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2 Photogrammetric networks

2.1 The concepts of precision and reliability

2.1.3 Notations, definitions

Let the linear statistical model of bundle adjustment be:
f-e=Ax; P
E(/) =Ax; E(e)=0
D(e)=E(ee )=a3 P!, D()=0ciP™

e ... vector of true observation errors
P ... weight matrix of the observation vector /

0, .... standard deviation of unit weight to be estimated

For the purpose of interval estimation we assume
Hy: (~N (Ax, o5 P71
(i.e./ has a multidimensional normal distribution with the expectation E(/) = Ax and

dispersion D(/) = 0% P_l).

Suppose a minimum variance unbiased estimation of x and @, with
x=(ATPA) T ATP/
65 = ! (Ax-¢)" P(A% -7¢) ; r=n-u (redundancy)
r
and denote the residuals with
. Tpa ! AT
V:Ax—EZ(A(A PA) A P—Ijé ,
then under H, the distributions of X and v are

$~N[x 0204 ), Qu =(aTPAJ"
v-N(0.02Q,). Q=P -AQ AT
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Generally the stochastic properties of adjustment results, which are collected in a

vector h
X N7IATP
% -4 T
h = = Ali ? P ¢ =H/
A% AN "A'P-1
f FNT'ATP
are given by
Shh =00 Quy =0 HQ, HT
Qxx QX? va Qxf N_l N_IAT 0 N_lFT
Q. = Qn Qn Q) Q| _|ANT ANTIAT 0 ANT'ET
MTQw Qu Qp Qy 0 0 Pl-aNTAT o0
Qx Qp Qv Qg FN FNIAT 0 FNIFT

The accuracy (quality of an adjustment system, thus of the estimated quantities) consists of
two parts: PRECISION AND RELIABILITY.

PRECISION: Describes the stochastical properties of estimated quantities if the
a-priori assumptions (functional and stochastical relations) are considered to be true.

RELIABILITY: Describes the quality and the sensitivity of the adjustment model with
respect to the detection of model errors (blunders, systematic errors, stochastical errors).
For further details refer to Gruen, 1982, pp. 46-47, PERS 1/82.

2.1.2 Precision criteria for x, y-networks

Local precision criteria

With 63 =1 : Q, =Y,

Points i, j:

1 Qi Qg
Qxx(ij)_|:jS ij}

Q;; contains information on precision of point P;
Qj; contains information on precision between points P;, P;
Relative precision: QAij =Q;i +Q; —Q; —Qji

Shows precision structure of coordinate differences
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a) Point related criteria

Spectral decomposition of Qj; :

Qi = Vi\i Vil . with Ay =diag (A, A5), , Aj 2,

i
V., contains eigen vectors (orthonormalized)

With axes a;; = (2@ ) is by = (2@ ) ;i we obtain Helmert’s error ellipse

On
| b

~—r

ii
o 2
Fig. 2.1: Helmert’s error ellipse

Scalar measures:

2 2
. A
Helmert’s point error: 03 = tr(Q;;) = ()\l +A, ) T % + %
Werkmeister’s point error: 02, =det(Q;;) =(A; +A,);;
Friedrich’s point error:
2 _ -
O = )\max (Qii) - ()\l)ii
Condition number:
A . :
cond(Q;) = I ; circle: cond(Q;) =1 (isotropy)
2 Jii
Modified point errors:
AL +A
o = (gj , arithmetic mean
f 2 ii

2 _ .
O = (1/)\1 (A, )ii , geometric mean

Principal disadvantage of scalar precision measures: direction of errors not visible !
Area related measures like ellipses cannot directly be compared with each other !
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b) Relative precision measures

Relative error ellipse (Baarda):

Qaij ~ ()\I’AZ)Aij . (a, b)Aij
Scalar measures:

tr (QAU):(M +)\2)Aij

det (QAij):()‘l D‘Z)Aij

Avax Qaj)= )\I)Aij

Bomford: mean distance, direction error

Graphical display of all corrections not possible, thus restriction to neighboring points.

Global precision criteria

Global precision criteria refer to the complete Q,, - matrix.

They provide for average measures of the network as a whole.

Eigen values of the Q,, - matrix (assumed to be positive semi definite):
Qi = VAVT (spectral decomposition)
A =diag (A{, A5, )

with Ay 2A, 220 5 Ay =..=A, =0

V contains the normalized eigen vectors:
vwh=viv=r,

The defect of Qy 1s d=m—-k.

ZW 1i=1,..... ,k) are the axes of a k-dimensional hyperellipsoid. The eigen vectors

indicate the directions of these axes, they are orthogonal to each other.

If k>3 the geometrical representation of the hyperellipsoid is not possible any more.
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S~ ) {... Linear declination of
T . eigen values

b
Y

Figure 2.2: Graphical representation of the eigen values

A generalization of the local precision measures gives the global measures.
For p network points (m = 2p) we obtain:

Generalized Helmert “point” error:
PME =tr(Quy ) S A + A5+ +A
Generalized Werkmeister “point” error:

M2 =detlQY )=, A, 0. O,

Quc 0 ith Q0 =uQ, UT
Qxx - 0 0 > W1 Qxx_ Qxx

Attention: det (QXX) =0, 1f Q4 singular!

N M%%,’ is direct proportional to the volume of the k-dimensional hyperellipsoid.

Generalized Friedrich “point”error: A,y ( XX ) =\

Condition number: cond (Q XX ) =

Modified global measures:

(A\; +A, +..+A,) ; arithmetic mean

~ | —

1
M3 =L Q)=

1

1
MZW = (det (Qxx )k =(\; D\, L.\, )k ; geometric mean
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Important measure: Ay,

Cond (Q X ) = )\M—ax
A Min

Linear functions of x:

fi = FiX ; F.

ieer

(Attention: Dependent on dimension of Q. !)

free of dimension problems !

row vector of dimension 2p

With the Rayleigh — quotient we obtain

Fi Q XX F'T

i
)\Min = S)\MaX'

RF'
For the variances we get

2 _ 2 T
0 =00 FQxF .

Hence we obtain as limits for 0% :

2p T 2 _ 2T
OoFiF Aviin <03 < 00 B Ay

(Upper limit of 0% depends on Ay, )

The smaller the condition number the less differ the variances of estimable functions from

each other. The network has a

more homogeneous precision structure.

With normal equations N = Q%, we get

N=Qt, =(VAVT )= vasyT | D

with A% = diag (L L

AN,

1

0,0
Ak

Thus: cond(N) = )\—k = )}\\—1 = cond (Qxx)

1
A

k

! See Theorem 1.5.16 in Graybill: Theory and Application of the Linear Model, p.30
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Global goal functions for network optimization:
(see Grafarend, Harland: Optimal design of geodetic networks I. In German.
DGK, Reihe A, Heft 74, Miinchen 1973):

A -optimal: tr (Q XX) = min

D -optimal: det (Q XX) = min

E - optimal: Ay (Q,y ) = min
I - optimal: cond( Xx) = min

Transformation invariance of precision measures
(Congruence transformations: translation, rotation, reflection)

Translation :

S = Q= B[ (x~E(x)) (x~E())T |

X =X +const. > E(x) E(x

Y =Qy =E|(X-E()) (x-E(x)
= E|(x ~E(x)) (x ~E(x)

N
+
(@)
o
=
©n
-

Rotation, reflection :

x =Tx (T orthogonal)

Qo =TQT'

tr (@) = (10 TT) = 1{Q TTT) = 11(Qy) ; (r(AB) = tr (BA))
det(_xx) = det (TQXXTT) = det(T) det(TT ) det (QXX) = det( XX)

Since all precision measures have been developed by using eigen values it is sufficient to
prove the transformation invariance of the eigen values.

Translation: Proof trivial, since design matrix A (N = ATPA) contains
only coordinate differences.

Rotation, reflection:
X=Tx; Qg =TQ,T'
Q. =TVAVITT =UAUT, with UUT =UTU=1
TVVITT =TvvT =TITT =1
Eigen vectors V get the same rotation (reflection) as the whole coordinate system.
For local precision measures we obtain an identical derivation > eigen values (length of

ellipse axes) are invariant; only rotation /reflection of eigen vectors (— direction of ellipse
axes).
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The same is valid for the relative error ellipses and for the boundary criterium:

f =Fx =FX = FTx; with F=FT';F' =TF'

Qi =FTQ T'F' =FT7'TQ,, TTTFT =FQ, F' =Qy

2.1.3  Reliability criteria and the detection of blunders

2.1.3.1 General relations

Residuals v=Ax -/
With % = (ATPA)_I ATP ¢ we get
v= (A(ATPA)_I ATP- Ij ¢
or v=-Q./P/
With /=Ax+e ;
v=~Q,PAX+Q, Pe)=-Q,,Pe
(since Q,,PA =0)
Assume gross errors [1/ in observations /. [1/ is transformed to the residuals with
v+0v=-Q,P(¢+0r)
and from this we get
Ov=-Q, PU¢
Important for reliability considerations:

Q. P - matrix

With the adjusted observations v

V=0+v
We obtain
Q;; =ANT'AT

and using Q,, =P ~ANTIAT  we get
_p-l
Qw=P - Q})@

Some characteristics of the Qyy - matrix (if P=I)

The Q,, matrix is idempotent, 1.e.
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QVV |:QVV = QVV

and it has the following characteristics:

= Q,, 1s square, symmetric and singular

* The main diagonal elements denoted by q i have values

between 0 and 1

OSqiisl

= The sum of the main-diagonal elements is equal to the reduncancy r
r=qp; *q tqs33 +.... ¥ qpy

Le. Trace( VV)=r

» Each main-diagonal element q;; is equal to the sum of squares of all elements in

the same row (or column) including the diagonal element itself.
-2, 2 2 2
Qi =dit T9i2 Qi te T in

» The off-diagonal elements

n

qij = Zqik qik
k=1

S V44 i

0<

dij

Laan proved that the maximum absolute value of any off-diagonal elements is 0.5.

0< <0.5

qij

Characteristics of M = QyyP , Qyy :

For P=1: M= Q,,
> Q,, takes the same properties as M
(- idempotancy, tr (vi) = rank (vi) =T)

From M =Q, P=1-ANT'ATP
it is easy to see that
M OM=M
> M is an idempotent matrix ; singular
Non-singular idempotent matrix: 1 (I OI=1)

For regular P it follows from the idempotency of M:

tr (M) =rank (M) =r ; r=n—u (redundancy)
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Q. is symmetric and singular (rank (Q,, ) =r) (for general P, Q,, is not idempotent !)

Assume P =diag (p; , P25 «sPy )"

M is symmetric

0<mj <1 (m;; ... ith diagonal element of M)
Examples:
M M M
oo |.|o
O ‘ =
0
—> 0 @ 000 @ 2 @ Yes if all other
O 0 = row/column elements
0 are=0!
0
If miizl: mij:mji:()
(for j=1,...,i—1,i+1,...,n)
If miiZOZ mijijiIO

(for j=1,...i=1,i+1,..,n)

If my; =0: Qv,v. =0 - Quyv: = Qv.v, =0

iV 17] ]
(for j=1,...,1—-1,i+1,...,n

M Quy P
o o
o 0o 0 o o 0 0 0 0
o = o
o o 0
o o
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Since Q,, = MP™!

Quy M P!
o o

0O 0 0 0 O 0O 0 0 0 O 0
o = o
o o 0
o o

qy.v.= 0 : “zero variance” situation

ivi
> gross error [J/; is not detectable !
DVi = _QVVPDE ) =0

(Wi =9 , not deﬁnedj
0

Example: Non-control point with 2 rays only

> Blunders in image coordinates which belong to the epipolar plane are undetectable
(x-observations !)

Example: Photogrammetric intersection

T yﬂ'
. |
7, 7 s
! x”
I
i?ofJ_w
ave |
|
Fig. 2.3: Spatial intersection
Observations: x',y',x",y" - n=4
r 1
R r=1,—=—
n 4

Unknowns: X, Y, Z > u=3

Normal case (¢=w=k =0):
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z=_b b
x' =x" y =y =0
by (without loss of generality)
Y= x' =x"
X = bX’ px =x' —x" (parallax)

' "
X —X

Functional model:

] X " X_b
X =—C— , X =-C N
Z V4
'__CX n__CX
y 7 y 7 >

Coefficients of observation equations:

dX dY dz

ey X
Z
0o - 0
A= c 4 X" ) P=1I
— 0 -
Z Z
0o -£ 0
L Z i
XI2 +X"2 X'+X"
> 0 - 2
22 0 ¢ (X' +x") c” bpx c px
N = iz 2¢? 0 - N7'=27? iz 0
Z 12 4 2 c
X X 2
px
0O 0 O 0
| 050 -o05 o
QVV 0 O 2 tr( VVI) 1 r
0.5
Correlations: Iy = -1.000....
Oly, =5.8 0,

Dlx'x"o S +o0

> Blunder detection: poor,
Blunder location: impossible
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2.1.3.2 Baarda’s reliability theory

Baarda has developed a complete reliability theory, which is in practical use, e.g. in the
Netherlands for geodetic network analysis for several years.

Currently the term “reliability” is mostly used in connection with gross error detection and
location.

INTERNAL RELIABILITY: Defines the amount of a gross error in an observation, which
is just non-detectable on a certain probability level.

EXTERNAL RELIABILITY: Indicates the effect of this non-detectable blunder on the
estimated quantities (e.g. object point coordinates).

Data Snooping

Since true errors e of an adjustment system are not available, a gross error test procedure
must be restricted on X or v.

Hence the expectations
E(f() =X
E(V) =0

have to be tested.

The expectation x for the solution vector (or at least a part of it) is usually not known
(possible exceptions: control and check point coordinates).

Hence most of the observations are only to test by the null-hypothesis:

H, : E(v)=0
However, this global hypothesis is not suitable to detect gross errors in individual
observations.

If we suppose a sequence of null-hypotheses:

Ho :E(v;)=0, i=L...n

and a weight matrix P of diagonal form, then, according to a proposal of Baarda the
statistics:
S L
, =—=, witho 31 = 0%qVivi N ith diagonal element of Q.
Vi

should be used for testing.

W

If Hy, ustrue,then w; is distributed as Student’s t:

w;~t(l-0p , ) =n (normal), n(0, 1)
O...typel errorsize
g = P(|W1| > t(l —CXO,OO)/HOi )

This sequence of tests is called the “data-snooping” technique.
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Since 0, is usually not available, one has to use in practice very often :

- Vi . ~ _ a2
with 0y, =004y,

and  w;Ut(r) under H, (if v; isindependentof G)

If v; is estimated from the same model as 6% :

V.
TI‘ = A :
G,

1

0t (under Hoi) ;
Pope, 1975: The statistics of residuals and detection of outliers. XVI™ General Assembly

of
the IAG, Grenoble.

The influence of a gross error vector [/ on the vector of residuals is

Ov=-Q,,P0/
If we suppose only one gross error [J/; in the ith observation we obtain the test criterion:

.+ .
VitVi g e
(0)

W, =
Vi
which enables the formulation of the alternative hypothesis
[0 1
Ov, _qly [P (D4 ) D
HA_Z E(Wi)zéi:_ L= Déi: Dfl 1
i C)'Vi ovi . .
| 0 |n

q(Vlz ... ithrowof Q.

with diagonal P the non-centrality parameter &; results in:

(qvivi )1/2piD€i

6i =
Op

This indicates the valuable relationship between the gross error [J/; and the non-centrality

parameter 0.
Figure 2.4 shows the graphical representation of the test.

(1)
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Py 951’5(”3&:
R s A X, &
d .-"; LN
Cay

<) ©° %)

Fig. 2.4: Graphical representation of data snooping

Hy........ null-hypothesis A acceptance region

Hp ooonn alternative hypothesis R........ rejection region

W) ...... density function C......... critical value for rejection
O innnn. non-centrality parameter (from Student’s t)

(o TN type I error size

1-By -.... type Il error size (B ... power of the test)

Usually the alternative hypothesis is set up by using a specified non-centrality parameter
and the corresponding power of the test 3 is computed. Baarda goes the opposite way. He

introduces a special 3, (e.g. 0.8) for all alternative hypotheses H A, and computes the

corresponding 9; , which now can be considered as & (common for the tests of all obser-

vations).
Nomograms for these values are to be found in Baarda (1968).

Example:
a, =0.001 -c=33

Usually photogrammetric aerial systems have a large redundancy so that the proceeding
considerations and Baarda’s nomograms, which refer to a degree of freedom o (foro ),

can also be used if only § is known.
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Internal reliability

Global criterium: — (relative redundancy)
n

Withr=tr (QW P) = rank (Q w P)

Local criteria: r; = (QVV P) ;  “redundancy number”

il

“local redundancy”

Assumption of one gross error [1/;:

Ov =-rbf()
Ov QVVP |%1)
10|
1| X L X 1

-- 0
10
10|
10

Lv. = —riDKi

1

> The lager r; the better the local internal reliability !

Criterium for good internal reliability:

inf{ri} = max (1=1,.....n)

Given r, this is the case if all r; (0 < r; < 1) do have equal size:

Equation (1), p. 2.14 opens the favorable possibility to compute the amount of a just
detectable gross error in the ith observation:

00, 00,
Ool; = 0 = 0
1 (qvivi )Uzpi (ripi)l/2

The internal reliability of a system (for bundle adjustment: image space) may be defined
by these just detectable gross errors [y¢; (1= 1,....,n).
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With 0% =p10%i :
o

()"

Criterium for good internal reliability:

Hol; =0y,

sup{ Dofi} = min

Since 00, = const.:

sup {L} = min
Lp;

inf {L} = max
Lip;

External reliability:

x+0x = (ATPA)_IATP(E + DOE) , Ul ...non-detectable blunders
0x = (ATPA)TATPO. , if Adsnot disturbed by [/

Assumption: One blunder in observation i (D o i)

Ox () = (ATPA)‘lATPD(,g(i)

Generally: [/, effects all components of [x

S O KO =

(ot
S | —

Il

o

Fori=1,...,n we collect all corresponding vectors [Jx(;) in the matrix [JX as:

OX = (DX(I),...,DX(H))
n

u|l OX
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FOI' pP= dlag (pla pz:'--v pl’l):

Ox () (ATPA)_IATpiDOZ(i)

=
ool
I
s
zI
>
—

co o

= N_lai(T)PiDofi

\

ith columnof AT

2 Problems:

- for each (D ol i) one complete vector [Ix ;)

> very complex situation (matrix [1X)
u,n

- X not rotation invariant

2.1.3.3 Invariance of reliability measures

Invariance of internal reliability measures:

See: Advantages with
P = diag

Qn = P! - Q;; , Pindependent of coordinate system

Q}? = AQXXAT
with A = AT = ATT

_ T
Qxx _TQXXT
Tt =T 'T=1:
= _aA~ AT _ T TrAT _
77 =AQ A =AT TQ,,T TA —Q%
I I
>~ Q,, Invariant

v=Q., Pl > vinvariant
> Internal reliability measures invariant

> v, Qyy invariant with respect to selection of datum
(bei nicht redundanten Datumsparametern)
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Invariance of external reliability measures:
DX :QXXATPD()L ) I:]()L = (DOE(I) ”DOE(H))

0X=Q A PO,L=TQ, T'TATPO,L
|

0X =TQ, ATPO,L
(;t QXXATPDOL) > X not rotation invariant

Matrix OXTOX is independent of coordinate system:

0X ' OX = 0,LPAQ,, T'TQ, ATPO,L = OXTOX .

I
Square root of diagonal elements of OXTOX :

HDX(i) = (DXE;)DXG) )1/2
With P = diag:
HDX@) =piD0£i(ai(T)TN—1 D\I—lai(T))l/z

Requirement for reliable network:

}:min , 1=1,...,n

sumex(i)

Baarda’s external reliability measures:

XS) = DX?;)Q;)I( Ox )

A 0) invariant with respect to translations and rotations
Compute X(Ol) for i=1,...n

Global measure for external reliability:
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2.2 Reliability structures of close-range systems

UbC 528.1-528.74 Armin Griin
Chair for Photogrammetry
Technical University Munich

Presently:
Department of Geodetic Science
The Ohio State University

PRECISION AND RELIABILITY ASPECTS IN CLOSE-RANGE PHOTOGRAMMETRY
Summary

The relatively small linear adjustment systems in close-range photogrammetry
offer the possibility of an advanced statistical treatment. Using synthetic
data, precision and reliability features of different network types are inves-
tigated. Special attention is focussed on the problem of additional parameters,
introduced for systematic error compensation and on the internal and external
reliability with respect to blunder detection. As a major result of these in-
vestigations a rejection procedure for non-determinable additional parameters
is suggested, the extremely bad reliability structures of two photo networks
are pointed out and large base four photo arrangements are recommended for pro-
fessional use. In addition, external reliability measures are recommended for

use as tolerance criteria in the future.

Invited Paper to Commission V at the XIVth Congress for Photogrammetry, Hamburg,
Federal Republic of Germany, July 13 to 27, 1930.
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1. Introduction

Close range photogrammetry covers a wide area of applications which sometimes
differ considerably from each other with regard to instrumentation, number and
arrangement of photographs, size and shape of the object, data processing, re-
quired accuracy and economic pressure for fast completion of the project. This
has resulted in a great variety of processing techniques being recommended and
used, often based on approximate solutions, which sacrifice both accuracy and
economy. Occasionally one fails to see that when conventional photographs
(based on projective relations) have to be processed analytically, a general
bundle solution potentially has both flexibility and high accuracy.

In order to obtain the best possible results in high accuracy applications with
a minimum of effort, optimum use must be made of the network design, the image
coordinate measurements and the applied statistical model of bundle adjustment.
As matters stand, the network design and the adjustment model can currently be
regarded as the weakest parts in the whole problem.

Systematic investigations of precision of close-range networks (see Hell /10/)
are largely lacking, compared to the situation in aerial triangulation. Similar
conditions exist with respect to reliability investigations. Systematic error
compensation, blunder detection and weight estimation (following the general
definition of reliability, Baarda /1/) can still be considered to belong to a
rudimentary status of development. This, of course, is also valid for aerial
triangulation to a certain extent. So, contrary to the intentions of an Invited
Paper - which usually should give an overview of the currently available and
applied techniques - this paper includes mainly investigations of the author,

in order to stimulate future investigations on a more extended basis.

The quality of a statistical model of the bundle adjustment is characterized
by its accuracy.]) The concept of a ccuracy consists of two parts:
precision and relia b i1lity. Following some statistical
definitions related to precision and reliability, the effects of both terms
are demonstrated using different network arrangements based on synthetic data.
1) In order to conform to international terminology the term "accuracy" used

here is different from that used in Griin /6/. The term "precision" in this
paper corresponds to "accuracy" in /6/.

118
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These investigations follow a line of research earlier established (Griin /6/).
Special attention is focussed on the problem of additional parameters and the
internal and external reliability of networks.

2. The concepts of precision and reliability in the bundle solution

Let the linear statistical model of bundle adjustment be
2 -e=Ax ; P
E(z) = Ax ; E(e) =0 (1)

e...vector of true observation errors
P...weight matrix of the observation vector &

with the null hypothesis H0
Hy: ¢ ~ N(Ax, o3 (2)

(i.e., 2 has a multidimensional normal distribution with the expectation

E(e) = Ax and the dispersion D(¢) = Gﬁv" ;00...Standard deviation of unit

weight, usually to be estimated).

Suppose a minimum variance unbiased estimation of x and 002 is performed with

% = (ATpa)~1ATpy (3a)

2 - %(A; - g)TP(Aﬁ - 1), r=n - u (redundancy) (3b)

(o5

0
and the residuals are denoted by
v =AX -3 ' (4)

Then under H0 the distributions of x and v are

%o N(xGK) s K= 0,20, (5a)
v N(OLK)) s K, = 0,20, (5b)
with
_ T -1 _ -1_ T
Qe = (A'PA)TL, Q= PT-AQ A . (6)
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The term "precision" describes the statistical quality of the estimated para-
meters X, if the a-priori assumptions (functional and stochastical relations)
of the adjustment model (1) are considered to be true. Hence the covariance
matrix Kx contains all the information concerning the precision of the solution
X. The complete matrix Kx however, 1is usually too global a precision measure,
and as such individual precision measures are necessary for individual appli-
cations.

The following very popular precision measures are obtained by using the traces
of the corresponding covariance matrices:

tr(k %) tr(k.") tr(K %)
oy = - X , g2 = % s g2 = — K T (7)
Ny Y ny z ny
K X K Y K Z corresponding parts of K_ for X,Y,7
X ] X 3 K e X ] 3

Nys Nys nz...numbers of X, Y, Z coordinates

For the relations of these measures to empirical accuracy measures, commonly
used in test block investigations of aerial triangulation, see Griin /9/.

The term "reliability" defines the quality of the adjustment model with respect
to the detection of model errors. Those errors can be blunders, systematic
errors (mistakes in the functional assumptions) and weight errors (mistakes in
the stochastical assumptions). Currently, the term reliability refers mainly

to blunder detection. This is correct, since a sophisticated self-calibration
concept provides for the compensation of systematic errors and since the prob-
Tem of weight improvement should be treated separately (preferably by advanced
methods for weight estimation). It was Baarda /1/ who developed a rather com-
plete reliability theory which recently has also been adopted for the bundle
method (Forstner /4/, Grin /6/, /7/, /8/).

The internal reliability gives the magnitude of a blunder
in an observation (vzi) which is just non-detectable on a certain probability
level. In the following equation it is assumed that only one blunder appears

in the network:

L
‘?E,_i = (}'0 p]’ /q—v‘v‘ s (83)
11
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§...non-centrality parameter of the data-snooping test
pi...weight of observation ¥

q“i“i"'iﬂm diagonal element of Q

The ex ternal reliability indicates the effect ot this
non-detectable blunder on the estimated quantities ij

Vx; = (ATPA) TA Py (8b)
The effect on object space point coordinates is usually of dominant interest.
So far, for bundle adjustment, the internal reliability can be considered to

be defined in the image space and the external reliability in the object space.

3. Bundle solution refinement by additional parameters

The procedure of self-calibration using additional parameters (APs) is widely
accepted to be the most efficient method of systematic error compensation.
Polynomials have proved to be a proper device in systematic image error modeling.
The functional, numerical and statistical advantages of bivariate orthogonal
polynomials have been emphasized by Ebner /3/, Griin /5/. Large accuracy improve-
ments with self-calibrating bundle adjustment have been reported in aerial tri-
angulation (Brown /2/, Grin /5/, /9/ and others). In close-range photogrammetry
the improvements are expected to be less significant since here the systematic
error sources are less powerful. Yet, in order to get the best possible results
out of a given problem, the self-calibration technique should become a standard

procedure even in close-range applications.

In connection with the functional extension of the bundle model, however, prob-
lems arise with respect to a change of the model quality. The improper use of
APs may cause serious deterioration of the results instead of expected improve-
ments. So a check of the applied statistical model of bundle adjustment becomes
necessary, usually denoted by "additional parameter testing". The significance
and the determinability of APs must both be taken care of. Significance tests
work within a given model, i.e. the quality of the model is accepted as it is
and the formal significance of individual components or subsets is checked.
Insignificant APs have to be rejected because they may only weaken the covari-
ance matrix Kx without contributing anything positive to the functional model.
Useful hints for significance testing may be found in statistical textbooks and

related publications.
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To the best of this author's knowledge the problem of determinability has not
been treated extensively, nor has it been solved satisfactorily. Some sugges-
tions for the simultaneous treatment of both aspects are given in Griin /5/, /6/.

In aerial triangulation systems, which usually lead to relatively large linear
systems (in the order of 1,000 to 10,000 unknowns) to be solved and which re-
quire much attention in order to avoid wastage of computing time, the author
has based his rejection decisions on the size of correlations created by APs.
Here a correlation coefficient of 0.9 between APs and any other unknowns of the
system is regarded to be already too high a value, thus leading to a rejection
of the concerned APs.

In close-range systems, which normally are by far smaller, more direct ap-
proaches can be used. The most drastic one is to compare the size of standard
deviations of final results (e.g. of object point coordinates) of the extended
system with those of the non-extended conventional bundle solution. An extra-
ordinary increase of those standard deviations, caused by non-determinable APs,
indicate the necessity for rejection.

Assume the correct statistical model (I) to be

-e=Ax +Bz -1 ; P (9a)
E(e) =0, D(e) =K = op” (9b)
z...vector of APs
This leads to
E(e) = Ax + Bz
EN%) = x (102)
T Ton _ I
KL{,? UOZ(ATPA ATPB) [ tjoz(QXX sz}
. B'PA B PB QZX QZZ
I _ 540
Kx = 90 Oy (10b)

Assume the selected (erroneous) statistical model (II) to be

(11a)

e =Ax -2 ; P
2 -
Pl (11b)

E(e) =0, D(e) = K, = %
(here the APs are not modeled!)
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This Teads to
E(e) = Ax + Bz
(the expectation of & has not changed!)
- - -1 .
e'(%) = x + (ATPA) ATPBY) (12a)
IT _ 5 aTpnyv-1- . 2nll
K = 0,7 (APR) 1= 0,2Q (12b)

Hence we get in this case (II) a biased solution X (bias:@ATPA)_%ATPBz).

With L = QiiATPB and M = LQZZLT we get the relation

S

“x M.

Since M is at least positive semidefinite, Ki = 0201 includes always equal or

0 "XX

larger variances than Kil = czQii, due to the effect of APs in model (I). The

less the difference between Kz and KiI the more we can be sure of not having
introduced weak APs.

ug is unbiased estimable in model (1) even if this model should be overpara-
meterized; only if individual APs are missing, cé is not unbiased estimable
any more.

In order to demonstrate the effect of APs on the precision of object point co-

ordinates the practical example already used in Griin /6/ is introduced here
again (synthetical data).

&, .. control points
o... Ppoints to be determined (new points)
e... camera stations
Figure 1. Synthetic network arrangement for the demonstration of precision
and reliability features.
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A cube has been assumed containing 27 regularly distributed points; 8 of them
serve as control points, the rest are new points. The camera stations are de-
noted by nos. 0,...,8. The photos 0,1,2,5,6 are "truly vertical" (small base:
2 m); the photos 3, 4 are convergent (¢ = 20.59), nos 7, & are tilted (u =
20.59), both sets include a large base (10 m).

Five different network arrangements are investigated:

Version  Photos

A 1,2 1 small base, 2 vertical photos

B 3,4 1 large base, 2 convergent photos

C 3,0,4 3 photos, common base direction

D 1,2,5,6 2 small bases, perpendicular to each other
E 3,4,7,8 2 large bases, perpendicular to each other

The object space coordinates of the 8 control points are assumed to be free of
errors, the image coordinates to be uncorrelated and of equal precision (equal
weights). APs are introduced as free unknowns. The AP set used here is the bi-
variate orthogonal one introduced by Ebner /3/. Since a wide object range in

Y-direction (see Figure 1: aY = 10 m) compared with the average exposure

max

distance (Y = 15 m) is used, this AP set is extended by 3 parameters of the

interior orientation. Those APs might be useful in many close-range applications

and as such interesting to introduce and to investigate.

The 15 APs which we get finally are
2b?

(Withk=?{2'—'§'— N -l

2b2
Rk

- x -
AX = b] + 0 + b3 - b4x + b5y b62k + byxy - b81 + ...

Ay = 0+ b, + by % - by + bgx + bexy - b,21 + 0+ ...

(8x).ov + 0+ bygx1 + 0 + byoyk + 0 + bypkl + 03 (13)

(ay)... + bgk + 0 + b]]yk + 0+ byox1 + 0+ b] k1 5

13 5

Table 1 shows the results of the computations. The mean standard deviations of
object space coordinates and exterior orientation elements are related to

g. = 1umand are given in (mm) and (c) respectively. In order to be able to

0
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understand the effects of APs the maximum correlation coefficients are indi-
cated in each computation version (correlations between object point coordi-
nates, NP/NP, between object point coordinates and APs, MP/AP, between ex-
terior orientation elements and APs, EO/AP, between APs themselves, AP/AP).
In addition, the APs which cause such maximum correlations are indicated.

Analyzing the results according to their sequence in Table 1 leads first to
the 2-photo arrangement 1/2 (A, small base). Here the use of all 15 APs yields
very bad results in X and 7 (correlations ~ 1.00), and better though not good
enough results in "depth" Y. After the rejection of b, (highest AP correlation)
the Z-coordinates improve significantly. The same appears with respect to the
X-coordinates after rejecting by - A further improvement in X by a factor 1.3
is obtained by rejecting b]q. The remaining 12 APs lead to a homogeneous pre-
cision in X,Z, which is not much worse than the best possible precision, in-
dicated by the 0O-version (which does not include the influence of APs). It is
interesting to note that the camera constant (b3) leads to high correlations
(0.98) with the Y-coordinates of the perspective centers, although it does not
really deteriorate the object point values. Startling as well, are the high
correlations (0,98) between coordinates of the object points even in the 0-
version, which demonstrates the unfavorable precision structure of this net-

work type.

Network 3/4 (B, large base) starts with much better results in the 15 APs
version. The rejection of b8 and b7, however, give a remarkable further improve-
ment in X and Z respectively. As in network A the depth Y is relatively stable
from the very beginning, but has improved by a factor of 4.8. The better pre-
cision structure of network B shows up also in the O-version by an improvement
of a factor 2.5 against the network A, which is half the value of the base
ratio (b3/4: b1/2 = 10:2). Again the camera constant (bs) influences mainly the
perspective center coordinates YO. This effect is explicitely shown in network
3/0/4 (C), where b3 is excluded in the fourth cemputational version. This pro-
cedure does not affect the coordinates of the object points much, but reduces
the mean standard deviation of Yo by a factor of 3.0. It would be worthwhile to
mention an interesting fact here. Due to the special photo arrangements, the
Y-coordinates of the object points in all networks have the worst precision, but
just the opposite is valid for the Yo-coordinates of the perspective centers,
which are best determinable, compared with XO,ZO. In the 4-photo version
1/2/5/6 (D, small bases) and 3/4/7/8 (E, large bases) the interior orientation
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elements b],bz,b3 are excluded, which, however, does not lead to much improve-
ment (factors 1.2 for X and Z). Only the version E yields optimum precision
results, with and without the complete set of 15 APs.

In order to obtain a better overview, the mean standard deviations of the object
point coordinates of all versions are graphed against the number of APs in the
Figure 2. Although all Tlarge base versions show relatively good precision fea-
tures in their O-versions, only version E gives optimum results with the full

AP set. This version is definitely to be preferred.

547 f
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Figure 2. Precision measures of networks A, B, C, D, E in different additional

parameter versions (np = number of APs).

These investigations show very clearly the necessity for an individual and
sophisticated statistical treatment of the APs in a rejection procedure. It is
trivial to state that in different networks different APs might have to be
rejected. The rejection strategy applied here in networks A,B,C was based on
correlation checks. Those parameters which cause the largest correlations with
respect to the object point coordinates and to the other APs have been rejected.
This procedure was found to work quite well and it can really be recommended
for professional use.

What should be considered to be a "high" correlation is still in question. In
this connection it is interesting to see that the rejection of an AP which was
correlating at the 90 %-level (b14 in A and B) Teads to a precision improvement
of a factor 1.3. Experience in this matter indicates that in close-range photo-
grammetry an individual AP component cannot be expected to improve the results
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by a factor of 1.3. So the author recommends that an AP which has 0.9 or even
higher correlations with other decisive components of the system should be ex-
cluded.

The relatively small systems in close-range photogrammetry permit computations,
which might not be feasible in aerial triangulation. So apart from correlation
control the check of a change of the standard deviations of all individual ob-
Jject points also becomes possible. Consequently, a complete and successful system
control is relatively easy to perform, thus leading to highly precise and more
reliable results.

4. The internal and external reliability of bundle systems

If correctly applied, self-calibration provides for the compensation of the
systematic errors. Weight estimation is a separate problem, not touched in this
paper. Consequently, for reliability studies, only the reliability of our sys-
tems with respect to blunder detection has to be investigated. In Griin /6/
internal reliability investigations have been carried out using the above men-
tioned synthetic example. It was clearly emphasized that in order to obtain
reliable systems a four photo coverage should be used with two bases perpen-
dicular to each other to avoid pure epipolar plane observations.

Here, these internal reliability studies are picked up again but presented in
greater detail (separation into control and non-control observations, indi-
cation of the just non-detectable blunders). In addition, external reliability
studies are added, referring to the same networks and data sets. The author
is grateful to cand. ing. W. Przibylla, who provided many of the results pre-
sented in this chapter through his diploma thesis /11/. Based on the experi-
ences reported in Grin /8/ (good reliability features of "twin ray" observations)
the image coordinates of network 3/0/4 are here considered to be measured in
stereomode (photos 3/0 and 0/4), so that all image points of photo 0 are ob-
served twice, thus leading to "twin rays". So the complete set of rays of net-
work 3/0/4 (CS...version C, measured in stereomode) is separated into "inner
rays" (twin) and "outer rays" (single).

Table 2 shows the internal reliability results.
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Global internal reliability indicators are defined as

tr(Q} ) tr(Qy,)
Ri(x) = ——2 Ri(y) = ——2 (14a)
X _ 1 X y _ 1 N
Vig =+ % vl Vig =5 T (14b)

tr(QﬁV), tr(QﬁV)...subtraces of Q,,» related to x- and y-residuals.

v];, V]ﬁ...average size of non-detectable blunders in x- and y-observations
n...corresponding number of observations.

The values V1;, ?1% are related to 0, = Tum, Gi = 4.1, &, = 0.001, 80 = 0.80.
The internal reliability measures are subdivided into control and non-control
values, as both types show significant differences between them. Additionally,

in network 3/0/4 (version CS) the inner and outer ray observations are differ-
entiated.

Table 2: Global internal reliability measures.

Control Non-control

Version r Ri(x) | Ri(y) Vl;: Vlﬂ Ri(x) |Ri(y) V’1§§I Vl%
(pm) | (pm) (um) | (pm)

A 69 0.66 | 0.71 |5.2 5.0 || 0.00 |0Q.b5 |+ | 6.2

B 69 0.66 | 0.71 |5.2 5.0 || 0.00 [o0.bh [+ = [6.2
cs i A ll-ll _._0;8‘@ -4 g'§6_ i'._S. — _]'I';s.__ _0_‘_79 — g'll... ,_.]'l';g_ _11;9_
"~ o.r 0.71 | 0.77 | k.9 .7l 0.25 |0.68 | 8.4 | 5.0

D 135 0.76 | 0.76 | 4.8 4.8 |l 0.56 [0.56 | 5.6 [5.6

E 135 0.76 | 0.76 | 4.8 L.8 | 0.56 |0.56 | 5.6 | 5.6

r...redundancy
i.r...inner rays

0.r...outer rays

Control observations are reliable in all versions, there is only a minor dif-
ference between x- and y- observations. The average values for just non-detect-
able blunders are fairly homogeneous, ranging from 4.5 % to 5.2 Ty-

The reliability values of non-control observations of the individual networks,
however, differ significantly from each other. The x-observations of versions
A and B are not checked at all, the y-observations can be considered to be of
average reliability.
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Things change considerably when a third photo is introduced in a suitable lo-

cation. Although the x - values of the outer rays of versions CS are still weak

(vl; = 8.400}, fairly good results are obtained for the inner ray x-observations
X _

(V1M = 4.900}.

Sufficiently good and homogeneous results in x and y are only achieved with the

versions D and E, i.e. with the 4 photo arrangements (VT; = v]% = 5.650).

The external reliability measures show the effect of a just non-detectable
blunder onto the solution vector. As indicated by equation (8b) the blunder

v is propagated to‘ijby the function {ATPA)'HJP. So the network design, and
in this context specially the normal inverse (ATPA)_I,has an essential influence
on the quality of the external reliability. Since this inverse (together with
002) defines also the precision of a system, a direct relation between external
reliability and precision becomes obvious. For this reason quite different
values of external reliability can be expected in different networks, even if
the internal reliability values are identical (compare Tables 2,3, versions D,
E). Consequently the internal reliability measures may, in general, not be
sufficient to describe the reliability of a network. For this purpose, only the
measures for the external reliability can serve as indicators.

To support these statements the effects of all individual just non-detectable
blunders of the networks A, B, CS, D, E (see Table 2) on the object point co-
ordinates have been computed. Table 3 shows the results. For simplification
only the maximum values for vXZ, vY]) are indicated. As the effects of just
non-detectable blunders have a reasonable statistical basis (derived from
hypotheses testing - datasnooping) and since they represent error limits (based

on probability levels o _, 30) they can advantageously be used as tolerance

0
values. Although standard deviations are preferred for use as precision measures
among surveyors, they have never been accepted by engineers in connected disci-

plines and much confusion in communication has resulted therefrom.

Another restrictive feature of standard deviations, which makes them less suit-
able for use in practical projects, results from the fact that they are based
on the assumption of random errors only, which is often an unrealistic assump-
tion, as practice shows. Now these problems seem likely to be overcome by the
use of external reliability measures as tolerances. Consequently the values of
Table 3 are denoted by "tolerances", and three types are distinguished:

1) In the following the object point coordinates are denoted by large letters
X, 2, Y.
_ i
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- 1st order tolerances: Values for non-control points, caused by blunders
in observations belonging to these points.

- 2nd order tolerances: Values for non-control points, caused by blunders
in control observations.

- 3rd order tolerances: Values for non-control points, caused by blunders
in observations of other non-control points.

AT1 measures vXZ, vY have been obtained by assuming one blunder only at a time.

Table 3. External reliability measures for object point coordinates (maximum
tolerances based on a, = 0.001, SO = 0.80, o, = 1 pm).

1st order tolerances | 2nd order tolerances | 3rd order tolerances
: VX7, 7Y

v . VXZMax I VYMax VXZMax ! vYMax X Max 4 Max
ersion (rm) : (mm) (m) | (mm) (rm) | (mm)

A(1/2) - @ N 0.58 1 1.81 0.17 | 0.69

B(3/4) > I > 0.2h | 0.Lo 0.05 ' 0.13

cs(3/0/h) 1.h5 I L.ot 0.18 | 0.37 0.04 | 0.11
D(1/2/5/6) 1.81 | 6.13 0.25 0.80 0.09 | 0.23
E(3/L4/7/8) 0.6k | 1.30 0.12 | 0.17 0.02 | 0.07
VX7 ...Maximum value in X or Z, if both coordinates X,Z are considered

Max
together.

As could be expected, the maximum distortion of object space coordinates is
always caused by a blunder in the observations of the corresponding point (Ist
order tolerances). Compared to these values the effects of just non-detectable
blunders in image coordinate observations of contral points (2nd order toler-
ances) are relatively small, although large enough not to be ignored, especially
in the small base versions A and D.

The maximum values for the 3rd order tolerances are comparably small in all net-
works, however, it can happen that for individual points the 3rd order toler-
ances exceed the 1st order tolerances. This means, that the effects of non-
detectable blunders in observations. other than those of the point, may exceed
the effects of blunders in observations of the point itself.

Comparing A with D and B with E one sees that a doubling of the number of photos

without changing the size of the bases leads to an improvement of the maximum
2nd and 3rd order tolerances by a factor of 2.
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Keeping the number of photos constant, a base enlargement does not improve the
internal reliability. The external reliability, however, is improved signifi-
cantly (average improvement factors of 3 and 5 for XZ and Y between the networks
A and B, D and E). Additionally, the values for the X, Z and Y coordinates be-
come more homogeneous. Generally it can be stated that with respect to reli-
ability features (here related to blunder detection), the networks A and B (2
photo versions) are completely failing, as the maximum 1st order tolerances
result in values close to infinity.

5. Concluding remarks

In order to obtain highly precise and reliable photogrammetric networks a few
basic requirements have to be met. These are easy to fulfill in practical pro-

Jects.

For a Tong time it has been well known that the use of large bases (for complete
object coverage mostly connected with convergent photography) leads to a much
better object point coordinate precision than the small base concept. However,
precision measures are not of much value, if the reliability of a network is
bad.

In order to get practical network results closer to theoretical precision
measures, primary efforts must be directed towards the compensation of systematic
image errors, which can preferrably be achieved by self-calibration. The exten-
sion of the bundle model by additional parameters, however, more or less changes
the network's precision structure. Further, to avoid a serious deterioration of
the precision of required components (e.g. object point coordinates) those
additional parameters which weaken the system must be excluded. In close-range
systems this can be achieved by correlation control and variance check, as pre-
sented in this paper. Equally important is a design of networks, which provides
for good blunder detection properties. To obtain sufficient redundancy for
blunder control at least a fourfold photo coverage should be aspired for. Ray
arrangements leading to one common epipolar plane only have to be avoided.
Although the internal reliability measures are useful indicators for a network's
reliability properties (especially in extreme cases), a comprehensive reliability
control can only be performed by analyzing the external reliability. External
reliability measures have a close relation to precision measures. This permits
the general one-way statement to be made: If a network is designed with excel-
Tent external reliability features, its precision can also be considered to be

131



Institut fiir Geodésie
und Photogrammetrie ETHZ Machine Vision Seite :

2.35

outstanding. Network E of our examples has such properties.

In addition, external reliability measures can be regarded as tolerance values,

which enable easier communication between photogrammetrists and the users of

their products, than was possible in the past.
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TABLE 1: Precision measures for different networks 7
(related to og = 1 um)
i Mean standard Mearn standard deviations Maximal corr.
dev. of non- of exterior orientation coefficients
FPhoto Add. control peints elements
arrange-parameter | OY oz ax? oz oY o Ow Op NP /NP EO/AP
ment version | (mm=) | (mm) | (me=) | (o (ms (nng (e) | (&) (¢) o=l ee e - =
NE /AP AP /AF
1
1,00 | ~1.00
12 1215 PB1.2 fs.1 [2.4 |256 [266 [0.76 [0.20 150 [0.10k = = o -} o o o = = =
A A1.00 |2/771.00
p %1.00 | %o /i~1.00
1-8 90.5 | 0.52 2.4 |253 |0.21]0.45{0.18|0.09[0.06}F = = o = b o=~
8-1 . ~1.00 | 1/5/8=-0.60
2-6 56 | 1o/3=0. 9
Bo18 0.61| 0.50| 2.4 | 0.360.21 |0.45 |0.18 10.06 |0.05 F - - -~ - ==-- - =
- 14:0.90 | 5/14=0.79
2.6 58 | Yo/3=C.98
g-13 0.48 [ 0.48 {2.1 |0.31{0.21 [0.45 |0.13 |0.09
15
0 0.36 | 0.36 (1.8 |0.16 |0.23 |0.06 |0.07 |C.06
3/4 1-15 2.1 |0.39|0.50 (5.5 |[1.0 |1.8 |0.36 |0.59
B
é-zs 0.22 {0.39 [ 0.45 | 0.36 | 1.0 [0.30 {0.14 | 0.5
C.86 | ¥o/3°C.53
;'F_ 0.22 | 0.18 | C.45 | 0.36 | 0.16 [ 0.30 | 0.14 |0.12 |0.0S
-2
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