constraints on the conditioning of the linear system and on
the residual LS error. To illustrate their results, Fleet and Jepson only consider 2-d velocity
measurements for which the condition number is less than 10.0, and the residual error is less
than 0.5.

Like [19, 22], our implementation uses only a single scale tuned to a spatiotemporal wave-
length of 4.25 pixels-frames. A more complete implementation would normally have 3-5 scales
in total. The entire temporal support is 21 frames, and we used the same threshold values as
those in [19, 22].

3 Experimental Technique

We have examined the performance of these techniques on real sequences and synthetic sequences
for which 2-d motion fields were known. Before discussing the results, it is useful to describe
the image sequences used, as well as our angular measures of error.
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(a) Sinusoid1 (b) Square2

Figure 3.1: Frames from the sinusoidal and square sequences.

3.1 Synthetic Image Sequences

The main advantages of synthetic inputs are that the 2-d motion fields and scene properties
can be controlled and tested in a methodical fashion. In particular, we have access to the true
2-d motion field and can therefore quantify performance. Conversely, it must be remembered
that such inputs are usually clean signals (involving no occlusion, specularity, shadowing, trans-
parency, etc.) and therefore this measure of performance should be taken as an optimistic bound
on the expected errors with real image sequences. Qur synthetic image sequences include:

Sinusoidal Inputs: This consists of the superposition of two sinusoidal plane-waves:
sin(ky - x 4+ wqt) + sin(ky - x + wat) . (3.37)

Although we tested many different wavelengths and velocities, the results reported below
are based mainly on spatial wavelengths of 6 pixels, with orientations of 54° and —27°, and
speeds of 1.63 and 1.02 pixels/frame respectively. The resulting plaid pattern translates
with velocity v = (1.585,0.863) pixels/frame and is called Sinusoidl (see Figure 3.1a).
We also report results on another plaid pattern with wavelengths of 16 pixels/cycle and
a velocity of v = (1,1), called Sinusoid2. This signal permits very accurate DOG edge
detection and numerical differentiation.

Translating Squares: Our other simple test case involves a translating dark square (with
a width of 40 pixels) over a bright background (see Figure 3.1b). We concentrate on a
sequence called Square2 which has uniform velocity v, = (%, %).8 We occasionally report
results on a simpler case with velocity vi = (1, 1) called Squarel for which some techniques
produce better results. This type of input helps to illustrate the aperture problem and the
inherent spatial smoothing in the different techniques. While the sinusoidal inputs can be
viewed as dense in space and sparse in frequency space, the square data is concentrated in

space along its edges, but richer in its frequency spectra.

8Square2 was created by blurring and then down-sampling a larger version of the images which translated at an integer

velocity of 4 pixels/frame.
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Figure 3.2: Surface texture used for the Translating and Diverging Tree sequences, and the
respective 2-d motion fields.

3D Camera Motion and Planar Surface: Following [19] we used two sequences that sim-
ulate translational camera motion with respect to a textured planar surface (see Figure
3.2): In the Translating Tree sequence, the camera moves normal to its line of sight
along its X-axis, with velocities all parallel with the image z-axis, with speeds between
1.73 and 2.26 pixels/frame. In the Diverging Tree sequence, the camera moves along its
line of sight; the focus of expansion is at the centre of the image, and image speeds vary

from 1.29 pixels/frame on left side to 1.86 pixels/frame on the right.

Yosemite Sequence: The Yosemite sequence is a more complex test case (see Figure 3.3).
The motion in the upper right is mainly divergent, the clouds translate to the right with
a speed of 1 pixel/frame, while velocities in the lower left are about 4 pixels/frame. This
sequence is challenging because of the range of velocities and the occluding edges between
the mountains and at the horizon. There is severe aliasing in the lower portion of the
images however, causing most methods to produce poorer velocity measurements.

The sinusoidal and translating square sequences were created by the authors. The Trans-
lating and Diverging Tree sequences were created by David Fleet. The Yosemite sequence,
created by Lynn Quam, was provided to us by David Heeger.

3.2 Real Image Sequences
Four real image sequences, shown in Figure 3.4, were also used:

SRI Sequence: In this sequence the camera translates parallel to the ground plane, perpen-
dicular to its line of sight, in front of clusters of trees. This is a particularly challenging
sequence because of the relatively poor resolution, the amount of occlusion, and the low

contrast. Velocities are as large as 2 pixels/frame.

NASA Sequence: The NASA sequence is primarily dilational; the camera moves along it’s
line of sight toward the Coke can near the centre of the image. Image velocities are typically
less than 1 pixel/frame.
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Figure 3.3: a) left: One frame from the Yosemite sequence; b) right: Correct flow field for the

Yosemite sequence.

Rotating Rubik Cube: In this image sequence a Rubik’s cube is rotating counter-clockwise
on a turntable. The motion field induced by the rotation of the cube includes velocities
less than 2 pixels/frame (velocities on the turntable range from 1.2 to 1.4 pixels/frame,
and those on the cube are between 0.2 and 0.5 pixels/frame).

Hamburg Taxi Sequence: In this street scene there were four moving objects: 1) the taxi
turning the corner; 2) a car in the lower left, driving from left to right; 3) a van in the
lower right driving right to left; and 4) a pedestrian in the upper left. Image speeds of the
four moving objects are approximately 1.0, 3.0, 3.0, and 0.3 pixels/frame respectively.

The Nasa and SRI image sequences were obtained from the IEEE Motion Workshop Database
at Sarnoff Research Centre, courtesy of NASA-Ames Research Center and SRI International.
The Hamburg Taxi sequence was provided courtesy of the University of Hamburg and the
Rubik Cube sequence was provided by Richard Szeliski at DEC, Cambridge Research Labs.

3.3 Error Measurement

Following [19, 22] we use an angular measure of error: velocity may be written as displacement
per time unit as in v = (u, v) pixels/frame, or as a space-time direction vector (u, v, 1) in
units of (pixel, pixel, frame). Of course, velocity is obtained from the direction vector by
dividing by the third component. When velocity is viewed (and measured) as orientation in
space-time, it is natural to measure errors as angular deviations from the correct space-time
orientation. Therefore, let velocities v = (vl,vg)T be represented as 3-d direction vectors,
)T. The angular error between the correct velocity v. and an estimate v,

—

_ 1
V= \/m(u, v, 1
is

g = arccos(V. - V) . (3.38)
This error measure is convenient because it handles large and very small speeds without the
amplification inherent in a relative measure of vector differences. It does have some bias however.

For example, directional errors at small speeds do not give as large an angular error as similar
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(a) SRI Trees

(¢) Rubik Cube (d) Hamburg Taxi

Figure 3.4: One frame is shown from each of the four real image sequences.
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Figure 3.5: Speed in Degrees vs. Pixels/Frame (reprinted with permission from [22]). For fixed
angular velocity errors ¥ in (3.38), errors in pixels/frame depend on angular speed. With v
represented as a unit direction vector in space-time, we can view velocity in spherical coordinates,
in terms of angular speed 6, and direction 6,. From top to bottom in the figure, with ¥y = 1°
(solid), 2° (dashed), and 3° (dotted), the four panels correspond to: (a) Speed in pixels/frame:
tan(f,), (b) Absolute speed errors (pixels/frame): tan(f,) — tan(6, + ¥’g), (c) Relative speed
errors: 100.0(tan(8,) — tan(d, + ¥g))/ tan(d,) and (d) Maximum error in direction of motion
(in degrees): g/ sin(6,).

directional errors at higher speeds [22]. Relative errors of 10% correspond to angular errors of
roughly 2.5° when speeds are near 1 pixel/frame. For slower and higher speeds, relative errors
of 10% correspond to smaller angular errors [22]. This is illustrated in Figure 3.5.

A complementary measure is also available for errors in measurements of normal (component )
velocity. There is a linear relationship between normal velocity v,, = sn and 2-d velocity v ;
that is, n- v, — s = 0. All component velocities generated by a translating texture pattern
should ideally lie on the plane normal to V.. Our error measure for component velocities is the
angle between the measured component velocity and the constraint plane; that is,

g = arcsin (V. - V) , (3.39)

where v, = \/#(n, —s).

There are many ways in which error behaviour may be reported. For the synthetic sequences

we extract subsets of estimates using confidence measures and then report the densities of these
sets of estimates along with their mean error and standard deviations. These are presented in
tables so that different techniques can be compared on the same inputs. For the real image
sequences we can only show the computed flow fields and discuss qualitative properties, leaving
the reader to judge. We also refer the interested reader to Appendices B through F that contain
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Technique Average | Standard | Density
Error Deviation
Horn and Schunck (original) 4.19° 0.50° 100%
Horn and Schunck (modified) 2.55° 0.59° 100%
Lucas and Kanade (no thresholding) 2.47° 0.16° 100%
Uras et al. (no thresholding) 2.59° 0.71° 100%
Nagel 2.55° 0.93° 100%
Anandan 30.80° 5.45° 100%
Singh (n =2, w=2, N =2) 2.24° 0.02° 100%
Singh (n =2, w=2, N =4) 91.71° 0.04° 100%
Waxman et al. o5 =1.5 64.26° 26.14° 12.8%
Fleet and Jepson 7 = 1.25 0.03° 0.01° 100%

Table 4.1: Summary of Sinusoid 1 Results. See the text for a discussion of these results and
the apparent anomalies.

more detailed results including histograms of errors, images of error as a function of image
position, and proportions of estimations with errors less than 1°, 2°, and 3° degrees — these
proportions provide a good indication of the percentages of estimates that may be useful for
computing egomotion and 3-d structure.

4 Experimental Results

Section 4 reports the quantitative performance of the different techniques on the synthetic input
sequences, discusses the use of confidence measures and shows the flow fields produced by the
techniques on the natural image sequences.

4.1 Synthetic Image Sequences

In reporting the performance of the optical flow methods applied to the synthetic sequences,
for which 2-d motion fields are known, we concentrate on error statistics (mean and standard
deviation) and the density of measurements for subsets of the estimates extracted using confi-
dence measures as thresholds. When reporting error statistics we use a¢° £ b° to denote a mean
of a degrees with standard deviation b. The techniques will be discussed in the order they were
described in Section 2, with differential methods followed by matching, energy-based, and then
phase-based approaches.

4.2 Sinusoidal Inputs

Table 4.1 summarizes the main results of the techniques applied to Sinusoid1, which are gen-
erally very good. In fact, because of the relatively dense, homogeneous structure of the input,
the collections of flow estimates produced by most of the techniques have not been thresholded
using confidence measures. Nor have the signals been smoothed with low-pass filters since they
will have little effect on performance unless subsampled, as discussed below. Many of the results
are self-evident from the tables, although several deserve comments.

Beginning with differential methods, observe that our modified version of Horn and Schunck’s
algorithm [31], with improved numerical differentiation, performed better than the original al-
gorithm. As one might expect, the accuracy of the original method approaches the modified
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method as the spatial wavelength in (3.37) is increased (for Sinusoid2 the error was 0.97°+2.62°
for the original method and 0.86° + 2.39° for our modified version). The large standard devia-
tions are not very significant as they are caused by directional errors near the image boundary.
It is interesting to note that we found considerable variation in results as a function of the
smoothness parameter A\; when A = 100 results were noticeably worse.

Results from the gradient-based method of Lucas and Kanade are also good, with accuracy
similar to that produced by the modified version of Horn and Schunck’s algorithm which shares
the same numerical differentiation. Interestingly, we did find with this input that the gradient-
based method described in [51] produced poorer results (with error statistics of 5.23° £ 0.70°).

The estimates produced by Nagel’s technique are also good. More accurate results can be
obtained when Sinusoid2 is used as better derivative estimation is possible (in this case we found
errors of 0.04° + 0.23°). We also found that the results were sensitive to certain parameters:
results were significantly worse with larger values of a.

While the differential techniques performed well on sinusoidal inputs, the matching tech-
niques did not. Anandan’s technique produced consistent velocity estimates with the direction
reasonably accurate but the speed usually poor. The main problem is caused by aliasing in the
construction of the Laplacian pyramid: Although complete, the Laplacian pyramid described
in [12] produces band-pass channels (levels) that contain substantial aliasing when considered
independently of one another. Only when different levels are combined does the aliasing cancel
to provide accurate reconstruction. With sinusoidal inputs and a coarse-fine control strategy on
the Laplacian pyramid, aliasing causes major errors at coarse levels that are then propagated
systematically to finer levels.

Similar problems would occur with Singh’s technique, if implemented with a Laplacian pyra-
mid. However, a different problem occurred with our implementation. With nearly periodic
inputs (such as those due to textured inputs, sinusoidal inputs or band-pass filtered signals)
there will be multiple local minima in the SSD surface (i.e. ghost matches). Furthermore,
because the SSD surface is initially evaluated at a small number of integer displacements, the
global minima may fall midway between integer displacements, in which case other (ghost) min-
ima may be mistaken for global minima if they occur closer to an integer displacement. For
example, as shown in Table 4.1, when the search space is limited to displacements of 2 pixels,
only one minima exists within the search space. But when displacements of 4 pixels are consid-
ered, other local minima are chosen consistently. The measurement errors are all speed errors of
about 6 pixels, which is the wavelength of the input components. This sampling problem occurs
less frequently with natural images which lack this exact periodicity, but sampling problems will
continue to occur unless finer sampling and interpolation are used.

For Heeger’s technique [29] (as well as Fleet and Jepson’s technique [34], see below) reasonable
results can only be expected when the input frequencies match those in the pass-band to which
the filters are tuned. In Heeger’s case there is the additional assumption that the input has a
flat amplitude spectrum, which is clearly violated by our sinusoidal inputs. Violation of this
assumption is most evident when the frequencies of the component sinusoids are not close to
the filter tunings, which is the case for Sinusoid1. Although Heeger’s method did not produce
any results for Sinusoid1, it did produce good results for others. For example, for sinusoids
with orientations of 0° and 90°, speeds of 1 pixel/frame, and spatiotemporal wavelengths of 4
pixels/cycle, we obtained errors of 3.24° + 0.05° with a density of 24.3%.

To obtain good results with the zero-crossing algorithm of Waxman et al. one must choose
the standard deviation of the activation kernel so that it is small enough to prevent interaction
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Technique Average | Standard | Density
Error Deviation
Horn and Schunck (original) 45.80° 10.49° 100%
Horn and Schunck (original) ||VI|| > 1.0 26.92° 8.13° 3.8%
Horn and Schunck (modified) 32.18° 11.57° 100%
Horn and Schunck (modified) ||VI]| > 1.0 | 24.26° 9.24° 33.6%
Lucas and Kanade (A2 > 1.0) 0.34° 0.35° 6.2%
Lucas and Kanade (A2 > 5.0) 0.23° 0.23° 4.0%
Uras et al. (unthresholded) 19.03° 35.52° 100%
Uras et al. (det(H) > 1.0) 0.10° 0.14° 17.0%
Nagel 34.25° 12.17° 100%
Nagel |[|VI||; > 1.0 25.15° | 10.33° | 35.4%
Anandan (unthresholded) 36.47° 17.34° 100%
Anandan (¢min > 5.0) 8.23° 3.86° 0.9%
Singh (Step 1, n =2, w = 2) 42.62° 17.71° 100%
Singh (Step 1, n =2, w =2, A; < 5.0) 0.11° 0.78° 6.0%
Singh (Step 2, n =2, w = 2) 37.63° 15.24° 100%
Singh (Step 2, n =2, w =2, A; < 0.1) 37.71° 15.20° 99.4%
Heeger 2.89° 3.88° 24.8%
Waxman et al. o5 = 1.5 0.09° 0.10° 0.8%
Fleet and Jepson 7 = 1.25 0.07° 0.08° 3.7%

Table 4.2: Summary of Squarel 2D Velocity Resulls.

between adjacent edges and yet big enough to track each edge over time. Moreover, zero-
crossings must be localized to sub-pixel accuracy (not done by Waxman et al.) in order to
obtain good quantitative results when the underlying motion is not an integer multiple of pixels.
For example, unlike Sinusoid1, the input Sinusoid2 does satisfy these requirements, in which
case the errors reduce to 0.04° £ 0.03° with a density of 11.94%, the low density reflecting the
density of edge locations.

Finally, in Fleet and Jepson’s case, the spatiotemporal wavelength of the sinusoid closely
matches those to which their filters are tuned, and the results are very good. With more general
input signals, we found that when input signals have local power concentrated near the boundary
of a filter’s amplitude spectra (far from its filter tuning), slight errors appear, as a bias in the
component velocity estimates toward the velocity tuning of the filters.

4.3 Translating Square Data

The 2-d velocity estimates and the normal velocity estimates of the nine techniques for the
Square?2 sequence are summarized in Tables 4.3 and 4.5. Of course, we expect normal estimates
along the edges of the square and 2-d velocities only at the corners. Flow fields produced by the
techniques are also shown Appendix C; these help show the distribution of measurements and
hence the support of the measurement process.

From Table 4.3 it is evident that several techniques appear to produce very poor results. In
several of these cases, such as the differential methods of Horn and Schunck, and Nagel, the
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Technique Average | Standard | Density
Error Deviation
Horn and Schunck (original) 47.21° 14.60° 100%
Horn and Schunck (original) ||VI|| > 1.0 27.61° 9.86° 18.9%
Horn and Schunck (modified) 32.81° 13.67° 100%
Horn and Schunck (modified) ||VI]| > 1.0 | 26.46° 10.86° 42.9%
Lucas and Kanade (A2 > 1.0) 0.21° 0.16° 7.9%
Lucas and Kanade (A2 > 5.0) 0.14° 0.10° 4.6%
Uras et al. (det(H) > 1.0) 0.15° 0.10° 26.1%
Nagel 34.57° 14.38° 100%
Nagel [|VI]|; > 1.0 26.67° | 11.84° | 44.0%
Anandan (unthresholded) 31.46° 18.31° 100%
Anandan (¢min > 0.25) 10.46° 5.36° 0.6%
Singh (Step 1, n = 2, w = 2) 49.03° 21.38° 100%
Singh (Step 1, n =2, w =2, A; < 5.0) 9.85° 21.09° 4.2%
Singh (Step 1, n =2, w =2, A; < 3.0) 2.02° 2.36° 1.6%
Singh (Step 2, n =2, w = 2) 45.16° 21.10° 100%
Singh (Step 2, n =2, w =2, A; < 0.1) 46.12° 18.64° 81.9%
Heeger 6.16° 4.02° 29.3%
Waxman et al. o5 = 1.5 8.78° 4.71° 1.1%
Fleet and Jepson 7 = 1.25 0.07° 0.02° 2.2%
Fleet and Jepson 7 = 2.5 0.18° 0.13° 12.6%

Table 4.3: Summary of Square2 2D Velocity Resulls.

problem is the lack of discrimination by the algorithm between measurements of normal velocity
versus 2-d velocity. From the flow fields for Horn and Schunck and Nagel (shown in Figures C.2
and C.3) for Square2 it is clear that these methods produce normal measurements along the
edges, which blend into 2-d measurements at the corners. Although this is readily apparent,
the algorithms do not provide a way of segmenting the measurements into 2-d flow, normal
velocity or unreliable measurements. Furthermore, neither the magnitude of the local gradient
nor the local energy defined by the objective functionals in (2.5) or (2.11) could be used as
confidence measures in this case. This stands in contrast to the Lucas and Kanade gradient-
based method which integrates measurements locally with a clear means of segregating normal
from 2-d velocities based on the eigenvalues of the normal matrix in (2.8) (i.e. the confidence
measures).

The second-order differential method of Uras et al. produced accurate results, with a confi-
dence measure based on the (spatial) Hessian of the smoothed image sequence proving useful.
The higher density of estimates for this method is a consequence of using a single estimate for
each 8 x 8 region, which limits the spatial resolution of the flow field.

The results for the matching methods are also poor. In the case of Anandan’s method, we
find that the smoothing stage produces both normal and 2-d estimates of velocity, like Horn
and Schunck’s and Nagel’s methods above (see Figures C.2 and C.3). In this case however, we
do have a potential confidence measure in ¢,,;, as suggested by Anandan. However, although
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Technique for Normal Velocity Average | Standard Density
Normal | Deviation

Lucas and Kanade (LS) (A; > 1.0) 0.16° 3.45° 16.2%
Lucas and Kanade (LS) (A; > 5.0) 0.03° 0.09° 10.7%
Lucas and Kanade (Raw) (||VI|| > 0.0) 5.67° 16.0° 75.8%
Lucas and Kanade (Raw) (||VI]| > 5.0) 0.19° 3.99x° 24.2%
Heeger 1.39° 1.30° 75.2%
Waxman et al. o5 = 1.5 0.04° 0.30° 3.7%
Fleet and Jepson 7 =1.25 0.01° 0.09° 12.7% (2.4)

Table 4.4: Summary of Squarel Normal/Component Velocity Results.

Technique for Normal Velocity Average | Standard Density
Normal | Deviation

Lucas and Kanade (LS) (A; > 1.0) 0.07° 0.06° 25.5%
Lucas and Kanade (LS) (A; > 5.0) 0.14° 2.76° 25.3%
Lucas and Kanade (Raw) (||VI]| > 5.0) 0.12° 2.44° 32.5%
Heeger 1.02° 4.35° 70.7%
Waxman et al. o5 = 1.5 4.28° 5.42° 3.6%
Fleet and Jepson 7 =1.25 —0.05° 0.05° 17.6% (1.1)
Fleet and Jepson 7 = 2.5 0.05° 0.23° 65.4% (4.2)

Table 4.5: Summary of Square2 Normal/Component Velocity Results.

it is clear that results improve dramatically with the use of this threshold, the accuracy of the
resultant 2-d velocity was still reasonably poor. It appears that subpixel measurement accuracy
is poor and that the threshold is not reliable in separating normal from 2-d measurements.

Singh’s algorithm produces visually pleasing but somewhat inaccurate results. We find that
there is a common problem with matching methods with the aperture problem. While 2-d
velocities are found with reasonably accuracy, the SSD minima will be trough-like when the
aperture problem occurs, in which case, the minima found for the sampled SSD surface at
integer displacements is extremely sensitive to small variations along the edge, meaning that
normal velocity measurements were not trustworthy. Of course, a threshold on the eigenvalues
of the inverse covariance matrix at step 1 are very useful at separating normal from 2-d velocities.
Unfortunately, all velocities, including the normal velocities, are required for step 2 of Singh’s
algorithm. Hence, those normal estimates that are poor will corrupt step 2, in which case the
covariance matrix (at step 2) is of little help.

The square sequences are clean inputs and purely translational. However, Squarel moves
an integer multiple of pixels between adjacent frames, while Square2 has subpixel motion with
vertical and horizontal and vertical speeds of 1.33 pixels/frame, and therefore a 2-d speed of 1.89
pixels/frame. While most techniques produced similar results in both cases, the zero-crossing
method of Waxman et al. performs more poorly with Square2 than Squarel because our
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implementation lacks subpixel resolution. Compared to the large errors in Tables 4.3 and 4.5 for
Square2, our results on Squarel were 0.09° £ 0.1° for 2-d velocity estimates and 0.04° £ 0.3°
for normal velocities.

For Heeger’s technique, we found that estimates from level 1 of the Gaussian pyramid were
more accurate that those from level 0. This is expected since the correct velocity (1.33,1.33)
coincides with the appropriate velocity range for level 1. The flow fields in Appendix C also
show the large spatial support of this method, which is caused by the cascaded convolution of
the Gaussian low-pass smoothing and the band-pass Gabor filters. In this case we obtained 2-d
velocity estimates near the centre of the square.

Lastly we note that the square data provides a clear way of examining the normal velocity
estimates as distinct from the eventual 2-d velocity estimates. These results are reported in
Table 4.5. Of the techniques we considered, those of Lucas and Kanade, Heeger, Waxman et al.
and Fleet and Jepson produce both full and normal (component) velocity estimates explicitly.
The method of Lucas and Kanade provides two sources of normal velocities, namely, one from
the gradient constraint directly (2.3) with the gradient magnitude as an implicit confidence
weighting and the second from the LS minimization in (2.8) when the aperture problem prevails
(i.e. when the eigenvalues of (2.9), A\ > Ag, satisfy Ay > 7 but Ay < 7 for the confidence
threshold 7). Tables 4.5 report normal velocities from both sources.

The phase-based technique of Fleet and Jepson often produces several normal velocity es-
timates at a single image location. Table 4.5 reports density as two quantities: the first gives
the density of positions where one or more component velocities is recovered and the second (in
parenthesis) gives the average number of component velocities at a single point.

Many of the other techniques could be modified to produce normal flows as well: for ex-
ample, with Anandan’s approach we could use ¢4z 3> €min to indicate a normal velocity. In
Singh’s approach, we could use large and small eigenvalues of the covariance matrix in (2.20)
to discriminate between full and normal velocity (like our implementation of the Lucas and
Kanade approach). However, we have not yet made these modifications as we did not find these
confidence measures to be reliable.

4.4 Realistic Synthetic Data

We now turn to the more realistic synthetic sequences, namely the Translating and Diverging
Tree sequences and the Yosemite sequence, the results of which are presented in Tables 4.6 —
4.10. Error statistics of normal (component) velocity estimates computed from a subset of the
techniques on the Diverging Tree sequence are given in Table 4.9. Other quantities of interest,
including error histograms and flow fields, are given Appendices D through F.

The general behaviour of the differential techniques is similar to that observed above. It is
especially interesting to see the improvement of our modified version of the Horn and Schunck
algorithm versus the original method, which we attribute to the image presmoothing and the im-
proved numerical differentiation. One can also see that for reasonably smooth motion fields, such
as those in the Translating and Diverging Tree sequences, that the smoothness constraint
used to integrate the normal constraints performs well. The constraint on gradient magnitude
provides one way to identify regions within which estimates may be more reliable. Interestingly,
we also found with these sequences that larger values of the smoothness parameter (e.g. A = 100
as suggested by Horn and Schunck) yielded somewhat poorer results.

However, despite the improved performance of Horn and Schunck’s method here, the results
remain less accurate than those of Lucas and Kanade’s method, which shares the same gradient
estimates, and differs only in the method used to combine normal constraints. In particular,
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Technique Average | Standard | Density
Error Deviation
Horn and Schunck (original) 38.72° 27.67° 100%
Horn and Schunck (original) ||VI|| > 5.0 32.66° 24.50° 55.9%
Horn and Schunck (modified) 2.02° 2.27° 100%
Horn and Schunck (modified) ||VI]| > 5.0 1.89° 2.40° 53.2%
Lucas and Kanade (A2 > 1.0) 0.66° 0.67° 39.8%
Lucas and Kanade (A2 > 5.0) 0.56° 0.58° 13.1%
Uras et al. (unthresholded) 0.62° 0.52° 100%
Uras et al. (det(H) > 1.0) 0.46° 0.35° 41.8%
Nagel 2.44° 3.06° 100%
Nagel [|V]]2 > 5.0 2.24° 3.31° 53.2%
Anandan 4.54° 3.10° 100%
Singh (Step 1, n = 2, w = 2) 1.64° 2.44° 100%
Singh (Step 1, n =2, w =2, A; < 5.0) 0.72° 0.75° 41.4%
Singh (Step 2, n =2, w = 2) 1.25° 3.29° 100%
Singh (Step 2, n =2, w =2, A; <0.1) 1.11° 0.89° 99.6%
Heeger (level 0) 8.10° 12.30° 77.9%
Heeger (level 1) 4.53° 2.41° 57.8%
Waxman et al. (o5 = 2.0) 6.66° 10.72° 1.9%
Fleet and Jepson (7 = 2.5) 0.32° 0.38° 74.5%
Fleet and Jepson (7 = 1.25) 0.23° 0.19° 49.7%
Fleet and Jepson (7 = 1.0) 0.25° 0.21° 26.8%

Table 4.6: Summary of the Translating Tree 2D Velocily Results.

our confidence measure (based on the eigenvalues of the normal equations in (2.9)) appeared to
perform very well, allowing us to extract subsets of accurate 2-d velocities. One can see from
Tables 4.6 and 4.7 that by changing the confidence threshold from Ay > 1.0 to Ay > 5.0 we
obtained better accuracy, but at the cost of a significant reduction in the measurement density.?

It is also worthwhile at this point to comment on another observation made during the
testing of these gradient-based methods and some changes that occurred since we reported our
preliminary results in [8]. Our initial implementation quantized the Gaussian smoothed image
sequence with 8-bit/pixel for storage, prior to the subsequent gradient computation and least-
squares minimization, causing relatively noisy derivative estimates. Compared to the results in
Tables 4.6 and 4.7, which were based on a floating-point representation of the filter outputs, we
found that when this quantization error is introduced the errors for Lucas and Kanade’s method
grew approximately 40-50%, and those produced by Horn and Schunck’s method became several
times larger. This suggests that Horn and Schunck’s method of combining normal constraints
(the global smoothness constraint) is significantly more sensitive to noise than the local least-

°The Translating and Diverging Tree sequences have also been used by Simoncelli [52] with his gradient-based
technique and by Haglund [26] with his energy-based technique. Both get results comparable to those reported here with
the Lucas and Kanade method.
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Technique Average | Standard | Density
Error Deviation
Horn and Schunck (original) 12.02° 11.72° 100%
Horn and Schunck (original) ||VI|| > 5.0 8.93° 7.79° 54.8%
Horn and Schunck (modified) 2.55° 3.67° 100%
Horn and Schunck (modified) ||VI]| > 5.0 2.50° 3.89° 32.9%
Lucas and Kanade (A2 > 1.0) 1.94° 2.06° 48.2%
Lucas and Kanade (A2 > 5.0) 1.65° 1.48° 24.3%
Uras et al. (unthresholded) 4.64° 3.48° 100%
Uras et al. (det(H) > 1.0) 3.83° 2.19° 60.2%
Nagel 2.94° 3.23° 100.0%
Nagel [|VI|]s > 5.0 3.21° 3.43° 53.5%
Anandan (frames 19 and 21) 7.64° 4.96° 100%
Singh (Step 1, n =2, w =2, N = 4) 17.66° 14.25° 100%
Singh (Step 1, n =2, w =2, N =4, A; < 5.0) 7.09° 6.59° 3.3%
Singh (Step 2, n =2, w=2, N = 4) 8.60° 5.60° 100%
Singh (Step 2, n =2, w=2, N =4, A; <0.1) 8.40° 4.78° 99.0%
Heeger 4.49° 3.10° 74.2%
Waxman et al. oy = 2.0 11.23° 8.42° 4.9%
Fleet and Jepson (r = 2.5) 0.99° 0.78° 61.0%
Fleet and Jepson (r = 1.25) 0.80° 0.73° 46.5%
Fleet and Jepson (7 = 1.0) 0.73° 0.46° 28.2%

Table 4.7: Summary of the Diverging Tree 2D Velocity Results.

squares method used by Lucas and Kanade, since other aspects of the techniques were identical.

The second-order technique of Uras et al. produced good results (both accurate and dense)
on the Translating Tree sequence, but its results on the next two sequences are poorer by
comparison, for which we can suggest two reasons. First, as discussed in Section 2.1, while the
first-order (gradient) constraint equation is valid for smooth deformations of the input (including
affine deformations), the second-order constraints are based on the conservation of the intensity
gradient, and are (strictly speaking) therefore invalid for rotation, dilation and shear. This is one
of the main differences between the Translating Tree sequence and the other two. A second
factor is the amount of aliasing in the Yosemite sequence, which makes accurate second-order
differentiation difficult.

Finally, we obtained good results for the regularization approach of Nagel.' The use of
[|[VI||2 as a confidence measure was not entirely successful here, using ||VI||; > 1.0 produced
only slightly more accurate but considerably less dense results. Interestingly, with the Diverg-
ing Tree sequence this threshold actually produced poorer results. We also note that for much
of our image data the 27¢ order derivatives of intensity and velocity are small, in which case
Nagel’s method yields similar results to Horn and Schunck’s.

10This contrasts with the results reported in a previous version of this technical report where a different method of

computing intensity and velocity derivatives was employed.
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With respect to matching techniques, observe that although both methods produced reason-
ably good results on the Translating Tree input, Singh’s results are somewhat better than
Anandan’s. This is true even of the first stage of Singh’s algorithm that is concerned mainly
with locating SSD minima. One reason for this is the larger neighbourhood support in Singh’s
algorithm; for example, when we used 3 x 3 regions (n = 1 and w = 1) instead of 5 x 5 regions
for Singh’s method the errors increased (from those reported in Table 4.6) to 2.13° £ 5.15° for
stage 1 and 1.35° + 1.68 for stage 2.

Furthermore, we did not find Anandan’s confidence measures based on ¢, and ¢4 to
be reliable. By comparison, we found for Singh’s method that the inverse eigenvalues of the
covariance matrix at stage 1 do provide a useful confidence measure, but the inverse eigenvalues
of the covariance matrix at stage 2 were ineffective — small changes in a threshold based on the
largest eigenvalue dramatically changed the density of estimates. The lack of good confidence
measures makes it difficult to evaluate these methods.

It is also interesting to observe that both matching techniques produced poorer results when
applied to the Diverging Tree sequence than with the Translating Tree sequence. Singh’s
results are about an order of magnitude worse, especially at step 1 of the algorithm. Although
some of the error may be due to aliasing and the confusion between normal and 2-d velocities,
we find that most of the increase in error is due to subpixel inaccuracy. The Translating
Tree sequence has velocities very close to integer displacements, while the Diverging Tree
sequence has a wide range of velocities. We find that velocities corresponding to noninteger
displacements often have errors two to three time larger than those corresponding to integer
displacements (provided the aperture problem can be overcome). In many cases, this is due
to the sharpness of peaks in the mass distribution formed in (2.18); that is, they are so sharp
relative to integer sampling of the SSD surface that they are sometimes missed, and the resulting
sampled distribution appears very broad.

There may be several possible ways to circumvent this problem. One might use coarser
temporal sampling so that subpixel errors are small relative to actual displacements, but this
involves a host of additional problems for matching. Alternatively, a coarse-fine approach with
warping may yield some improvement. In any case, it would be useful to have a model for the
expected behaviour of such errors which may be incorporated into confidence measures.

The results reported here for Heeger’s method applied to the Translating Tree sequence
are from level 1 of the pyramid because the input speeds coincided with its velocity range of
1.25-2.5 pixels/frame. Level 0 was used for Diverging Tree sequence since most of its speeds
were below 1.25 pixel/frame. For the Yosemite sequence velocity estimates were computed at
all three levels of the pyramid and then combined so that, of the three, the velocity estimate
from the level of the pyramid whose speed range was consistent with the true motion field was
chosen. We also combined the pyramid levels without using the correct motion fields, choosing
the estimate from the lowest pyramid level whose speed range was consistent with the estimate.
This produced poorer results (with errors of 13.75° £ 23.06°) than those reported in Table 4.10.

Of all the techniques we applied to the synthetic data, the phase-based method of Fleet and
Jepson [19] produced the most consistently accurate results. We found that the phase stability
threshold is a reliable indication of performance in most cases. Table 4.9 also shows that the
normal constraints derived from phase information are often less biased than those from other
methods such as gradient-based approaches.

Although, the phase-based method performs extremely well on the Translating and Di-
verging Tree sequences, it is clear from Table 4.10 that it is not significantly better than
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Technique Average | Standard Density
Normal | Deviation
Error
Lucas and Kanade (LS) (A; > 1.0) 0.29° 0.36° 47.9%
Lucas and Kanade (LS) (A; > 5.0) 0.24° 0.27° 61.6%
Lucas and Kanade (Raw) (||VI|| > 0.0) 0.58° 1.19° 100%
Lucas and Kanade (Raw) (||VI|| > 5.0) 0.25° 0.29° 53.2%
Heeger (level 0) 0.74° 3.86° 22.1%
Heeger (level 1) 2.21° 2.03° 9.2%
Waxman et al. o5 = 2.0 14.77° 13.40° 12.1%
Fleet and Jepson 7 = 1.25 —0.06° 0.23° 71.4% (2.1)
Fleet and Jepson 7 = 2.5 —0.01° 0.51° 89.6% (5.8)

Table 4.8: Summary of Translating Tree Normal/Component Velocity Results.

Technique Average | Standard Density
Normal | Deviation
Error
Lucas and Kanade (LS) (A; > 1.0) 1.00° 0.83° 36.0%
Lucas and Kanade (LS) (A1 > 5.0) 0.86° 0.70° 49.0%
Lucas and Kanade (Raw) (||VI|| > 5.0) 0.77° 0.85° 53.5%
Heeger 1.92° 3.18° 25.8%
Waxman et al. o5 = 2.0 8.26° 11.16° 8.8%
Fleet and Jepson 7 =1.25 —0.04° 0.78° 61.0% (2.1)
Fleet and Jepson 7 = 2.5 -0.11° 1.30° 77.3% (5.3)

Table 4.9: Summary of Diverging Tree Normal/Component Velocily Resulls.
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Technique Average | Standard | Density
Error Deviation
Horn and Schunck (original) 32.43° 30.28° 100%
Horn and Schunck (original) ||VI|| > 5.0 25.41° 28.14° 59.6%
Horn and Schunck (modified) 11.26° 16.41° 100%
Horn and Schunck (modified) ||VI|| > 5.0 5.48° 10.41° 32.9%
Lucas and Kanade (A2 > 1.0) 4.10° 9.58° 35.1%
Lucas and Kanade (A2 > 5.0) 3.05° 7.31° 8.7%
Uras et al. (unthresholded) 10.44° 15.00° 100%
Uras et al. (det(H) > 1.0) 6.73° 16.01° 14.7%
Nagel 11.71° 10.59° 100%
Nagel || V1|2 > 5.0 6.03° 11.04° | 32.9%
Anandan 15.84° 13.46° 100%
Singh (Step 1, n =2, w = 2) 18.24° 17.02° 100%
Singh (Step 1, n =2, w =2, A; < 5.0) 16.29° 25.70° 2.2%
Singh (Step 2, n =2, w = 2) 13.16° 12.07° 100%
Singh (Step 2, n =2, w =2, A; < 0.1) 12.90° 11.57° 97.8%
Heeger (combined) 11.74° 19.04° 44.8%
Heeger (level 0) 20.89° 34.26° 64.2%
Heeger (level 1) 10.51° 12.11° 15.2%
Heeger (level 2) 11.51° 11.83° 2.4%
Waxman et al. o5 = 2.0 20.32° 20.60° 7.4%
Fleet and Jepson (7 = 1.25) 4.95° 12.39° 30.6%
Fleet and Jepson (7 = 2.5) 4.29° 11.24° 34.1%

Table 4.10: Summary of Yosemite 2D

Velocity Resulls
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Technique Average | Standard Density

Normal | Deviation

Error
Lucas and Kanade (LS) (A; > 1.0) 9.88° 13.73° 56.1%
Lucas and Kanade (LS) (A; > 5.0) 5.69° 10.47° 58.6%
Lucas and Kanade (Raw) (||V|| > 0.0) 7.94° 12.75° 100%
Lucas and Kanade (Raw) (||V|| > 5.0) 2.13° 4.90° 32.9%
Heeger (level 0) —2.78° 18.07° 35.8%
Heeger (level 1) 2.46° 6.09° 5.7%
Heeger (level 2) 5.23° 9.53° 0.8%
Waxman et al. o5 = 2.0 —6.98° 20.60° 7.8%
Fleet and Jepson 7 =1.25 —5.29° 18.56° 54.8% (2.2)
Fleet and Jepson 7 = 2.5 -3.67° 15.35° 65.4% (3.7)

Table 4.11: Summary of Yosemite Normal/Component Velocity Results.

differential methods on the Yosemite sequence. There are several reasons for this: First, be-
cause only 15 frames were available in this sequence, we had to increase the tuning frequency of
the filters to reduce the width of support (from 21 to 15 frames) and increase the frequency tun-
ing of the filters, thereby pushing their pass-bands closer to the Nyquist rate. Because of their
narrow bandwidths, this causes greater sensitivity to aliasing and corruption at high frequencies
as compared with the Gaussians used by differential techniques. To compound this problem, as
already stated this sequence contains a significant amount of aliasing in certain regions of the
image.

Interestingly, for the Yosemite sequence we found that as the phase stability threshold
T increases, the 2-d velocity errors initially increase, but then begin to decrease significantly.
We attribute this to the increasing number of component velocities available for 2-d velocity
computations, increasing the robustness of the minimization slightly. Furthermore, although
not reported here, considerable improvement can be achieved with a tighter constraint on the
condition number in the LS system as reported in [22].

In fact, most techniques perform relatively poorly on this image sequence. This is due in
part to the aliasing and in part to the occlusion boundaries. The major occlusion boundary
that introduces error is of course the horizon. This is evident in the flow fields produced by
several of the different techniques that are shown in Appendix F. If the sky is excluded from
the error analysis, most techniques show improved performance. For example, the differential
methods of Lucas and Kanade and Uras et al. improved from 4.10° £ 9.58° and 6.73° + 16.01°
to 2.80° £+ 3.82° and 3.37° £ 3.37° respectively, and the phase-based method of Fleet and Jepson
improved from 4.29° 4+ 11.24° to 2.97° £ 5.76°. In all these cases the density of estimates is
effectively unchanged.

4.5 Confidence Measures

One of our major discoveries in comparing techniques has been the importance of confidence
measures, i.e. some means of determining the reliability and accuracy of the computed velocities.
All techniques produce velocity estimates whose accuracy varies dramatically with the struc-
ture of the underlying signal and the 2-d motion. In reporting error statistics above, we used
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confidence measures as thresholds to extract subsets of velocity estimates. Those techniques
that appear to perform well often do so because we are able to isolate the more reliable mea-
surements. Confidence measures also prove useful to distinguish locations at which 2-d velocity
versus normal velocity is measured.

To justify the use of these confidence measures it is important to examine error behaviour
and the density of estimates as functions of the confidence measures, to ensure their reliability
over a wide range of confidence values.!’ Appendix G shows the plots of the performance of
several confidence measures on the Diverging Tree sequence. In what follows here we simply
summarize our main results, concentrating on the techniques that produced reasonably good
results, namely, those of Fleet and Jepson [19, 22], Lucas and Kanade [40, 39], Anandan [5, 6],
Uras et al. [57] and Singh [53, 54].

With respect to first-order differential methods, there are several points of interest. We
first reiterate that the weighted minimization used to estimate 2-d velocity from the normal
constraints involves an implicit weighting of each normal constraint by the magnitude of its
spatial gradient. In most cases this was found to correlate well with accuracy. As confidence
measures for the 2-d velocity estimates we have used the trace of the normal matrix (2.9) as
suggested by Simoncelli et al. [51] and a measure based solely on the magnitude of the smallest
eigenvalue of (2.9), A;. In doing so we often observed that the smallest eigenvalue alone is the
better measure of confidence. There are several possible reasons for this: First note that the
occurrence of the aperture problem is signalled primarily in the smallest eigenvalue; the sum of
the eigenvalues can be arbitrarily large while the system remains singular due to the aperture
problem. Second, although significant errors in gradient measurement are manifested in smaller
eigenvalues, there are other sources of error that are not, such as differences between the 2-d
motion field and the velocity of level intensity contours.

With respect to second-order differential methods, Uras et al. suggested a confidence measure
based on the condition number x(H ) of the (spatial) Hessian of /(x, ¢). We have also examined
the use of the determinant of the Hessian det( H ) which also reflects the magnitudes of the second
derivatives. Although x(H) is useful in certain cases, we find that det(H ) is more consistently
reliable, producing better results on the three realistic synthetic sequences tested in Section 4.4.
We also observed similar behaviour with the four natural image sequences.

Anandan suggested the use of ¢4, and c¢,,,;, as confidence measures based on the principal
SS5D curvatures. However, we did not find them to be reliable. Error often appeared independent
of ¢,.in, and occasionally increased when the estimates were thresholded with it. We believe the
problem with using ¢,,;, as a threshold lies in the smoothing steps after processing each level
of the Laplacian pyramid. Although large ¢,.;, and ¢4, values should indicate image areas
where there is significant local structure that permits the aperture problem to be resolved, the
smoothing sometimes negates this. As well, if errors occur at coarse scales, then displacement
estimates at subsequent scales are generally poor, and the SSD structure is bound to be of little
help.

Singh’s method involved confidence measures based on covariance matrices at both stages of
computation (S, in stage 1 (2.20), and [S7! + 5;1]7! in stage 2). Because larger values of the
inverse eigenvalues should indicate greater confidence, the smallest inverse eigenvalue might be
taken as a single confidence measure. Interestingly we find the eigenvalues of stage 1 to be more

1 Note that we are not proposing that these estimates be used as thresholds to extract subsets of measurements in general.
Rather, we imagine that the majority of the velocity estimates will often be retained along with their respective confidence

values that could then be used as weights in subsequent computation.
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useful than those of stage 2. In fact, we find little if any correlation between the magnitude
of inverse eigenvalues at stage 2 with the accuracy of the estimates. Moreover, we find that
the resulting confidence measures are very sensitive to the choice of k in (2.18). It is also
interesting to reiterate that errors in Singh’s matching method appeared higher for velocities
midway between integer displacements. Ideally, the confidence measure should reflect this.

For the phase-based approach of Fleet and Jepson we used confidence thresholds on both
the normal velocity estimates, and on the LS system used to estimate 2-d image velocity. As
suggested by Fleet and Jepson, we find that their stability constraint is important, as well as
constraints on the conditioning of the LS system. Both correlate well with errors and appear to
produce consistently good results across all the sequences with fixed thresholds (with the stability
constraint 7 between 1.0 and 2.0 and the condition number threshold between 5 and 10). One
problem with the phase-based method is that several different constraints are simultaneously
available, and although Fleet and Jepson used them as thresholds, it would be better if they
were combined in the form of a single confidence measure, rather than a set of thresholds.

4.6 Real Image Data

Finally, Figures 4.1 through 4.9 show subsampled versions of the flow fields produced by the
various techniques when applied to the real image sequences shown in Figure 3.4. Parameters
and confidence thresholds of the various methods have been kept the same as those used in the
synthetic sequences above (except where noted) and are reported in the captions.

Although most of the results are self-evident, below we draw the reader’s attention to several
instances of behaviour already mentioned when discussing the synthetic data. With natural
image sequences it is often diflicult to see differences among the different techniques, since
errors of 10% or 20% are not easily discerned at this resolution. Also, other errors are not
always noticed, such as normal velocities mistaken for 2-d velocities.

Among the main problems outlined in Sections 4.2 — 4.5, for those methods that integrate
normal constraints with global (regularization) smoothness constraints, is the lack of a confidence
measure that allows one to distinguish a normal velocity estimate from 2-d velocity estimates.
This point was most clear when comparing Horn and Schunck’s method to the local explicit
method of Lucas and Kanade. There is also clear evidence for this in the flow fields produced
by these two methods in Figures 4.1 and 4.2, for example, in the NASA sequence just below
the pop can in the bottom-middle and in the Rubik sequence at the bottom of the turntable).
Similar errors are evident with other techniques that employ global smoothness assumptions,
such as those of Nagel and Anandan.

The problems with matching methods, such as Singh’s method, with slowly moving objects
with subpixel velocities and some degree of dilation are evident in NASA sequence. Most
velocities in this case were less than 1 pixel/frame, and subpixel accuracy is crucial to success
on this sequence. Other problems that are evident with matching methods are the gross errors
that arise from aliasing and problems choosing an incorrect local SSD minima in the first stage
of processing.

The techniques that performed well, namely the differential and phase-based methods of
Lucas and Kanade, Uras et al., and Fleet and Jepson, also produce good results on these
sequences. In particular, note that although the method of Uras et al. produces a somewhat
sparser set of estimates than other methods, the density is competitive. In the case of Fleet and
Jepson, it is interesting to note the extremely good results through the ground plane toward
the front of the SRI tree sequence compared with the problems caused by the occlusions in the
trees above. In the case of the Hamburg Taxi sequence, the lower contrast moving objects
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Figure 4.1: Flow fields for the modified Horn and Schunck technique (spatiotemporal Gaussian
presmoothing and 4-point central differences) applied to real image data. The velocity estimates
were thresholded using || VI || > 5.0.
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Figure 4.2: Flow fields for the Lucas and Kanade technique applied to real image data. All
flow fields were produced with a threshold of Ay > 1.0
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Figure 4.3: Flow fields for the technique of Nagel applied to real image data. With the real image
sequences we found that Nagel’s method required greater amounts of spatial presmoothing. Here
we used a Gaussian filter with standard deviation of 3.0 in space and 1.5 in time. No thresholding
was performed.
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Figure 4.4: Flow fields for the Uras et al. lechnique applied to real image data. All flow fields
were produced with a threshold of det(H) > 1.0
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of Anandan applied to real image data. The results
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Figure 4.6: Flow fields produced by the technique of Singh applied to real image data. All flow
fields are computed with n = 2, w = 2 and N = 4. No thresholding was employed.
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shown for Heeger’s method were based on all 3 levels of the Gaussian pyramid,
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estimates with speeds that are consistent from their respective levels of the pyramid (as discussed
in Section 2.1). When consistent estimates are produced from more than one level, we choose
the velocity estimate from the lowest level.
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appear quickly as the contrast threshold on the phase-based component measurements is relaxed
slightly.

5 Summary

This paper compares the performance of a number of optical flow techniques, emphasizing the
accuracy and density of measurements. We implemented nine techniques, including instances
of differential methods, region-based matching, energy-based and phase-based techniques. They
are the methods reported by Horn and Schunck [31], Lucas and Kanade [39, 40], Uras et al. [57],
Nagel [43], Anandan [5, 6], Singh [53, 54], Heeger [29], Waxman et al. [61] and Fleet and Jepson
[19, 22]. This allows a comparison of the performance of conceptually different techniques as
well as comparisons among different instantiations of conceptually similar approaches. Both
real and synthetic image sequences were used to test the techniques. In both cases, we chose
sequences that are not severely corrupted by spatial or temporal aliasing.

Of these different techniques on the sequences we tested, we find that the most reliable were
the first-order, local differential method of Lucas and Kanade, and the local phase-based method
of Fleet and Jepson. Although not as consistent, the second-order differential method of Uras
et al. also performed well. Only these approaches performed consistently well over all of the
image sequences tested, with measures of confidence at the different stages of computation to
detect and/or remove unreliable measurements. The lack of reliable confidence measures is a
serious limitation of several of the other approaches.

With respect to the class of differential approaches tested we can draw several conclusions
of general interest. The first concerns the importance of numerical differentiation and spa-
tiotemporal smoothing. With both first and second-order differential techniques, the method
of numerical differentiation is very important — differences between first-order pixel differencing
and higher-order central-differences were very noticeable. Along the same lines, some degree
of spatiotemporal presmoothing to remove small amounts of temporal aliasing and improve the
subsequent derivative estimates had a marked effect on the quantitative accuracy of the resulting
velocity estimates. The temporal smoothing was particularly useful. These factors are perhaps
most evident in comparing the results obtained with Horn and Schunck’s original algorithm with
those of our modified version of it. For the data tested we found a spatio-temporal standard
deviation of ¢ = 1.5 to be nearly optimal.

Another finding concerns the methods used to combine local differential constraints to obtain
the 2-d velocity estimates. We found that the local explicit methods (i.e. local fits to constant
or linear models of v) were superior in both accuracy and computational efficiency to global
smoothness constraints (with energy functionals that penalize a lack of smoothness), used by
Horn and Schunck [31] and Nagel [42]. We also found the local methods to be more robust with
respect to errors in gradient measurement caused by quantization noise. A clear example of the
difference between the two approaches is apparent in the different errors produced the Lucas and
Kanade method with those of our modified version of the Horn and Schunck method, since they
share the same spatiotemporal derivative estimates. One of the main reasons for this distinction
concerns the existence of a confidence measure to distinguish estimates of normal velocity from
2-d velocity. In the case of Lucas and Kanade’s method, we found that the size of the smallest
eigenvalue of the normal equations in (2.9) was one such reliable measure. By contrast, we did
not find a similarly good confidence measure for Horn and Schunck’s method.

Finally we found that, contrary to much of the literature, second-order differential methods
(e.g. [56, 57]) are capable of producing accurate and relatively dense measurements of 2-d
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velocity. Moreover, the determinant of the (spatial) Hessian /(x,¢) was a reasonably good
confidence measure, and significantly more effective than its condition number (suggested by
Uras et al. [57]). One problem with this technique however, appears to be its consistency. While
it produced good results with predominantly translational image sequences, it appears to degrade
faster than first-order techniques as the amount of higher-order geometric deformation in the
input (e.g. dilation) increases. This is evident when comparing the results from the Translating
Tree and Diverging Tree sequences. As discussed above, this problem is consistent with the
underlying assumptions of the approach.

We now turn to the matching techniques, both of which produced results that were generally
poorer than those from the better differential methods. One of the main problems we find with
the SSD-based matching techniques is their ability to estimate sub-pixel displacements. With
image translation and higher speeds they appear to perform well, but when the motion field
involves small velocities with a significant dilational component the estimated displacements
are often poor. In these cases it appears that SSD-based estimates of displacements are more
accurate with integer displacements than subpixel velocities.

As a result of the relatively poor displacement estimates from the SSD minimization, the
neighbourhood smoothness constraints employed by both Singh and Anandan are important to
the success of these methods. At the same time, however, we found that the confidence measures
suggested for both approaches were not very effective. The confidence measures suggested by
Singh appeared to work somewhat better than those of Anandan’s technique, in that they were
generally correlated with the velocity errors. A problem in Anandan’s approach, like that of Horn
and Schunck was the inability to distinguish normal from 2-d estimates. In Singh’s technique,
they were more effective for step 1 of the computation than for the final velocity estimates of
step 2, where they were largely ineffective. While matching techniques did not produce the
most accurate velocity estimates among the techniques we examined, it should be restated that,
as compared to the relatively large temporal duration of support used by the most successful
techniques, these matching approaches used either 2 or 3 frames only.

The final techniques considered include energy-based techniques and phase-based approaches.
Although there exist a number of interesting energy-based approaches, we have tested just one
in this paper, namely the approach of Heeger [29]. Our results suggest that this technique is
not as reliable as several of the other techniques considered. Although not reported in detail
here we found that the original nonlinear optimization suggested by Heeger to solve (2.28) was
extremely sensitive to initial conditions and did not produce reliable results. Qur implementation
of a parallel search method was better, but still left much to be desired; of course, in part this
may be due to our implementation. It appears however that the effort needed to solve the
optimization problem, combined with the assumptions underlying the approach (e.g. translating
white noise) will make this approach difficult to employ.

The phase-based approach of Fleet and Jepson [22, 19] produced the most accurate results
overall. However, there are several issues worth noting for our implementation of this technique.
First, we find that this technique is sensitive to temporal aliasing in the image sequences because
of the frequency tuning of the filters. A second issue concerns the potential number of confidence
measures. Fleet and Jepson proposed several constraints on phase stability and signal contrast
(SNR) to weed out poor normal velocity estimates. It would be useful to have these combined
into a single confidence measure that would facilitate a more general weighted LS solution to
the 2-d velocities. A third problem with our current implementation of the phase-based is its
high computational load. Like Heeger’s method and other frequency-based methods, it involves a
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large number of filters, which at present is the main computational expense. However, we expect
that with the appropriate hardware in the near future the filtering should cease to be a severe
limitation, and all these techniques could be implemented at frame-rates. It is also important
to note that all our filter outputs were stored in floating point and were not subsampled (except
in cases involving the Laplacian pyramid). More efficient encodings of the filter output should
be possible with subsampling and quantization of the filter outputs as in [19] with only slight
reductions in accuracy.

Finally, it is important to restate and qualify the conditions under which these tests were
performed. First, we assumed that temporal aliasing was not a severe problem and that inten-
sity (or filtered versions) were differentiable. As discussed earlier, if temporal aliasing is severe,
then other approaches must be considered, such as coarse-to-fine control strategies. Second, we
have considered relatively simple image sequences, without large amounts of occlusion, specu-
larities, multiple motions, etc. and our quantitative measures of performance should be taken
as lower bounds on the expected accuracy under more general conditions. Third, most of the
implementations considered here involved only one scale of filtering, and would produce better
results with multi-scale implementations. This is true of most techniques, including those of
Lucas and Kanade [39, 40] and the phase-based approach of Fleet and Jepson [19, 22].
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A Implementation of Nagel’s Algorithm

The functional to be minimized from [43] is

(VITv + 1)? + ————— [(up ], — u, I,,)* o, — v, )2
// v+ t ||VI||2—|-2(5 [( Uy ) —|—(U Yy Uy )—I_

§(ul+ ul + vl 4 vy)] dzdy. (A1)

Since the iterative equations were not in that paper, we derived them as outlined below.
The original PDEs in [43] are:
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L2+ 1,7+ 26
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where 1 s 1
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These equations can be rewritten as:
(Lu+ Iyv+ L), + o*[€- Vu — ¢(u)] = 0
(Lu+ Iy 4 L), + @*[€- Vv — ¢(v)] = 0 (A.5)
where
() e )]
o Ly L. Ly 1y "
L2+ L+ 26
and
¢(u) = trace (WVVu) (A7)
¢(v) = trace (WVVw) (A.8)

By expanding (A.7) and (A.8) we find that
_ (Iy2 + 0)ugs + (IIQ + 8)uyy — 201y ugy

- A.
o(u) (IVI||3 + 26 (A.9)
(1,2 + 8)vgy + (I3 + 8)vyy — 2110,
- A.10
9(v) V|2 + 26 (A.10)

We numerically estimate the second derivatives of « and v using the mask [1,—2,1]. In this
case, the first two terms of (A.9) as follows

(Iy2 + 0)ugs + (ImQ + 8)uy,y N
VI3 + 26
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(Ly* + &) (uij—1 + wijr — 2uij) + (L” + 8)(wiz1,j + ip1,j — 2ui ;)
V113 + 26
(L," + 6)(wijr + tijr) + (T? + 8)(wicrj + Uita,)
VI3 + 26
where u denotes a weighted average of w near location ¢,7. Note that derivatives in the z
direction are computed using velocities in the 7 dimension and derivatives in the y direction
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using velocities in the ¢ dimension.
Similarly we can approximate the first two terms of (A.10) as follows:
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Since numerical estimates of other partial derivatives of 7 = (u,v) i.e. Uy, Uy, Vg, vy, Uz and
vzy do not involve #; ; itself, they can be computed directly using central difference formulas,

and we can rewrite £(u) and £(v) as:
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The set of PDEs can then be written as
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Rearranging yields:
(I + 20*)u + I I,v = 2a%¢(u) — L1, (A.19)
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where £(u) = 3(—€- Vu + 2u — QW) and £(v) = $(—€- Vo + 20 — QW) Using

Cramer’s rule, we can write
(L2 + 1,* 4+ 2a%)u = £(u)(1,2 + 202) — L1, E(v) — L1, (A.21)
(L2 + 1,2 + 2a%)v = £(v)(1,° + 20*) — L 1,6(u) — 11, (A.22)

By adding and subtracting I,%£(u) to the right side of (A.21) and I,%£(v) to the right side of
(A.22), we obtain the following constraint:

u = E(u) - L (L:E(u) + L,6(v) + 1)
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L(LE(u) + LE(v) + 21)
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v=§(v)

(A.24)
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Using the Gauss-Seidel method we obtained iterative equations in (u,v):
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The superscript k represents the iteration number, and u,*, uyk, vzk,vyk,uwk and vzyk denote
the partial derivatives of 7@ at iteration k. The terms u@* and ©* are local weighted averages, com-
puted according to (A.11) and (A.12). The partial derivatives of ¥ = (u,v) are computed using
the 1%¢ order central difference mask %[1, 0, —1]. We also compute 2" order partial derivatives
by cascading this kernel with the 15¢ order results.

Lastly, we note that if the second order spatio-temporal derivatives of intensity and velocity,
fe. Ing, Ly, Ipy and gy, Uyy, Upy, Vpp, Uyy and vy, are all zero then {(u) = w and £{(v) = v and
equations (A.25) and (A.26) reduce to Horn and Schunck’s [31] iterative equations (although the
neighbourhood averages used by Horn and Schunck differ from those here due to the different
form of differentiation):

—k =k
uk-l—l — ﬂk _ Iﬂ?(Ixu + va + It) (A27)
12 4 12 + 202

and N i
?)k+1 — @k _ IZ/(IIU + va —I_ It) . (A28)
IZ 4 12 + 2a?

Note that the original Horn and Schunck algorithm does not have a 2 in front of «, but « just
controls smoothing and using o for Horn and Schunck’s smoothing parameter is equivalent to

using a/v/2 here.
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B Sinusoidal Results
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Figure B.1: Sinusoidal Input: Flow fields are shown for the Sinusoid 1 sequence.

(d) Uras et al.
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Figure B.2: Sinusoidal Input: Flow fields are shown for the Sinusoid 1 sequence.
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The flow fields produced by the methods of Nagel (for a = 0.5)
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C Square Results
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(a) Lucas and Kanade (raw normal velocity ||VI||]; > 5.0) (b) Lucas and Kanade (2d velocity)

Figure C.1: Square Input: Velocity estimates for Square 2: for Lucas and Kanade: with
spatiotemporal smoothing (¢ = 1.5) and thresholding on A, > 1.0.
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Figure C.2: Flow fields for Horn and Schunck for square2 unthresholded and thresholded by
VIl > 1.0.
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Figure C.3: Flow fields for Nagel for square2 unthresholded and thresholded by ||VI||2 > 1.0.
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Flow fields for Square 2 input: (top) For Uras et al., with and

without a confidence threshold on the velocity estimates; (bottom) For steps 1 and 2 of Singh

without thresholding.

Figure C.4: Square Input
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Figure C.5: Square Input: Flow fields for Square 2 input: (top) For Anandan’s technique
with and without thresholding on ¢,,i,; (bottom) For the method of Waxman et al. we show

both 2d and normal velocity estimates.
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Figure C.6: Square Input: 2d and normal velocity estimates produced by the methods of
Heeger and Fleet and Jepson on the Square 2 input sequence.
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D Translating Tree Results
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Histogram D.1: Translating Tree: Error Histograms for (a) standard Horn and Schunck

and (b) modified Horn and Schunck, both with thresholding ||V ]|z > 5.0.
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Histogram D.2: Translating Tree: Error Histograms for (a) Lucas and Kanade (A; > 1.0)
and (b) Nagel (||VI|]2 > 5.0).
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Histogram D.3: Translating Tree: Error Histograms for Uras et al.: (a) unthresholded and

(b) thresholded (det(H) > 1.0).
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Histogram D.5:
and Jepson (7 = 1.25).
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Translating Tree: Error Histograms for (a) Waxman et al and (b) Fleet



Barron, Fleet, Beauchemin and Burkitt 1993

1.54
1.28

1.03
Bin
Counts 0-77
(x 1000)
0.51

< 1°:
< 2°:
< 39:
Density:

Average:

2.5% .
10.5%}
24.2%
77.9%
8.10°
:12.30%

1.

1.0 3.0 50 7.0 9.0 11.0 13.0 >15.0

2-D Velocity Error (degrees)

(D.6a)

1.05
0.87 |

0.70 |

Bin
Counts 0-52

(x 1000)
0.35

0.17 o

60

< 1°:

< 2°:

< 39:
Density:
Average:
o

3.2%

14.7%
28.1%
57.8%

4.53°
2.41°

.
119%,40

1.0 3.0 50 7.0 9.0 11.0 13.0 >15.0

2-D Velocity Error (degrees)

(D.6a)

Histogram D.6: Translating Tree: Error Histograms for Heeger for (a) level 0 and (b) level



Barron, Fleet, Beauchemin and Burkitt 1993

aaaaa a3 a3 saaareaea s s
2223223 A2 A A A Y rAA 22> IAARXY>FIY > YT RN
NSNS SSSHNNIN SN IS S A S S SN
S S N S S S S
23 323933 3393333323323 233> >3 > > - - - —_ == —_ =
I T i T O R I T S NN S A S S S s > RN
333333 9993933333333 ISR > > >
NI AT A (NS I T OIS S22 3 > T > - = —_— —_— - o
B N i - o o s > - =
N T SICECI NN N
A NPIII T IS LG A AP I DI III I 2 3 4 3w —m - oS e ndand
R e e R R R - b > > —
N e G S T TR T T Rt At IR S SO
NAABP P A IS > 222 Y P I XTI AN s 5 - = PSS ndand
N OO N Ef SRR - P I
443 3 33N> T T I
s e Pt S % S - - e e e
LR N Y b 5 e ST N BB s 3w ~
LR e o e S T et T SR - o = —_— — -
NSNS SSSSIE :
Ay SN S NN Y Y N N— —_- - — - -
TT TIP3 5 > 3 33 33 N NI Y N NN A
R A T SN S VOV SN - o b oo
ieded
>rrry oy oy T S N N N Ny B A SN > —
PAITAIFT T AT S 5059 9 SISO IS NN A A A
O e A A T I B B e T S GG e S - = = - nden i e d -
23333
P A e e E A R o > —— —
N R e e O NN AR T T
Y A Y P A E YT T YT A AAAA NI Y s s s S S s AIAAA Ay 4 B e e Y b o —
T 222 Ir YT IITIAAAAAII 5 5 S AIAAIANAAT A 3 5 B O o > D > > o
FAIIASAII YT I Y TA AT A 3 I AT A A Ay 3
PAIIIIIAIITIIIITIATAAAT T IAAFITAAA AN N indindindid i dindis e i S i dind
I e R R R T L I R I AL I I RN N
TAT AT A9 333 2T a5 533 e Yy ay T
TATAT AT T FIITIYIIIAIFIIBIITTNSAAD>IYIIEE A>T Ty - indin it
D NN S SN S S S
AT TAAAAAAATTI>III>IFITIFI>I>II>OITFTI Y YA T >
MAA TR AN AT A AATTII>IITTI>I>IINI>IFITIY AT Y 2
(a) Horn and Schunck (original) (b) Horn and Schunck (modified, ||VI|| > 5.0)
RN N N
SN N s oo oo
N RN soooan oo oo
- o NN SN 5 sooaoooo
- b s oo o NN QN -
- N - IR
NN - N
s oo o N —_——
- - NI N SN
oo - RN - -
N . - N - -
- N -o -
RGN 5 oo - S oo
RN NN RGN
N N NG ENENEIN
N NN s s
NN 5 soooaoaooo
oo bsooooaoao oo - NN -
NN - QNN -
o SRR - oo

(¢) Lucas and Kanade (A2 > 1.0)

Figure D.1: Translating Tree:

(d) Uras et al. (det(H) > 1.0)

Flow fields produced by differential techniques.
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Figure D.2: Translating Tree:
technique, the parameters used were n = 2, w = 2, and N = 4.

(c) Singh (step 1, A1 > 5.0)

(d) Singh (step 2, A\; > 0.1)
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Flow fields produced by matching techniques. For Singh’s
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Flow fields produced by assorted methods.
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(a) Lucas and Kanade with A; > 1.0
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Histogram E.9: Diverging Tree: Error Histograms for Uras et al.: (a) unthresholded and
(b) thresholded (det(H) > 1.0).
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Flow fields for differential techniques.
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Flow fields produced by matching techniques.
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and Schunck with ||VI||z > 5.0 thresholding and (b) Lucas and Kanade with A; > 1.0
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Figure F.1: Yosemite:

(d) Nagel (det(H) > 1.0)

2d velocity estimates produced by differential techniques.
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Figure F.2: Yosemite: The flow fields produced by assorted methods.
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Figure F.3: Yosemite: Flow fields produced by Heeger’s method for the three levels, and then
with all levels combined (choosing estimates from levels with speeds preferences corresponding
to the true motion field.
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Figure F.4: Yosemite: 2d velocity estimates produced by differential techniques.
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Figure F.5: Some error intensity images for the Yosemite Fly-Through sequence.
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Figure F.6: Some error intensity images for the Yosemite Fly-Through sequence.

(d) Singh, step 2
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Figure F.7: Some error intensity images for the Yosemite Fly-Through sequence.
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G Confidence Measures Results
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Figure G.1: Cumulative full velocity average angle error versus phase stability threshold 7 for
the method of Fleet and Jepson for the Diverging Tree sequence.
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Figure G.2: Cumulative component velocity average angle error versus phase stability threshold
7 for the method of Fleet and Jepson for the Diverging Tree sequence.



