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3.3 Bundle Solution

Summary: The method of self-calibration has proved to be one of the most powerful cali-
bration techniques. If used in the context of a general bundle solution it provides for object
space coordinates or object features, camera exterior and interior orientation parameters,
and models other systematic errors as well. Therefore, because of its flexibility, it may be
used in stereo, multi-frame systems, egomotion computations, etc. This chapter gives a brief
introduction into the principle of self-calibration, emphasizes some of the problems which
are associated with it, and demonstrates with practical data to what extent geometry and
network design will influence the determinability of the self-calibration parameters. Finally, a
system test will show the high accuracy performance of self-calibrating CCD-camera systems.

3.3.1 Introduction

Since photogrammetry has always been concerned with precise measurements using images,
the accurate calibration of the sensors used has been, and still is, of major concern. In the
case of a single frame camera sensor (photographic or opto-electronic) the underlying geo-
metrical model for processing is that of perspective projection and the associated procedure
for the adjustment of the image coordinate measurements and the estimation of the derived
parameters is the “bundle method”. The fundamental projection parameters are the image
coordinates of the principal point and the camera constant. They define the interior ori-
entation of a CCD-frame. According to a widespread definition some authors also include
the lens distortion (very often only the radial part) into the set of parameters for interior
orientation. These parameters may be systematically distorted. However, there are a great
number of additional error sources which may lead to a deformation of the imaging bundle of
rays and thus contribute to the overall systematic error budget. Among the most prominent
in photographic systems are film and emulsion distortion, unflatness of the imaging plane,
false fiducial mark coordinates, effects of image motion, and atmospheric refraction. In CCD-
camera based systems not all of those are relevant, but one has to consider a number of
additional distortion sources as identified by Gruen [1] and investigated by Beyer [2] and [3].

We define now “system calibration” as a technique which reduces the original image data
such that it is most compatible with the chosen parameters of perspective projection. This
may include an estimation and correction of these latter parameters themselves.

In Section 3.3.2 the method of self-calibration, a technique for system calibration which was
introduced into photogrammetry twenty years ago, is briefly described.

Self-calibration is a standard procedure in aerial photogrammetry. Under operational con-
ditions it leads to accuracy improvements of up to a factor 3. It is of particular value in
CCD-based close-range systems since the cameras and framegrabbers used are commonly
poorly calibrated or the calibration parameters might significantly change over time (camera
constant and lens distortion through focussing, principal point through warm-up effects, etc.).
Accuracy improvement factors of up to 10 were observed in controlled test projects by Gruen
et al. [4] and by Beyer [2, 3]. Since self-calibration adds new parameters to the linearized sys-
tem of bundle adjustment there is a certain danger of overparameterization, which could lead
to ill-conditioning or even singularity of the normal equations of least squares adjustment.
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Section 3.3.3 demonstrates how geometry and network design influence the determinability
of the self-calibration parameters.

Section 3.3.4 shows the potential of this technique in a controlled test and proves the high
accuracy performance of CCD-camera based systems.

3.3.2 The concept of self-calibration

If single-frame camera data is processed, for instance in CCD-camera applications, the geomet-
ric sensor model is that of perspective projection, leading to the so-called “bundle method”.
This bundle method is considered the most flexible, general and accurate sensor model. Long
before it became a standard procedure in aerial photogrammetry it was used in a variety of
close-range applications. Since, for the method of self-calibration presented here, the bundle
method is the underlying estimation model the latter will be very briefly addressed in the
following (there exists an abundance of publications on this subject in the photogrammetric
literature, e.g. [5, 6, 7, 8, 9].

3.3.2.1 The bundle method

The basis of the bundle method is the collinearity condition (compare also Figure 1)

X Ti5 — Zoj X()
V| =XiR; | yig—vyoj | +| Yo (1)
Z i 0-— Cj Z() j
with
X, Y. Z; ...... Object space coordinates of object point (P;)
Xoj, Y05, Z0; --- Object space coordinates of perspective center (O;)
Tij, Yij,0 ... Measured image coordinates of point (PZ'])
LOjy YOjy wvvnnen Image space coordinates of principal point (H})
Cj vnrnmnanaanns Camera, constant of CCD-frame j
Rj............ Rotation matrix (orthogonal) between image
and object space coordinate systems
Aij cerieeaan, Scale factor for imaging ray
i=1, ..., nop (nop = number of object points)

j =1, ..., nof (nof = number of CCD frames)

In (1) the interior orientation of a CCD-frame j is defined by the parameters z;, yo;, c; while
the parameters Xo;, Yo;, Zoj, Rj(¢j,w;, kj)define the exterior orientation. Here ¢;,w;, k; are
the three rotation angles which build up the rotation matrix R;. The three components in
(1) are reduced to two by cancelling out the scale factor \;;, and then rearranged according
to
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CCD Frame
X
Figure 1: : Sensor model of the bundle method
24 = —c; f7 + 20; = o113 (X = Xoj) + o (Vi = Yoj) + 7315(Zi = Zoy) + 2
Y o ’ T 113 (Xi — Xoj) + 23 (Yi — Yo;) + r33;(Zi — Zo;) !
125 (Xi — Xoj) + 7225 (Vi — Yo;) + 7325 (Zi — Zoj)

e fY 4y = —cy L2 j j ] j i) 4y

Yis 135+ voi T 135 (Xi — Xog) + 123 (Yi — Yoj) + a3, (Zs — Zo) 0"
(2)

7114 - - - T33; are the elements of R;.

Since (2) provide for a general sensor model they accommodate easily the specific cases which
are often treated in computer vision, e.g. stereo, egomotion, etc.. Depending on the parame-
ters which are considered either known a priori or treated as unknowns these equations may
result in the following cases, which are also listed in Table 1 (z;j;,y;; are always regarded as

observed quantities):

(a) General bundle method: All parameters on the right hand side of (2) are unknown

(interior orientation, exterior orientation, object point coordinates).

(b) Bundle method for “metric camera” systems: zo;, yoj, ¢; (interior orientation) are given,

all others unknown.

(c) Spatial resection:
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Table 1: Photogrammetric orientation and point positioning procedures as special cases of
the general bundle method

Procedure Given Parameters Unknown Parameters
General bundle - (X,Y, Z);;104; EO;
Metric camera bundle 10; (X,Y,Z);; EO;
Spatial resection (a) I10;(X,Y,Z); EO;
(b) (X,Y, Z); 104; EO;
Spatial Intersection 10;; EO; (X,Y,Z);
(Stereo or multiframe)

10 .. .Interior orientation, FO...Exterior orientation

(ca) Interior orientation and object point coordinates (Xj;,Y;, Z;) are given, the exterior
orientation has to be determined.

(cb) Only object point coordinates are given, the interior and exterior orientation have
to be determined.

(d) Spatial intersection: The interior and exterior orientation are given, the object point
coordinates have to be determined. This includes the stereo as well as the multiframe
approaches.

Any combination of procedures is possible within the general bundle concept. Also incomplete
parameter sets of exterior/interior orientation and object points can be treated.

3.3.2.2 Least squares estimation

Equations (2) are considered observation equations functionally relating the observations
Z;j,Yij to the parameters of the right hand side according to

l=f(z) - 3)

For the estimation of & the Gauss-Markov model of least squares is used. After linearization
of (3) and the introduction of a true error vector e we obtain

l—e=Ax. (4)

The design matrix A is a n x u matrix (n ..... number of observations,u .... number of unknown
parameters), with n» > u and, in general, rank (A)= u.

With the assumed expectation F(e)= 0 and the dispersion operator D we get
E(l) = Az,
D) = Cy=o,P7, (5)
D(e) = Cee = Cll .
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P is the “weight coefficient” matrix of I and C stands for covariance operator, o3 is the
variance factor.

The estimation of & and o3 is usually (not exclusively) attempted as unbiased, minimum
variance estimation, performed by means of least squares, and results in:

& = (ATPA) ATPL,

v = Az-1, (6)
.9 vT Pv
0'0 — —’r y r=—mn-—u.

v...Residuals of least squares.

The structure of A is determined by the procedure applied (compare Table 1), it reflects the
overall network design and thus also the geometrical and numerical stability of the arrange-
ment.

For ATPA to be uniquely invertible, as required in (6), the network needs an external
“datum”, that is, the seven parameters of a spatial similarity transformation of the network
need to be fixed. This is usually achieved either by introducing control points with seven
fixed coordinate values, or by fixing seven appropriate elements of the exterior orientations
of two frames.The precision of the parameter vector x is controlled by its covariance matrix

Cuo =63 (ATPA) .

3.3.2.3 Systematic error compensation by self-calibration

For systematic error compensation a number of methods have evolved over the years, among
which the following are the most prominent:

A priori: « Data reduction using physical models
« Laboratory calibration
« Réseau corrections
« Testfield calibration under project conditions

A posteriori: « Post-treatment of adjustment results (analysis of residuals)
Simultaneous: « Compensation by network arrangement
« Self-calibration by additional parameters

In the following only the method of self-calibration will be addressed because it has proved to
be the most flexible and powerful technique, while requiring at the same time no additional
measurement effort.

Self-calibration by additional parameters essentially consists in expanding the right hand
side of (2) by additional functions which are supposed to model the systematic image errors
according to

Tij = —ijfj + x5 + A.’Ei]‘ ,
vii = —¢if+voj + Ayij - (7)
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The terms Awx;;, Ay;; can be understood as corrections to the image coordinates z;j,y;; in
order to reduce the physical reality of the sensor geometry to the perspective model. Obviously
the principal point coordinates xoj,1o; can be considered part of this correction term. If a
parameter for the camera constant is added, the full interior orientation is included in the
additional parameter set.

The formulation of the additional parameter function is very crucial for a successful self-
calibration. The actual physically caused deformations, which are a priori unknown in struc-
ture and magnitude, should be modelled as closely and as completely as possible. On the
other hand, the chosen parameter set must be safely determinable in a given network ar-
rangement. These are essentially two conflicting aspects which will be addressed in Section
3.3.2.4.

In aerial photogrammetry the sources for systematic errors have been studied in great detail
and are generally quite well understood and modelled [9].

An international test has shown that different modelling concepts lead to practically the same
results as long as the systematic errors are fully covered in the respective models [10].

In photographic close-range systems the following functions have proved to be effective [11]:
Az = —Azg + %Ac + 255 + ya+ 2r’ky + 2rtky + 2r8ks + (r* 4 22%) p1 + 22yps

Ay = —Ayy + %Ac + 0 + za+yriks +yriks + gréks + 2zgpy + (r* +25°) p2 ,

W‘ith.’f:.T—.’I)(), Y=Y — Yo, 7‘2:j2+g2
(the indices ;; are left out here for the sake of simplicity)

This is called a “physical model”, because all its components can directly be attributed
to physical error sources. The individual parameters represent:

Azxg, Ayp, Ac ... Change in interior orientation elements

SE e Scale factor in x (“affinity”)

B eeeniiaanns Shear factor (jointly in z,y)

ki,ko ks, ...... First three parameters of radial symmetric lens distortion
(ks is a priori disregarded if normal- and wide-angle lenses
are used)

PLyP2 aeeeeennn First two parameters of decentering distortion

Equations (8) has also proved to be successful in CCD-camera systems [2, 3] and will be used
in the investigations of this paper.

The location of the principal point is not specified for most CCD-cameras, varies from camera
to camera and depends on the configuration of the frame grabber. The scale factor in z is
required to model the imprecise specification of the sensor element spacing and additonal
imprecisions introduced with PLL line-synchronization. In the latter case the pixel spacing
in £ must be computed from the sensor element spacing, the sensor clock frequency and the
sampling frequency with:

pST = ssavM 9)
f sampling



Institut fiir Geodésie

und Photogrammetrie ETHZ Machine Vision 3.8
with

PST i Pixel spacing in x

SST ..., Sensor element spacing in x

SFsensor--vevnn- Sensor clock frequency

fsampling - -+ -+ Sampling frequency of frame grabber

The shear factor ¢ must be included to compensate for the geometric deformation which can
be induced by PLL line-synchronization [3]. The use of additional parameters leads to an

extended bundle model
l—e=Ax + Ajz=. (10)

z,Ag ...... Vector of additional parameters and associated design matrix

In a general bundle concept all unknown parameters are treated as stochastic variables. This
permits to consider a priori information about these parameters to be included and includes
both extreme cases where parameters are either excluded from the model or may be treated as
free unknowns. If we split the vector  into its components x, (for object point coordinates)
and t (for exterior orientation parameters) we obtain the following estimation model:

—eéep = Al.’Bp + Azt + A3z — lB H PB
—ep = Ixzp —lp 5 B
11
—€ = It - lt 5 Pt ( )
—e, = Iz — 1, ; P,
eB,ep,et, e, .... Vectors of true errors of image coordinates, object point
coordinates, exterior orientation elements, additional
parameters
I lpylgly o..... Vectors of observations of image coordinates (minus

constant term from Taylor expansion), object point
coordinates, exterior orientation elements, additional

parameters
Pp, P, P, P, ... Associated weight coefficient matrices
Tpytyzy.oiiiil. Parameter vectors of object point coordinates, exterior
orientation elements, additional parameters
Aq,A2,A3....... Associated design matrices
T Identity matrix

In the investigations of Section 3.3.3 we will treat all control point coordinates with infi-
nite weight (diag (Pp) — 00), that is error-free and with I, = 0 (which leads to z, = 0,
as xp does not represent the full coordinate values but because of previous linearization only
the incremental corrections). All other object points will be considered as “new points” with
P, =0andl, = 0. The same will apply to all exterior orientatiom elements: P; =0, [, = 0.
In some cases the additional parameters will also be assumed as free unknowns, with P, = 0,
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l, = 0. The stabilizing effect of finite (nonzero) weights for additional parameters in case of
weak determinability was shown by Gruen [7], [9] and will also be addressed below.

3.3.2.4 Treatment of additional parameters

In (11) a unique set of additional parameters may be introduced for all participating frames
or, as it is necessary if each frame comes from a different CCD-camera, an individual set may
be assigned to each frame. Especially in the latter case the danger of overparameterization
becomes apparent. This is the reason for the need to have a powerful parameter control
procedure available, for the automatic detection of non-determinable parameters and their
exclusion from the system.

In the past such procedures have been developed by different researchers. They all rely on
statistical concepts. The procedures have never been compared to each other in an inde-
pendent test. Gruen has published this approach in a series of papers [7, 9, 12, 13]. In the
following a summary of this procedure will be given.

Conditions for the algebraic determinability of additional parameters were previously formu-
lated by Gruen [7] and are reiterated in Appendix A. Since it is necessary in practice to deal
with erroneous observations, the purely algebraic approach must be given up in favour of a
statistical approach. Therefore any decisions will be correct only with a certain probabil-
ity. The major problem consists in finding criteria for the rejection of individual parameters.
The checking of parameters must be related to the purpose of the triangulation. Here three
different objectives must be distinguished:

(a) Point position
(b) Optimum estimation of the elements of exterior orientation, e.g. for egomotion purposes

(c) Analysis of systematic image errors aimed at the optimum estimation of these errors

Objective (a) involves the optimum estimation of object space coordinates. Additional param-
eters are used as supporting variables for the improvement of the estimation model; they do
not have a separate, independent meaning. Hence their statistical significance is not a matter
of concern, unless insignificant parameters cause a substantial decrease of the redundancy in
small systems. The precision measures of the object space coordinates are the system’s only
available meaningful parameters for quality control. In other words, those additional parame-
ters that would cause an inadmissibly large deterioration of the network’s precision measures
have to be excluded. The most popular precision measures are the mean and maximal vari-
ance of the object point coordinates. It is necessary to check to what extent those measures
are deteriorated by certain additional parameters. When designing a rejection procedure it
is essential to keep in mind that the time requirements of many projects do not allow the use
of computationally expensive methods for data analysis.

Since the determinability of additional parameters may vary largely, their checking should be
done at different stages of the least squares adjustment process, using rejection criteria with
varying sensitivity levels. The following stepwise procedure can be operated in a reasonably
fast mode.
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(1) In order to avoid a quasi column rank deficiency in the design matrix of the estimation
model, the additional parameters are introduced as observed variables. The assignment
of small weights assures that only a very small constraint is applied.

(2) Very poorly determined additional parameters can be deleted in the course of the fac-
torisation procedure of the normal equations. Weakness of a particular additional pa-
rameter is indicated by a comparable small pivot element. If such a pivot falls short of a
certain limit, the related additional parameter needs to be deleted. This can be achieved
by adding a large number to this pivot element. The reduction process is continued.

(3) In a correlation check, high correlations indicate an inherent weakness of the system.
They are particularly damaging if they occur between additional parameters and object
point coordinates. Any additional parameter which leads to such correlations larger
than 0.9 should be rejected. For computational reasons, only a few object points in
characteristic locations may be included here.

(4) Detection and deletion are effected by those additional parameters that belong to the
critical range between poorly determined and sufficiently well determined parameters.
The trace check of the covariance matrix (outlined in Appendix B) may be used here.

(5) In a final step, the remaining additional parameters can be tested for significance, if this
is considered necessary. It is suggested that the a posteriori orthogonalised additional
parameter vector should be tested following the method outlined by Gruen [13]. The
non-significant orthogonal components are set to zero. The back-transformation of the
thus modified additional parameter vector from the orthogonal space to the “regular”
space provides for a cleaned additional parameter set, involving the significant part only.

3.3.3 Determinability of self-calibration parameters under various network con-
ditions

In the following we will show with the help of practical data to what extent individual or sets
of additional parameters (APs) can be determined under varying network conditions. Our
3-D testfield is used as the object to be measured.

Figure 2 shows schematically the object and the arrangement of CCD-camera stations. For
image acquisition a SONY- XC77CE camera with a 9 mm lens was used. The imagery was ac-
quired with a VideoPix frame grabber using PLL line-synchronization. The resultant imagery
has a size of 768x 575 pixels. The sampling rate of the frame grabber was approximately 14
MHz, resulting in a pixel spacing of about 11ym. A total of 36 object points were measured,
24 on the wall and 12 on the structure. Figure 3 shows a typical CCD image. The average
number of measured image points per frame is 31.

The following parameters will be varied in our computational versions:

e Number of frames used in bundle adjustment (1, 2, 3, 4, 8).

e Configuration of frames (small base - parallel optical axes; large base - convergent optical
axes; additional rotation of frames by 90° at the approximate position of the non-rotated
frames)
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Figure 2:

Examples of measured points

Figure 3: : Image grabbead at station 1310. The average number of measured points is 31
per image from a total of 36 object points.
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Table 2: : Overview of versions. Image numbers with xxx1 denote that the camera was
rotated by 90 degrees around its optical axis

Versions | Frames | Configuration Images APs
1xxxx 1 1310

21xxxx 2 1 1210, 1410

22XXXX 2 2 1110, 1510

3XXXX 3 1110, 1310, 1510 A’gé'sémc?c
41xxXxX 4 1 1110, 1300, 1320, 1510

42X%XX 4 2 1110, 1111, 1510, 1511

81xxxx 8 1 1110, 1111, 1300, 1301, 1320, 1321, 1510, 1511

82xxxX 8 2 1110, 1111, 1300, 1301, 1320, 1321, 1510, 1511 all free

e Object depth (plane object - rear wall, two depth planes - rear wall and three rods in
the foreground)

e Number of object space control points (min, 3, 4, 5, 8, 9).“Min” stands for 7 control
coordinates, the minimum number for all versions including more than one frame.

e Number of additional parameters (0,3 [Azg, Ayo, Ac|,4,5,9). The full set of 9 APs is
given by (8) leaving out k.

Table 2 shows together with Figure 2 the frame and configuration versions together with an
indication as to how the APs are treated a priori (observed or free).

The results of computations are listed in Appendix C, Tables C1 to C7. Besides the estimated
accuracy of the image coordinates (6¢) and the average standard deviations of the object
points (6x,0y,dz,0r dxyz) the maximum correlations are listed (AP-OP: between APs and
object point coordinates, AP-EQ: between APs and exterior orientation elements, AP-AP:
between APs only). The inherent correlation between k; and ko (> 90%) is not included.
The control point versions are selected according to the use of targets in one and two planes,
i.e. for one plane: min, 3, 4, 5, 9 and for two planes: min, 4, 5, 8 control points. The control
points have standard deviations of 0.0 (1.e-31) mm in X, Y, and Z. Standard deviation of a
priori unit weight is 1.1 micrometer or 1/10th of the pixel spacing. The image coordinates
have weight 1. Az, Ayg, Ac have a standard deviation of 0.1 mm when they are treated as
observed (in some cases, which are marked, one of 1.0 or 0.01). All additional parameters are
treated as free unknowns for versions 82xxxx.

Figures 4 to 10 show the results of Tables C1 to C7 graphically. The average standard devia-
tion of all object coordinates (g xyz) is plotted against the number of additional parameters
(APs) in order to show the influence of the latter onto the former in a particular network
version. The following symbols are used throughout these figures:
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Two object planes

_______ One object plane

Number of control points; M stands for “minimum?”

As a general result, with increasing number of frames, larger bases and convergent optical
axes, more explicit 3-D object extension and increasing number of control points, we get an
improvement in the determinability of APs. Since a detailed analysis would require much
space, we will restrict our comments in the following to the most prominent points. The
analysis will be based solely on the evaluation of 6x, 0y, 0z, 0r dxyz respectively. Any other
aspects, like the amount of correlation which a certain AP generates, are not considered.!l

(0 [mm]
XYZ Two object planes
One object plane

Number of control points; M stands
for “minimum”

[LSSCSTEREERY

T T T ™ Number of APs
3 4 5 6 9
Figure 4: : One frame.

One frame (spatial resection): The elements of interior orientation cannot be determined
as long as a plane object is used, independent of the number of control points. Other APs,
however, might be determinable, given a sufficient number and distribution of control points.
In the event of a substantial 3-D object extension the interior orientation is determinable,
assuming at least five control points in appropriate 3-D distribution (here: three in one depth
plane, two in the other). Attention: In version 12050, P=2, Co=5 only one control point
has been used outside the rear plane, therefore all three interior orientation elements cannot
be determined simultaneously (this one control point provides for only two image coordinate
observations, whereas three parameters are to be determined).

Two frames (stereo, small base): Here some of the results look erratic. The versions with
one object plane (P=1) produce partly better object point coordinate standard deviations
if a larger a priori standard deviation for the interior orientation parameters is used (1 mm
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> Number of APs
9

Figure 5: : Two frames, configuration 1.

9

Figure 6: : Two frames, configuration 2.
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Figure 7: : Three frames
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Figure 8: : Four frames, configuration 1.
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Figure 9: : Four frames, configuration 2.
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Figure 10: : Eight frames, configuration 1.



Institut fir Geodésie
und Photogrammetrie ETHZ Machine Vision 3.17

versus 0.1 mm). Also the values are partly too good to be possibly correct. This is due to
the fact that all versions P=1, AP=3 are highly unstable (correlations AP-EQO around 100%)
so that any kind of numerical distortion may show up. It must be emphasized that in these
computations the APs were not tested according to the procedure suggested in Sect. 3.3.2.4
and Appendix A, therefore highly instable APs were not automatically deleted prior to further
analysis. Only with two object planes (P=2) and five control points (Co=5) or more we can
get the interior orientation parameters (and other APs) accurately enough.

Two frames (convergent, large base): The previous situation changes in parts drastically
if a larger base and convergent frames are used. Still in case of minimum control the principal
point coordinates Axg, Ayg are not determinable, but this is corrected by an additional control
point. For P=2 and five control points all nine APs are determined very well.

Three frames (large base plus center frame): As can be expected, this version gives
better results than the previous version. While we still have problems with the minimum
control versions, four control points give quite good results, especially in the two object
planes (P=2) case.

Four frames (large horizontal base plus vertical base): Compared to the previous
version we now obtain even in the case of minimum control / two planes good results for
the interior orientation parameters and decent results for all nine APs. The corresponding
one plane version is still weak in the interior orientation parameters and unacceptable for the
other APs.

Four frames (large horizontal base plus additional 90% rotation of frames): As
in the previous version, the four control point cases give good results up to all nine APs.
However, the two plane/minimum control version is slightly worse, whereas the one plane /
minimum control version gives substantially better results for nine APs than before, although
it cannot be considered good enough yet.

Eight frames (large horizontal base plus vertical base plus additional 90% rotation
of frames): Here we find excellent results in all versions, even for minimum control and only
one object plane. Also, the use of a priori unconstrained APs does not worsen the results, as
evidenced by the results of Table 3.

Summarizing the results, only the eight frames version was capable to produce very good
results under all conditions assumed. Releasing either the nonredundant datum (minimum
control) condition or the 3-D object condition even the four frames (two bases) arrangement
may produce acceptable results. If only three frames are used, aligned along a common
base, decent results can only be achieved with redundant control information (> four control
points). On the other hand, the results also show the inherent weakness of a two frames
(stereo) system for self-calibration. It must be emphasized that these results have been
obtained by using block-invariant additional parameters, that is one set of coefficients for all
frames. If in robotics for example several CCD-cameras are utilized simultaneously and if
problems, such as on-line focussing, zooming and compensation of damage caused by physical
disturbances (vibrations, shocks, electrical distortions, etc.) have to be handled, a frame-
invariant approach might be necessary and lead possibly to totally different conclusions than
those presented here. In any case it would require a much more constrained environment.
No matter what the actual approach is, a “blind” use of additional parameters is never
recommended. In a concrete environment the geometrical conditions might be so complex
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that it is very difficult to predict the results of self-calibration. Therefore the use of additional
parameters should always be accompanied by a sophisticated checking and statistical testing
procedure.

3.3.4 A final system test

This is to demonstrate the accuracy potential of CCD-camera based systems if the calibra-
tion is done properly. The version of 8 frames (large bases, convergent optical axes, 90 rotated
frames, a priori unconstrained APs) was used with two control point versions (82200X: Min-
imum - seven coordinates, 82205X: Five full control points). The average standard deviation
of image coordinates from least squares matching is 1.64 and 0.74 pym in z and y respectively.
The targets are imaged on the average in 6.9 frames of the 8 frames used in the accuracy test.
The image scale is 1 : 352. The targets are imaged on average with a diameter of 5.2 pixels,
with a minimum of 3.5 and a maximum of 7.4. The average object distance is 3233 mm. The
depth of the object is thus approximately 1/3 of the average object distance. Table 3 shows
the results of computations.

The empirical RMSE (ux, py,uz) agree well with the average standard deviations of the
check point coordinates in the self-calibrating versions. The average accuracy improvement
through self-calibration is around factor 12. Figure 11 shows the distribution of the check
point residuals in the XY -plane. Globally this distribution looks rather random.

When analysing these results one should clearly keep in mind that the last measurement of
the testfield’s reference coordinates dates back 12 months and that at the time of comparison
we had no indication of the quality of those coordinates. Figures 12, 13 and table 4 indicate
the large effect of the radial symmetric distortion and the lesser influence of the other APs.
At the corners of the CCD chip the radial symmetric distortion produces a displacement of
7.3 pixels. This large deformation is easily visible in the CCD frames (compare the bent rods
in Figure 3). Table 4 gives the effect of the APs at a point with image coordinates z = 3
mm, y = 2 mm. It is evident that the major source of deformation is the radial symmetric
distortion.

3.3.5 Conclusions

In the context of bundle adjustment the method of self-calibration presents a powerful tool for
calibration and systematic error compensation in CCD-camera based vision systems. More-
over, it provides for accurate orientation and location of the sensor (spatial resection, ego-
motion) and for accurate reconstruction of the object space. As a prerequisite, however, the
proper functions for modelling the systematic errors have to be chosen and a sophisticated
checking and testing procedure for the additional parameters has to be incorporated. Fur-
thermore, in order to provide for stable additional parameters and good determinability some
geometrical conditions should be observed, like the use of more than two CCD frames with
fairly large bases and convergent optical axes. Also, a 3-D object is to be preferred over a 2-D
distribution of object points. These geometrical conditions may conflict with the requirements
for successful image matching and image tracking in sequences (small disparities, ”smooth”
object, no occlusions, etc.), but a compromise should be aspired for.
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Table 3: : Results of bundle adjustment. A priori standard deviations for additional param-

eters are infinity (6x,dy,dz were computed with og = 1.1um)

Version |AP| Co |Ch| r % Ox Sy oy Hx Hy Mz Hx Hy

[um]|[ (mm] | [mm] | [mm] || [mm] | (mm] | [mm] |{[um] | [pm]
822000 | O|min| 33| 351|| 7.94|| 0.359| 0.443| 0.574|| 4.404| 4.161| 3.849|[12.43|12.08
822009 | 9|min|33| 342 1.53|| 0.382| 0462| 0.574|| 0.338| 0.325| 0.529|f 1.09| 1.05
822050 | 0 5|31| 359 844 0.200| 0.199| 0.425|| 4.147| 3.906| 5.501|/12.57|12.20
822059 | 9| 5|31| 350|| 1.52|] 0.221| 0.225| 0.427|| 0.306| 0.314| 0.503|| 1.05| 1.02
Improvement 8220001822009 || 5.2|| 094 096 10| 130| 128 14| 11.4| 115
Improvement 822005 1 822059 || 56| 090| 088 10| 136 124| 109| 12.0| 12.0

AP........... Number of additional parameters

Co..ocvvn.. Number of control points

Ch .......... Number of check points

T e Redundancy

GO cvvenaennnns Standard deviation of unit weight a posteriori; this corres-
ponds to the estimated standard deviation of image coordi-
nates

0x,0yv,0z7.... Theoretical precision values of check point coordinates

ux,py, bz ... Root Mean Square Errors from comparison of estimated
coordinates to check point coordinates in object space

Pgy by onvvnnns Root Mean Square Errors from comparison of estimated

coordinates to check point coordinates in image space

Remark: The a priori weights of additional parameters are 0. For the
computations of px,uy,puz, fiz, iy a 3-D similarity trans-
formation onto all check points was performed before the
comparison

As shown in this paper and in previous publications, even under relatively weak external
constraints (< five control points, eight CCD frames, standard set of block-invariant additional
parameters, PLL line-synchronization) an accuracy of 1/10* of a pixel or better for the X, Y-
coordinates of well defined object points and a depth accuracy of 1/10 000 of the average object

distance can be reached.
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Figure 11: : Checkpoint residuals in XY -plane of object space (version 822059).
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Raster spacing: 1.0 mm
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Figure 13: : Influence of additional parameters on grid.

Table 4: : Effect of additional parameters on point with image coordinates x=3, y = 2 mm

Parameter Parameter Influence in x Influence iny
Number
[um] ]
4 Scale in x 0.02 0.00
5 Shear -0.00 -0.01
6 k1 -81.47 -58.18
7 k2 16.52 11.80
9 p1 1.10 0.45
10 p2 -0.26 0.47
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Appendix A
Algebraic determinability of additional parameters

An observation vector lgs may include random and systematic components, i.e. a true
random error e and a true systematic error eg.Then we obtain

er +es =lrs — E(Ir) = lrs — Az, (A1)

and the estimators for & and/or o3

-1
z = (ATPA) AT Plgs,
~2 v%SP’URS (A2)

r

are no more unbiased, if the systematic errors are not modeled and determinable by additional
parameters.

We get the residuals vrs to

-1
VRs = ~— (I —A (ATPA) ATP> lrs,
(A3)
-1
vRs = — (1 — A(A”PA) ATP> (er + es) =
= —(I-K)(er+es)=Megr+ Meg.
YRs is but a visible component of the random and the systematic errors.
The systematic component
vs = Meg, (A4)
plays an important role in determination problems of systematic errors.
A systematic error is undeterminable, if
vgs=Mes=(K —I)es=0. (A5)

In this case even additional parameters cannot provide for a determination.

Proof: Let Ajx1 =1 — eg; P be the linear system for the estimation of &; and eg the true
systematic error vector.

For the residual vector vg we obtain

-1
vy = — (I — A (AITPAl) AlTP> es = Mes.

Let Ajxz; + Asxs =1 — eg ; P be the same linear system, extended by the additional pa-
rameter function Asxo which describes the systematic error eg.
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Then the corresponding normal equations result in

ATPA, ATPA, #\ [ ATPL
ATPA, AlPA, & |\ ATpPL |
and for the estimator &5 we obtain

-1
Liy, = (A%PAQ ~ ATPA, (ATPA,) AITPAQ) &y =

—1
ATP (I — 4, (ATPa,) AITP) l=—-AlPovg.

If vg= 0 we get the homogeneous linear system L&y = 0. The non-trivial solutions &2 # 0
are only existent if L is singular, what however implies the impossibility to obtain a unique
solution s # 0 for xs.

A reformulation of (A5) yields

Mes = (K — X)) es =0, withA =1. (A6)

Because M is singular, det (M) = 0 is always valid, so that other solutions than eg = 0 are
existent. The solution vectors for eg can be interpreted as the eigenvectors for the eigenvalue
A = 1 of K. The existency of A = 1 follows from the idempotency of K and the rank
deficiency dg # n.

There may even exist more than one linear independent eigenvectors ; their number is u (u =
dps = rank deficit of M = rank(K), if P is regular), because u-fold eigenvalues A = 1 are
possible.

All that means that for every bundle system u independent vectors of systematic errors exist,
which are not determinable. It becomes an interesting and essential question, whether this
mathematical set of errors includes some vectors which are physically possible, and moreover,
which do occasionally or even often appear in practical projects.

In [7] an example of two types of systematic errors, which are often met in practical projects,
is given. In [9] the previous concept has been extended to include gross errors (blunders) as
well, and has also been supported by examples.
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Appendix B
Trace check of covariance matrix

This procedure represents a computationally efficient technique to compute the effect of an
individual additional parameter (or a group) on the trace of the covariance matrix of the other
parameters of a bundle system, or a subset therefrom. It is based on the matrix identities

N = N+UWV, (B1)
—1 -1 -1 157\ ! -1
N~ = N'-N'U(W'+VNU) VN (B2)

Assume that a self-calibrating bundle system with a full set of additional parameters generates
the normal equation matrix IN and the related weight coefficient matrix Q-

The deletion of one or more additional parameters leads to the normal equation matrix N
and to Q,, respectively.

In order to delete the additional parameter of column (i) of IV , a sufficiently large number is
to be added to the diagonal element n;; of N. In the context of (B1), the addition of a large
number w;; may be represented as

N =N + ui’wiiviT (B3)

with

Thus w;; may be interpreted as a weight of an a priori observed additional parameter. If the
observation is assumed to be 0, a large weight causes the parameter (i) to be forced to this

observed value 0. For N ! we obtain

L 1 -1

N '=N"'-Ny (— + 'viTN_l'u,Z) vI N7 (B4a)
Wi

or

The matrix S given by

1 -1
S=u (o + o7 Quui) o] (B52)

k43

has the particular simple structure

S=1|. . si . - (B5b)
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with
1

= Bb6a
1/wii + qii (B6a)

Sii

gii is the ith diagonal element of @Q,, and for wy; — oo,

1
i = — . B6b
" qii ( )

Applying the trace operator ¢r to (B4b), we obtain

tr (Quz) =17 (Quz) — tr (QuzSQux) - (B7)

With (B5b) and (B6b), the trace correction term Atr = tr (QzzSQza) takes the particular
simple form

1
Atr =tr (Q:z::z:SQza:) = q_ Z Qizj ; (BS)
22 ]:1

where u is the number of system parameters in INV .

Hence, in order to check the influence of one additional parameter (i) on the trace of the
covariance matrix, we need to compute only the ith row/column of N 1. If N is once
factorised, the computational amount for that is not more than O(A, M) = u? — 2u + 1
(where O(A, M) represents the number of additions and multiplications).

An equivalent expression to (B8) for the deletion of a set of addition parameters can readily
be derived along the same lines.

Introducing the correlation coeflicient p;;, where

pij = il (B9)
Y g gy
equation (B8) becomes .
Atr =tr (QzeSQzz) = Z pqujj . (B10)
j=1

Instead of checking the complete trace, it might be even more conclusive only to check the
subtrace that is related to the object point coordinates. With u; as the number of object
point coordinates and Q:;B the weight coefficient submatrix for object point coordinates, we
would obtain

: : 1 & - .
Atr = tr (QUiSQY) = . g = e i#d (B11)
=1 =

Hence we get the alteration of the mean variance Ac?, of a network’s point coordinates caused
by one particular additional parameter (i) to

1 &
Aoy = 06— D Pijdis - (B12)
7 ]:1
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Equation (B12) can be interpreted as a modified weighted mean, whereby the squared corre-
lation coefficients pfj serve as “weighting factors” for the weight coefficients g;; of the object
point coordinates.

Individual variances may be checked by

~ 2
Agjj = 455 — i = P4 » (B13)
~2 2 2
05 = 0§ (1 - pij) 4 »
Adj; = oopias; (B14)
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Appendix C
Results of computational versions for the determinability of additional pa-
rameters

Vo Version number

F oo Number of frames

C .oovviiiit. Configuration of images for given number of frames
P . Number of target planes

Co.cvviiinln. Number of control points

Ch ..oo.o.... Number of check points

00 cvveeenanenn Standard deviation of unit weight a posteriori

OX, 0V, 07 «vnn- Mean standard deviations of check point coordinates
0Xy,0Yy, 07, --- otandard deviations of perspective center coordinates

Table C1: One frame

\Y F | P | Co |Ch|AP|| &, S} Oy, o, Max. Correlation in %
-0

[um] || [mm] [mm] | [mm] | AP-OP | AP-EQ | AP-AP
n.a. 2.75 2.59 0.57
2.21 1.94 1.83 0.40
2.03 || 33.80 | 33.77 | 36.65 0.0 100.0 0.1
17.5 1.65 1.73 0.40
17.5 || 32.26 | 32.24 | 36.48 0.0 100.0 0.3
241 || 36.30 | 3631 | 36.44 0.0 100.0 459
21.7 1.36 1.55 0.32
21.6 || 30.94 | 30.82 | 36.16 0.0 100.0 1.6
2.02 || 35.54 | 35.67 | 35.44 0.0 99.5 52.5
12.8 0.64 0.72 0.40
1.75 1.03 6.25 | 35.96 0.0 100.0 92.5
31.8 0.43 0.50 0.24
1.99 0.53 0.50 1.04 0.0 97.7 2.2
0.87 || 0.55 0.70 7.39 0.0 99.6 99.8
0.93 2.22 2.47 7.65 0.0 100.0 99.9

11030 | 1 | 1 3
11040 | 1 | 1 4 10

o

11050 | 1 | 1 510

11090 11910

12050 |1 ]2 | 5 [0

12080 112 8 |0

OO|Wo|lwo|lwlw|lo|lWw|o|w|o|o
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Table C2: Two frames, configuration 1. Note: Versions marked with “1” have been com-
puted using standard deviations of 1.0 mm for Azg, Ayy, Ac

A% F|C|P|Co|Ch|AP|| &, Gy Gy C, Max. Correlation in % | Note
[um] || [mm] [mm] [mm] | AP-OP | AP-EOQ | AP-AP
211000 | 2 | 1 | 1 |min|[21]| 0 || 9.36 || 0.942 | 1.475 | 3.747
3| 9.36 || 1.320 | 2.519 | 3.749 87.6 99.4 0.0
3 || 9.15 || 49.96 | 48.87 | 2.59 95.5 93.1 26.7 1
211040 2= 351 4 |20| 0| 9.67 || 0.648 | 0.618 | 2.748
3 (| 899 || 0.697 | 0.637 | 2.809 54.8 100.0 3.1
3|/ 874 0478 | 0.432 | 1.898 95.1 100.0 1) 1
5 897 || 0.715 | 0.653 | 2.845 53.9 100.0 26.2
211080 |2 |1 | 1| 9 [15] O | 10.2 || 0.569 | 0.568 | 2.484
31| 9.98 || 0.593 | 0.574 | 2.514 38.3 100.0 5.9
3 || 9.88 || 0.293 | 0.279 | 0.744 88.4 100.0 ced 1
9 || 6.11 || 0.626 | 0.633 | 2.770 45.6 941 92.4
212000 [ 2 | 1 | 2 [min|33)| 0| 8.66 | 1.102 | 1.798 | 3.219
3|l 8.62 | 1.835 | 4.269 | 4.928 97.6 99.6 8.3
3 || 8.60 ||12.853 | 33.032 [ 26.929 | 99.8 99.7 841 1
212040 | 2 |1 | 2| 4 |32] 0 .06 0.722 | 0.704 | 2.688
3| 8.62 | 1.835 | 2.184 | 4.646 | 98.7 100.0 2}
9 || 6.21 || 5.358 | 5.091 | 7.242 98.7 99.5 81.8
2120501 2 | t -2 | 513110 |} 10:BEjE05E5E R 0i552 | 22281
3] 9.19 || 0.756 | 0.804 | 2.715 95.2 99.9 71.0
9 || 6.29 || 0.744 | 0.777 | 3.173 64.5 80.6 83.6
212080 | 2| 1 | 2| '8 28] 0:|"13.6:|] 0.5297|,.0'519" | -2.285
911 6.28 || 0.638 | 0.651 | 2.977 60.6 88.2 89.6
Table C3: Two frames, configuration 2
A% F|C|P| Co|Ch|AP| &, Oy gY gz Max. Correlation in %
[um] || (mm] | [mm] | [mm] | AP-OP | AP-EQ | AP-AP
221000 | 2|2 |1 |min|21] 0] 7.68 || 0.693 | 0.612 | 1.092
3 || 7.68 || 5.542 | 6.862 | 1.094 99.4 99.9 0.0
221040 |2 | 2 | 1 4 [20]0f 798 0.424 | 0.401 | 0.813
3 1.24 | 0461 | 0.432 | 0.851 | 44.2 95.7 11.5
9]l 0.99 || 3.243 | 3.025 | 1109 | 97.0 99.8 98.4
222000 | 2 |2 |2 |min|33]| 0]l 125 | 0.694 | 0.700 | 0.912
3| 125 4963 | 6.614 | 1.689 | 99.8 100.0 | 30.2
4 || 12.7 ||69.531 | 11.263 | 33.075 | 100.0 98.8 88.5
222040 |2 |2 | 2| 4 |32]| 0] 12.2 || 0.445 | 0.465 | 0.738
3| 11.6 || 0.469 | 0.486 | 0.746 | 49.7 96.4 6.8
9105 203 | 1.510 | 2660 | 993 89.7 99.5
222050 |2 |2 | 2| 5 |31]| 0] 12.4 || 0.406 | 0.267 | 0.649
9 1.06 || 0.546 | 0.505 | 0.749 | 763 86.8 95.3
222080 | 2 | 2| 2] 8 |28] 0 158 | 0.376 | 0.343 | 0.632
9 14 [ 0473 | 0.412 | 0.688 | 63.3 88.5 95.2
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Table C4: Three frames
A% F Co |Ch |AP|| &, Oy Oy G, Max. Correlation in %
[um] || [mm] | [mm] | [mm] | AP-OP [ AP-EO | AP-AP
31000 | 3 min|21| 0 || 3.09 || 0.486 | 0.536 | 0.924.
3 || 3.08 || 3.376 | 6.306 | 1.017 | 99.5 99.9 80.8
4 || 3.10 || 15911 | 6.333 | 1.019 | 99.6 99.8 98.3
9 || 1.26 ||16.286| 8.144 | 1.035 | 99.1 99.7 97.8
31040 | 3 4 120 0 || 3.24 || 0.332 | 0.328 | 0.773
9 (] 1.30 || 1.098 | 0.829 | 0.803 | 94.6 99.6 98.8
32000 | 3 min {33 | O || 11.5 || 0.514 | 0.644 | 0.823
3] 9.12 | 0.860 | 1.713 | 0.880 | 97.7 99.4 42.3
4 |[ 9.15 [|11.324 | 2.014 | 3.912 | 99.4 99.9 99.6
9 || 1.22 {|12.308 | 2.868 | 4.288 | 99.9 99.8 99.5
32040 | 3 4 |32] 0 11.3 || 0.355 | 0.381 | 0.680
3| 9.42 || 0.360 | 0.391 | 0.682 | 38.8 99.1 6.80
9 || 1.29 || 0.794 | 0.466 | 0.758 | 94.4 99.5 99.1
Table C5: Four frames, configuration 1
v F P | Co |Ch|AP|| G, Oy c"-EY G, Max. Correlation in %
[um] || [mm] | [mm] | [mm] | AP-OP | AP-EO | AP-AP
411000 | 4 1 |min|21| 0] 3.36 || 0.437 | 0.485 | 0.879 ,
31 3.29 || 1.104 | 2.038 | 0.901 98.4 99.6 475
41 3.31 || 5.210 | 2.217 | 0.960 99.4 99.6 $6.3
9 || 1.64 [|10.466 | 9.644 | 0.844 899.1 99.7 98.9
411040 | 4 1 4 |20| 0| 3.39 || 0.294 | 0.289 | 0.726
31 3.36 || 0.309 | 0.298 | 0.756 351 98.6 8.2
9| 1.67 || 0.708 | 0.701 | 0.740 88.8 99.5 98.7
412000 | 4 2 |min|33| 0| 9.71 || 0.454 | 0.591 | 0.767
3| 8.89 || 0.571 | 0.914 | 0.800 89.2 97.2 13.1
9| 1.57 || 1.234 | 1.150 | 0.918 90.7 96.8 84.2
412040 | 4 2| 4 |32| 01 9.61] 0320 | 0.335 | 0.633
9| 1.60 || 0.446 | 0.410 | 0.653 78.0 97.6 $6.0
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Table C6: Four frames, configuration 2
Vv F|C|P | Co|Ch|AP|| &, Sy Gy Gy Max. Correlation in % Note
[um] {| [mm] [mm] [mm] | AP-OP | AP-EO | AP-AP
811000 | 8 |1 | 1 |min|21] 0] 3.18 || 0.348 | 0.370 | 0.852
9| 152 | 0.475 | 0.486 | 0658 | 77.7 87.2 83.9 1
9| 1.57 || 0.503 | 0.502 | 0.654 | 775 90.9 89.7
811040 | 8 | 1 [ 1| 4 |20| 0] 3.16 | 0.225 | 0.223 | 0.534
9| 1.52 || 0.340 | 0.333 | 0.541 785 93.1 88.5 1
9| 1.57 || 0.355 | 0.347 | 0538 | 7391 95.0 92.3
812000 | 8 | 1 | 2 |min|{33]| 0| 7.94 || 0.356 | 0.448 | 0.579
9| 1.49 || 0.375 | 0.464 | 0.581 33.7 87.5 90.8 1
9/ 1.52 ]| 0.382 | 0.463 | 0.575 | 33.9 89.8 92.1
812040 | 8 | 1| 2| 4 |32| 0| 792 | 0.242 | 0.262 | 0.476
8| 149 | 0.262 | 0.284 | 0481 | 352 92.2 90.4 1
8 |l 1.52 | 0.265 | 0.287 | 0.478 | 35.0 93.5 93.4

Table C7: Eight frames, configuration 1. Note: Versions marked with “1” have been com-
puted using standard deviations of 0.01 mm for Azgy, Ayg, Ac

Vv

Ch|AP|| &g Oy c Gy Max. Correlation in %
[um] [mm] [mm] [mm] | AP-OP | AP-EO | AP-AP

421000 |4 |2 | 1 {min|21]| 0] 2.6 | 0.490 | 0.433 | 0.768
3| 1.82 ]| 3.249 | 0.554 | 0.778 99.2 99.9 58.7
51 1.68 || 3.543 | 0.564 | 0.770 99.4 99.9 64.0
9| 1.38 | 3.786 | 1.164 | 0.803 99.0 99.1 90.9

421040 | 4 | 2 | 1 4 120| 0] 2.59 0.300 | 0.283 | 0.573
3| 2.09 || 0.307 | 0.289 | 0.586 421 84.6 7.2
9 || 1.37 || 0.756 | 0.723 | 0.632 80.2 96.3 942

422000 | 4 |2 | 2 |min|33| 0| 6.86 || 0.500 | 0.500 | 0.663
9| 1.36 | 2.225 | 0.968 | 0.941 98.7 99.6 90.3

422040 | 4 |2 | 2| 4 |32| 0| 6.99 || 0.323 | 0.334 | 0.538
3| 653 | 0.333 | 0.347 | 0.544 47.6 96.3 7.1
9 (| 1.39 |) 0.365 | 0.379 | 0.557 46.7 96.2 94.3
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