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Abstract

We had previously shown that regularization principles lead to approximation schemes which are equivalent
to networks with one layer of hidden units� called Regularization Networks� In particular we had discussed
how standard smoothness functionals lead to a subclass of regularization networks� the well�known Radial
Basis Functions approximation schemes� In this paper we show that regularization networks encompass
a much broader range of approximation schemes� including many of the popular general additive models
and some of the neural networks� In particular we introduce new classes of smoothness functionals that
lead to di�erent classes of basis functions� Additive splines as well as some tensor product splines can
be obtained from appropriate classes of smoothness functionals� Furthermore� the same extension that
leads from Radial Basis Functions �RBF� to Hyper Basis Functions �HBF� also leads from additive models
to ridge approximation models� containing as special cases Breiman�s hinge functions and some forms of
Projection Pursuit Regression� We propose to use the term Generalized Regularization Networks for this
broad class of approximation schemes that follow from an extension of regularization� In the probabilistic
interpretation of regularization� the di�erent classes of basis functions correspond to di�erent classes of
prior probabilities on the approximating function spaces� and therefore to di�erent types of smoothness
assumptions� In the �nal part of the paper� we show the relation between activation functions of the
Gaussian and sigmoidal type by considering the simple case of the kernel G�x� 	 jxj�
In summary� di�erent multilayer networks with one hidden layer� which we collectively call Generalized
Regularization Networks� correspond to di�erent classes of priors and associated smoothness functionals
in a classical regularization principle� Three broad classes are a� Radial Basis Functions that generalize
into Hyper Basis Functions� b� some tensor product splines� and c� additive splines that generalize into
schemes of the type of ridge approximation� hinge functions and one�hidden�layer perceptrons�
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� Introduction

In recent papers we and others have argued that the
task of learning from examples can be considered in
many cases to be equivalent to multivariate function ap�
proximation� that is� to the problem of approximating a
smooth function from sparse data� the examples� The
interpretation of an approximation scheme in terms of
networks� and viceversa� has also been extensively dis�
cussed �Barron and Barron� ����� Poggio and Girosi�
����� ����� Broomhead and Lowe� ������
In a series of papers we have explored a speci�c� al�

beit quite general� approach to the problem of function
approximation� The approach is based on the recogni�
tion that the ill�posed problem of function approxima�
tion from sparse data must be constrained by assum�
ing an appropriate prior on the class of approximating
functions� Regularization techniques typically impose
smoothness constraints on the approximating set of func�
tions� It can be argued that some form of smoothness
is necessary to allow meaningful generalization in ap�
proximation type problems �Poggio and Girosi� �����
������ A similar argument can also be used in the case
of classi�cation where smoothness involves the classi�ca�
tion boundaries rather than the input�output mapping
itself� Our use of regularization� which follows the clas�
sical technique introduced by Tikhonov ������ ������
identi�es the approximating function as the minimizer
of a cost functional that includes an error term and a
smoothness functional� usually called a stabilizer� In the
Bayesian interpretation of regularization the stabilizer
corresponds to a smoothness prior� and the error term
to a model of the noise in the data �usually Gaussian
and additive��
In Poggio and Girosi ������ we showed that regular�

ization principles lead to approximation schemes which
are equivalent to networks with one �hidden� layer�
which we call Regularization Networks �RN�� In par�
ticular� we described how a certain class of radial sta�
bilizers � and the associated priors in the equivalent
Bayesian formulation � lead to a subclass of regular�
ization networks� the already�known Radial Basis Func�
tions �Powell� ����� ����� Micchelli� ����� Dyn� �����
that we have extended to Hyper Basis Functions �Poggio
and Girosi� ����� ����a�� The regularization networks
with radial stabilizers we studied include all the classi�
cal one�dimensional as well as multidimensional splines
and approximation techniques� such as radial and non�
radial Gaussian or multiquadric functions� In Poggio and
Girosi ������ ����a� we have extended this class of net�
works to Hyper Basis Functions �HBF�� In this paper we
show that an extension of Regularization Networks� that
we propose to call Generalized Regularization Networks
�GRN�� encompasses an even broader range of approx�
imation schemes� including� in addition to HBF� tensor
product splines� many of the general additive models�
and some of the neural networks�
The plan of the paper is as follows� We �rst discuss

the solution of the variational problems of regularization
in a rather general form� We then introduce three di�er�
ent classes of stabilizers � and the corresponding priors
in the equivalent Bayesian interpretation � that lead to

di�erent classes of basis functions� the well�know radial
stabilizers� tensor�product stabilizers� and the new addi�
tive stabilizers that underlie additive splines of di�erent
types� It is then possible to show that the same exten�
sion that leads from Radial Basis Functions to Hyper
Basis Functions leads from additive models to ridge ap�
proximation� containing as special cases Breiman�s hinge
functions ������ and ridge approximations of the type
of Projection Pursuit Regression �PPR� �Friedman and
Stuezle� ����� Huber� ������ Simple numerical exper�
iments are then described to illustrate the theoretical
arguments�
In summary� the chain of our arguments shows that

ridge approximation schemes such as

f�x� 	
d�X
i��

h��w� � x� �

where

h��y� 	
nX

���

c��G�y � t���

are approximations of Regularization Networks with ap�
propriate additive stabilizers� The form of G depends
on the stabilizer� and includes in particular cubic splines
�used in typical implementations of PPR� and one�
dimensional Gaussians� It seems� however� impossible
to directly derive from regularization principles the sig�
moidal activation functions used in Multilayer Percep�
trons� We discuss in a simple example the close relation�
ship between basis functions of the hinge� the sigmoid
and the Gaussian type�
The appendices deal with observations related to the

main results of the paper and more technical details�

� The regularization approach to the
approximation problem

Suppose that the set g 	 f�xi� yi� � Rd �RgNi�� of data
has been obtained by random sampling of a function f �
belonging to some space of functions X de�ned on Rd�
in the presence of noise� and suppose we are interested
in recovering the function f � or an estimate of it� from
the set of data g� This problem is clearly ill�posed� since
it has an in�nite number of solutions� In order to choose
one particular solution we need to have some a priori
knowedge of the function that has to be reconstructed�
The most common form of a priori knowledge consists in
assuming that the function is smooth� in the sense that
two similar inputs correspond to two similar outputs�
The main idea underlying regularization theory is that
the solution of an ill�posed problem can be obtained from
a variational principle� which contains both the data and
prior smoothness information� Smoothness is taken into
account by de�ning a smoothness functional ��f � in such
a way that lower values of the functional correspond to
smoother functions� Since we look for a function that
is simultaneously close to the data and also smooth� it
is natural to choose as a solution of the approximation
problem the function that minimizes the following func�
tional�

�



H�f � 	
NX
i��

�f�xi� � yi�
� � ���f � � ���

where � is a positive number that is usually called the
regularization parameter� The �rst term is enforcing
closeness to the data� and the second smoothness� while
the regularization parameter controls the tradeo� be�
tween these two terms�
It can be shown that� for a wide class of functionals ��

the solutions of the minimization of the functional ��� all
have the same form� Although a detailed and rigorous
derivation of the solution of this problem is out of the
scope of this memo� a simple derivation of this general
result is presented in appendix �A�� In this section we
just present a family of smoothness functionals and the
corresponding solutions of the variational problem� We
refer the reader to the current literature for the mathe�
matical details �Wahba� ����� Madych and Nelson� �����
Dyn� ������
We �rst need to give a more precise de�nition of

what we mean by smoothness and de�ne a class of suit�
able smoothness functionals� We refer to smoothness as
a measure of the �oscillatory� behavior of a function�
Therefore� within a class of di�erentiable functions� one
function will be said to be smoother than another one if
it oscillates less� If we look at the functions in the fre�
quency domain� we may say that a function is smoother
than another one if it has less energy at high frequency
�smaller bandwidth�� The high frequency content of a
function can be measured by �rst high�pass �ltering the
function� and then measuring the power� that is the L�

norm� of the result� In formulas� this suggests de�ning
smoothness functionals of the form�

��f � 	

Z
Rd

ds
j �f�s�j�
�G�s�

���

where� indicates the Fourier transform� �G is some posi�
tive function that falls o� to zero as ksk �� �so that �

�G
is an high�pass �lter� and for which the class of functions
such that this expression is well de�ned is not empty� For
a well de�ned class of functions G �Madych and Nelson�
����� Dyn� ����� this functional is a semi�norm� with a
�nite dimensional null space N � The next section will
be devoted to giving examples of the possible choices for
the stabilizer �� For the moment we just assume that it
can be written as in eq� ���� and make the additional as�

sumption that �G is symmetric� so that its Fourier trans�
form G is real and symmetric� In this case it is possible
to show �see appendix �A� for a sketch of the proof�
that the function that minimizes the functional ��� has
the form�

f�x� 	
NX
i��

ciG�x� xi� �
kX

���

d����x� ���

where f��gk��� is a basis in the k dimensional null spaceN and the coe
cients d� and ci satisfy the following
linear system�

�G� �I�c ��Td 	 y

�c 	 �

where I is the identity matrix� and we have de�ned

�y�i 	 yi � �c�i 	 ci � �d�i 	 di �

�G�ij 	 G�xi � xj� � ����i 	 ���xi�

The existence of a solution to the linear system shown
above is guaranteed by the existence of the solution of
the variational problem� The case of � 	 � corresponds
to pure interpolation� and in this case the solvability of
the linear system depends on the properties of the basis
function G�
The approximation scheme of eq� form ��� has a sim�

ple interpretation in terms of a network with one layer
of hidden units� which we call a Regularization Network
�RN�� Appendix B describes the simple extension to vec�
tor output scheme�

� Classes of stabilizers

In the previous section we considered the class of stabi�
lizers of the form�

��f � 	

Z
Rd

ds
j �f �s�j�
�G�s�

�
�

and we have seen that the solution of the minimization
problem always has the same form� In this section we
discuss three di�erent types of stabilizers belonging to
the class �
�� corresponding to di�erent properties of the
basis functions G� Each of them corresponds to di�er�
ent a priori assumptions about the smoothness of the
function that must be approximated�

��� Radial stabilizers

Most of the commonly used stabilizers have radial sim�
metry� that is� they satisfy the following equation�

��f�x�� 	 ��f�Rx��

for any rotation matrix R� This choice re�ects the a
priori assumption that all the variables have the same
relevance� and that there are no priviliged directions�
Rotation invariant stabilizers correspond clearly to ra�
dial basis function G�kxk�� Much attention has been
dedicated to this case� and the corresponding approx�
imation technique is known as Radial Basis Functions
�Micchelli� ����� Powell� ������ The class of admissible
Radial Basis Functions is the class of conditionally pos�
itive de�nite functions of any order� since it has been
shown �Madych and Nelson� ����� Dyn� ����� that in
this case the functional of eq� �
� is a semi�norm� and
the associated variational problem is well de�ned� All
the Radial Basis Functions can therefore be derived in
this framework� We explicitly give two important exam�
ples�

Duchon multivariate splines

�



Duchon ������ considered measures of smoothness of the
form

��f � 	

Z
Rd

ds ksk�mj �f �s�j� �

In this case �G�s� 	 �
ksk�m and the corresponding basis

function is therefore

G�x� 	

� kxk�m�d lnkxk if �m � d and d is even
kxk�m�d otherwise�

���
In this case the null space of ��f � is the vector space

of polynomials of degree at mostm in d variables� whose
dimension is

k 	

�
d�m � �

d

�
�

These basis functions are radial and conditionally pos�
itive de�nite� so that they represent just particular in�
stances of the well known Radial Basis Functions tech�
nique �Micchelli� ����� Wahba� ������ In two dimen�
sions� for m 	 �� eq� ��� yields the so called �thin
plate� basis function G�x� 	 kxk� lnkxk �Harder and
Desmarais� ������ depicted in �gure ����

The Gaussian

A stabilizer of the form

��f � 	

Z
Rd

ds e
ksk�
� j �f�s�j� �

where � is a �xed positive parameter� has �G�s� 	 e�
ksk�
�

and as basis function the Gaussian function� represented
in �gure ���� The Gaussian function is positive de�nite�
and it is well known from the theory of reproducing ker�
nels that positive de�nite functions can be used to de�
�ne norms of the type �
�� Since ��f � is a norm� its null
space contains only the zero element� and the additional
null space terms of eq� ��� are not needed� unlike in
Duchon splines� A disadvantage of the Gaussian is the
appearance of the scaling parameter �� while Duchon
splines� being homogeneous functions� do not depend on
any scaling parameter� However� it is possible to devise
good heuristics that furnish sub�optimal� but still good�
values of �� or good starting points for cross�validation
procedures�

Other Basis Functions

Here we give a list of other functions that can be used as
basis functions in the Radial Basis Functions technique�
and that are therefore associated with the minimization
of some functional� In the following table we indicate as
�p�d�� the positive de�nite functions� which do not need
any polynomial term in the solution� and as �c�p�d� k�
the conditionally positive de�nite functions of order k�
which need a polynomial of degree k in the solution�

G�r� 	 e��r
�

Gaussian� p�d�

G�r� 	
p
r� � c� multiquadric� c�p�d� �

G�r� 	 �p
c��r�

inverse multiquadric� p�d�

G�r� 	 r�n�� multivariate splines� c�p�d� n

G�r� 	 r�n ln r multivariate splines� c�p�d� n

��� Tensor product stabilizers

An alternative to choosing a radial function �G in the
stabilizer �
� is a tensor product type of basis function�
that is a function of the form

�G�s� 	  d
j���g�sj� ���

where sj is the j�th coordinate of the vector s� and �g
is an appropriate one�dimensional function� When g is
positive de�nite the functional ��f � is clearly a norm and
its null space is empty� In the case of a conditionally
positive de�nite function the structure of the null space
can be more complicated and we do not consider it here�
Stabilizers with �G�s� as in equation ��� have the form

��f � 	

Z
Rd

ds
j �f �s�j�

 d
j���g�sj �

which leads to a tensor product basis function

G�x� 	  d
j��g�xj�

where xj is the j�th coordinate of the vector x and g�x�
is the Fourier transform of �g�s�� An interesting example
is the one corresponding to the choice�

�g�s� 	
�

� � s�
�

which leads to the basis function�

G�x� 	  d
j��e

�jxj j 	 e
�
P

d

j��
jxj j 	 e�kxkL� �

This basis function is interesting from the point of view
of VLSI implementations� because it requires the com�
putation of the L� norm of the input vector x� which
is usually easier to compute than the Euclidean norm
L�� However� this basis function in not very smooth�
as shown in �gure ���� and its performance in practical
cases should �rst be tested experimentally�

We notice that the choice

�g�s� 	 e�s
�

leads again to the Gaussian basis function G�x� 	

e�kxk
�

�
�



��� Additive stabilizers

We have seen in the previous section how some tensor
product approximation schemes can be derived in the
framework of regularization theory� We now will see that
is also possible to derive the class of additive approxima�
tion schemes in the same framework� where by additive
approximation we mean an approximation of the form

f�x� 	
dX

���

f��x
�� ���

where x� is the ��th component of the input vector x
and the f� are one�dimensional functions that will be
de�ned as the additive components of f �from now on
Greek letter indices will be used in association with com�
ponents of the input vectors�� Additive models are well
known in statistics �see Hastie and Tibshirani�s book�
����� and can be consider as a generalization of linear
models� They are appealing because� being essentially a
superposition of one�dimensional functions� they have a
low complexity� and they share with linear models the
feature that the e�ects of the di�erent variables can be
examined separately�
The simplest way to obtain such an approximation

scheme is to choose a stabilizer that corresponds to an
additive basis function �see �g� 
 for an example��

G�x� 	
nX

���

	�g�x
�� ���

where 	� are certain �xed parameters� Such a choice� in
fact� leads to an approximation scheme of the form ���
in which the additive components f� have the form�

f��x� 	 	�

NX
i��

ciG�x
� � x�i � ���

Notice that the additive components are not independent
at this stage� since there is only one set of coe
cients ci�
We postpone the discussion of this point to section �
����
We would like to write stabilizers corresponding to

the basis function ��� in the form �
�� where �G�s� is the
Fourier transform of G�x�� We notice that the Fourier
transform of an additive function like the one in equation
��� is a distribution� For example� in two dimensions we
obtain

�G�s� 	 	x�g�sx�
�sy� � 	y�g�sy�
�sx� ����

and the interpretation of the reciprocal of this expression
is delicate� However� almost additive basis functions can
be obtained if we approximate the delta functions in eq�
���� with Gaussians of very small variance� Consider�
for example in two dimensions� the stabilizer�

��f � 	

Z
Rd

ds �
j �f �s�j�

	x�g�sx�e��
sy

�
�� � 	y�g�sy�e�� sx

�
��

����

This corresponds to a basis function of the form�

G�x� y� 	 	xg�x�e
���y� � 	yg�y�e

���x� � ����

In the limit of � going to zero the denominator in ex�
pression ���� approaches eq� ����� and the basis func�
tion ���� approaches a basis function that is the sum of
one�dimensional basis functions� In this paper we do not
discuss this limit process in a rigorous way� Instead we
outline another way to obtain additive approximations
in the framework of regularization theory�
Let us assume that we know a priori that the function

f that we want to approximate is additive� that is�

f�x� 	
dX

���

f��x
��

We then apply the regularization approach and impose a
smoothness constraint� not on the function f as a whole�
but on each single additive component� through a regu�
larization functional of the form�

H�f � 	
NX
i��

�yi �
dX

���

f��x
�
i ��

� � �

dX
���

�

	�

Z
R

ds
j �f��s�j�
�g�s�

where 	� are given positive parameters which allow us to
impose di�erent degrees of smoothness on the di�erent
additive components� The minimizer of this functional
is found with the same technique described in appendix
�A�� and skipping null space terms� it has the usual form

f�x� 	
NX
i��

ciG�x� xi� ����

where

G�x� xi� 	
dX

���

	�g�x
� � x

�
i � �

as in eq� ����

We notice that the additive component of eq� ����
can be written as

f��x
�� 	

NX
i��

c
�
i g�x

� � x
�
i �

where we have de�ned

c
�
i 	

ci

	�
�

The additive components are therefore not independent
because the parameters 	� are �xed� If the 	� were free
parameters� the coe
cients c�i would be independent� as
well as the additive components�
Notice that the two ways we have outlined for deriv�

ing additive approximation from regularization theory
are equivalent� They both start from a prior assumption
of additivity and smoothness of the class of functions
to be approximated� In the �rst technique the two as�
sumptions are both in the choice of the stabilizer� �eq�
���� in the second they are made explicit and exploited
sequentially�






� Extensions� from Regularization
Networks to Generalized
Regularization Networks

In this section we will �rst review some extensions of reg�
ularization networks� and then will apply them to Radial
Basis Functions and to additive splines�
A fundamental problem in almost all practical appli�

cations in learning and pattern recognition is the choice
of the relevant variables� It may happen that some of
the variables are more relevant than others� that some
variables are just totally irrelevant� or that the relevant
variables are linear combinations of the original ones�
It can therefore be useful to work not with the original
set of variables x� but with a linear transformation of
them�Wx� where W is a possibily rectangular matrix�
In the framework of regularization theory� this can be
taken into account by making the assumption that the
approximating function f has the form f�x� 	 F �Wx�
for some smooth function F � The smoothness assump�
tion is now made directly on F � through a smoothness
functional ��F � of the form �
�� The regularization func�
tional is now expressed in terms of F as

H�F � 	
NX
i��

�yi � F �zi��
� � ���F �

where zi 	Wxi� The function that minimizes this func�
tional is clearly� accordingly to the results of section ����
of the form�

F �z� 	
NX
i��

ciG�z� zi� �

�plus eventually a polynomial in z�� Therefore the solu�
tion for f is�

f�x� 	 F �Wx� 	
NX
i��

ciG�Wx �Wxi� ��
�

This argument is exact for given and known W� as in
the case of classical Radial Basis Functions� Usually the
matrix W is unknown� and it must be estimated from
the examples� Estimating both the coe
cients ci and
the matrix W by least squares is probably not a good
idea� since we would end up trying to estimate a num�
ber of parameters that is larger than the number of data
points �though one may use regularized least squares��
Therefore� it has been proposed to replace the approxi�
mation scheme of eq� ��
� with a similar one� in which he
basic shape of the approximation scheme is retained� but
the number of basis functions is decreased� The result�
ing approximating function that we call the Generalized
Regularization Network �GRN� is�

f�x� 	
nX

���

c�G�Wx�Wt�� � ����

where n � N and the centers t� are chosen according to
some heuristic �Moody and Darken� ������ or are consid�
ered as free parameters �Poggio and Girosi� ����� ������

The coe
cients c� and the elements of the matrix W
are estimated accordingly to a least squares criterion�
The elements of the matrixW could also be estimated
through cross�validation� which may be a formally more
appropriate technique�
In the special case in which the matrix W and the

centers are kept �xed� the resulting technique is one orig�
inally proposed by Broomhead and Lowe ������� and the
coe
cients satisfy the following linear equation�

GTGc 	 GTy �

where we have de�ned the following vectors and matri�
ces�

�y�i 	 yi � �c�� 	 c� � �G�i� 	 G�xi � t�� �

This technique� which has become quite common in the
neural network community� has the advantage of retain�
ing the form of the regularization solution� while being
less complex to compute� A complete theoretical analy�
sis has not yet been given� but some results� in the case
in which the matrix W is set to identity� are already
available �Sivakumar and Ward� ������
The next sections discuss approximation schemes of

the form ���� in the cases of radial and additive basis
functions�

��� Extensions of Radial Basis Functions

In the case in which the basis function is radial� the
approximation scheme of eq� ���� becomes�

f�x� 	
nX

���

c�G�kx� t�kw�

where we have de�ned the weighted norm�

kxkw � x �WTWx � ����

The basis functions of eq� ���� are not radial anymore�
or� more accurately� they are radial in the metric de�ned
by eq� ����� This means that the level curves of the basis
functions are not circles� but ellipses� whose axes do not
need to be aligned with the coordinate axis� Notice that
in this case what is important is not the matrixW itself�
but rather the product matrixWTW� Therefore� by the
Cholesky decomposition� it is su
cient to takeW upper
triangular� The approximation scheme de�ned by eq�
���� has been discussed in detail in �Poggio and Girosi�
����� Girosi� ������ so we do will not discuss it further�
and will consider� in the next section� its analogue in the
case of additive basis functions�

��� Extensions of additive splines

In the previous sections we have seen an extension of
the classical regularization technique� In this section we
derive the form that this extension takes when applied
to additive splines� The resulting scheme is very similar
to Projection Pursuit Regression �Friedman and Stuezle�
����� Huber� ������

We start from the �classical� additive spline� derived
from regularization in section ������

�



f�x� 	
NX
i��

ci

dX
���

	�G�x
� � x

�
i � ����

In this scheme the smoothing parameters 	� should be
known� or can be estimated by cross�validation� An al�
ternative to cross�validation is to consider the param�
eters 	� as free parameters� and estimate them with a
least square technique together with the coe
cients ci�
If the parameters 	� are free� the approximation scheme
of eq� ���� becomes the following�

f�x� 	
NX
i��

dX
���

c
�
i g�x

� � x
�
i �

where the coe
cients c
�
i are now independent� Of

course� now we must estimate N � d coe
cients instead
of just N � and we are likely to encounter the over�tting
problem� We then adopt the same idea presented in sec�
tion �
�� and consider an approximation scheme of the
form

f�x� 	
nX

���

dX
���

c��G�x
� � t��� � ����

in which the number of centers is smaller than the num�
ber of examples� reducing the number of coe
cients that
must be estimated� We notice that eq� ���� can be writ�
ten as

f�x� 	
dX

���

f��x
��

where each additive component has the form�

f��x
�� 	

nX
���

c��G�x
� � t��� �

Therefore another advantage of this technique is that
the additive components are now independent� each of
them being a one�dimensional Radial Basis Functions�
We can now use the same argument from section �
� to

introduce a linear transformation of the inputs x�Wx�
whereW is a d��d matrix� Callingw� the ��th column
of W � and performing the substitution x � Wx in eq�
����� we obtain

f�x� 	
nX

���

d�X
���

c��G�w� � x � t��� � ����

We now de�ne the following one�dimensional function�

h��y� 	
nX

���

c��G�y � t���

and rewrite the approximation scheme of eq� ���� as

f�x� 	
d
�X

i��

h��w� � x� � ����

Notice the similarity between eq� ���� and the Projec�
tion Pursuit Regression technique� in both schemes the
unknown function is approximated by a linear superposi�
tion of one�dimensional variables� which are projections
of the original variables on certain vectors that have been
estimated� In Projection Pursuit Regression the choice
of the functions hk�y� is left to the user� In our case the
hk are one�dimensional Radial Basis Functions� for ex�
ample cubic splines� or Gaussians� The choice depends�
strictly speaking� on the speci�c prior� that is� on the
speci�c smoothness assumptions made by the user� In�
terestingly� in many applications of Projection Pursuit
Regression the functions hk have been indeed chosen to
be cubic splines�
Let us brie�y review the steps that bring us from the

classical additive approximation scheme of eq� ��� to
a Projection Pursuit Regression�like type of approxima�
tion�

�� the regularization parameters 	� of the classical ap�
proximation scheme ��� are considered as free pa�
rameters�

�� the number of centers is chosen to be smaller than
the number of data points�

�� it is assumed that the true relevant variables are
some unknown linear combination of the original
variables�

We notice that in the special case in which each addi�
tive component has just one center �n 	 ��� the approx�
imation scheme of eq� ���� becomes�

f�x� 	
d�X
���

c�G�w� � x� t�� � ����

If the basis function G were a sigmoidal function this
would be clearly a standard Multilayer Perceptron with
one layer of hidden units� Sigmoidal functions cannot
be derived from regularization theory� but we will see in
section ��� the relationship between a sigmoidal function
and a basis function that can be derived from regular�
ization� like the absolute value function�
There are clearly a number of computational issues re�

lated to how to �nd the parameters of an approximation
scheme like the one of eq� ����� but we do not discuss
them here� We present instead� in section ���� some ex�
perimental results� and will describe the algorithm used
to obtain them�

� Priors� stabilizers and basis functions

It is well known that a variational principle such as equa�
tion ��� can be derived not only in the context of func�
tional analysis �Tikhonov and Arsenin� ������ but also in
a probabilistic framework �Marroquin et al�� ����� Bert�
ero et al�� ����� Wahba� ������ In this section we illus�
trate this connection informally� without addressing the
several deep mathematical issues of the problem�
Suppose that the set g 	 f�xi� yi� � Rn � RgNi�� of

data has been obtained by random sampling a function
f � de�ned on Rn� in the presence of noise� that is

�



f�xi� 	 yi � �i� i 	 �� � � � � N ����

where �i are random independent variables with a given
distribution� We are interested in recovering the func�
tion f � or an estimate of it� from the set of data g� We
take a probabilistic approach� and regard the function f
as the realization of a random �eld with a known prior
probability distribution� Let us de�ne�

� P�f jg� as the conditional probability of the function
f given the examples g�

� P�gjf � as the conditional probability of g given f � If
the function underlying the data is f � this is the prob�
ability that by random sampling the function f at the
sites fxigNi�� the set of measurement fyigNi�� is obtained�
being therefore a model of the noise�

� P�f �� is the a priori probability of the random �eld f �
This embodies our a priori knowledge of the function�
and can be used to impose constraints on the model�
assigning signi�cant probability only to those functions
that satisfy those constraints�

Assuming that the probability distributions P�gjf �
and P�f � are know� the posterior distribution P�f jg� can
now be computed by applying the Bayes rule�

P�f jg� � P�gjf � P�f �� ����

We now make the assumption that the noise variables
in eq� ���� are normally distributed� with variance 
�
Therefore the probability P�gjf � can be written as�

P�gjf � � e
� �

���

P
N

i��
�yi�f�xi���

where 
 is the variance of the noise�
The model for the prior probability distribution P�f �

is chosen in analogy with the discrete case �when the
function f is de�ned on a �nite subset of a n�dimensional
lattice� for which the problem can be rigorously formal�
ized �Marroquin et al�� ������ The prior probability P�f �
is written as

P�f � � e����f 	

where ��f � is a smoothness functional of the type de�
scribed in section ��� and � a positive real number� This
form of probability distribution gives high probability
only to those functions for which the term ��f � is small�
and embodies the a priori knowledge that one has about
the system�
Following the Bayes rule ���� the a posteriori proba�

bility of f is written as

P�f jg� � e
� �

���
�
P

N

i��
�yi�f�xi����������f 		

� ��
�

One simple estimate of the function f from the prob�
ability distribution ��
� is the so called MAP �Maximum
A Posteriori� estimate� that considers the function that
maximizes the a posteriori probability P�f jg�� or mini�
mizes the exponent in equation ��
�� The MAP estimate
of f is therefore the minimizer of the following functional�

H�f � 	
NX
i��

�yi � f�xi��
� � ���f � �

where � 	 �
��� This functional is the same as that
of eq� ���� and from here it is clear that the parameter
�� that is usually called the �regularization parameter�
determines the trade�o� between the level of the noise
and the strength of the a priori assumptions about the
solution� therefore controlling the compromise between
the degree of smoothness of the solution and its closeness
to the data�
As we have pointed out �Poggio and Girosi� ������

prior probabilities can also be seen as a measure of com�
plexity� assigning high complexity to the functions with
small probability� It has been proposed by Rissanen
������ to measure the complexity of a hypothesis in
terms of the bit length needed to encode it� It turns
out that the MAP estimate mentioned above is closely
related to the Minimum Description Length Principle�
the hypothesis f which for given g can be described in
the most compact way is chosen as the �best� hypothe�
sis� Similar ideas have been explored by others �for in�
stance Solomono� in ������ They connect data compres�
sion and coding with Bayesian inference� regularization�
function approximation and learning�

��� The Bayesian interpretation of Generalized
Regularization Networks

In the probabilistic interpretation of standard regulariza�
tion the term ���f � in the regularization functional cor�
responds to the following prior probability in a Bayesian
formulation in which the MAP estimate is sought�

P�f � � e����f 	�

From this point of view� the extension of section �
� cor�
responds �again informally� to choose an a priori prob�
ability of the form

P�f � �
Z


ge����g	
�f�x� � g�Wx��

where 
g means that a functional integration is being
performed� This restricts the space of functions on which
the probability distribution is de�ned to the class of func�
tions that can be written as f�x� 	 g�Wx�� and assume
a prior probability distribution e����g��x��	 for the func�
tions g� where � is now a radially symmetric stabilizer�
In a similar manner� in the case of additive approxi�

mation the prior probability of f is concentrated on those
functions f that can be written as sums of additive com�
ponents� and corresponding priors are of the form�

P�f � �
Z


f� � � � 
fd  
d
���e

� �
��

��f�	


�
f�x� �

dX
���

f��x
��

�
�

This is equivalent to saying that we know a priori that
the underlying function is additive�

�



� Additive splines� hinge functions�
sigmoidal neural nets

In the previous sections we have shown how to extend
RN to schemes that we have called GRN� which include
ridge approximation schemes of the PPR type� that is

f�x� 	
d�X
i��

h��w� � x� �

where

h��y� 	
nX

���

c��G�y � t����

The form of the basis function G depends on the sta�
bilizer� and a list of �admissible� G has been given in
section ���� These include the absolute value G�x� 	 jxj
� corresponding to piecewise linear splines� and the func�
tion G�x� 	 jxj
 � corresponding to cubic splines �used
in typical implementations of PPR�� as well as Gaussian
functions� Though it may seem natural to think that sig�
moidal multilayer perceptrons may be included in this
framework� it is actually impossible to derive directly
from regularization principles the sigmoidal activation
functions typically used in Multilayer Perceptrons� In
the following section we show� however� that there is a
close relationship between basis functions of the hinge�
the sigmoid and the Gaussian type�

��� From additive splines to ramp and hinge
functions

We will consider here the one�dimensional case� Mul�
tidimensional additive approximations consist of one�
dimensional terms �once the W has been �xed�� We
consider the approximation with the lowest possible de�
gree of smoothness� piecewise linear� The associated
basis function G�x� 	 jxj is shown in �gure � top left�
and the associated stabilizer is given by

��f � 	

Z �

��
ds

j �f�s�j�
s�

Its use in approximating a one�dimensional function con�
sists of the linear combination with appropriate coe
�
cients of translates of jxj� It is easy to see that a lin�
ear combination of two translates of jxj with appropri�
ate coe
cients �positive and negative and equal in ab�
solute value� yields the piecewise linear threshold func�
tion 
L�x� shown in �gure �� Linear combinations of
translates of such functions can be used to approximate
one�dimensional functions� A similar derivative�like� lin�
ear combination of two translates of 
L�x� functions with
appropriate coe
cients yields the Gaussian�like function
gL�x� also shown in �gure �� Linear combinations of
translates of this function can also be used for approxi�
mation of a function� Thus any given approximation in
terms of gL�x� can be rewritten in terms of 
L�x� and
the latter can be in turn expressed in terms of the basis
function jxj�
Notice that the basis functions jxj underlie the

�hinge� technique proposed by Breiman ������� whereas

the basis functions 
L�x� are sigmoidal�like and the
gL�x� are Gaussian�like� The arguments above show the
close relations between all of them� despite the fact that
only jxj is strictly a �legal� basis function from the point
of view of regularization �gL�x� is not� though the very
similar but smoother Gaussian is�� Notice also that jxj
can be expressed in terms of �ramp� functions� that is
jxj 	 x� � x��
These relationships imply that it may be interesting

to compare how well each of these basis functions is able
to approximate some simple function� To do this we used
the model f�x� 	

Pn

� c�G�x � t�� to approximate the
function h�x� 	 sin���x� on ��� ��� where G�x� is one of
the basis functions of �gure �� The function sin���x�
is plotted in �gure �� Fifty training points and ������
test points were chosen uniformly on ��� ��� The param�
eters were learned using the iterative back�tting algo�
rithm that will be described in section �� We looked at
the function learned after �tting �� �� 
� � and �� basis
functions� The resulting approximations are plotted in
the following �gures and the errors are summarized in
table ��
The results show that the performance of all three

basis functions is fairly close as the number of basis
functions increases� All models did a good job of ap�
proximating sin���x�� The absolute value function did
slightly better and the �Gaussian� function did slightly
worse� It is interesting that the approximation using two
absolute value functions is almost identical to the ap�
proximation using one �sigmoidal� function which again
shows that two absolute value basis functions can sum
to equal one �sigmoidal� piecewise linear function�

	 Numerical illustrations

��� Comparing additive and non	additive
models

In order to illustrate some of the ideas presented in this
paper and to provide some practical intuition about the
various models� we present numerical experiments com�
paring the performance of additive and non�additive net�
works on two�dimensional problems� In a model consist�
ing of a sum of two�dimensional Gaussians� the model
can be changed from a non�additive Radial Basis Func�
tion network to an additive network by �elongating� the
Gaussians along the two coordinate axes� This allows us
to measure the performance of a network as it changes
from a non�additive scheme to an additive one�
Five di�erent models were tested� The �rst three dif�

fer only in the variances of the Gaussian along the two
coordinate axes� The ratio of the x variance to the y vari�
ance determines the elongation of the Gaussian� These
models all have the same form and can be written as�

f�x� 	
NX
i��

ci�G��x � xi� �G��x� xi��

where

G� 	 e
�� x

�

��
� y�

��
�

and
�



G� 	 e
�� x

�

��
� y�

��
�

The models di�er only in the values of 
� and 
�� For
the �rst model� 
� 	 �� and 
� 	 �� �RBF�� for the
second model 
� 	 �� and 
� 	 �� �elliptical Gaussian��
and for the third model� 
� 	� and 
� 	 �� �additive��
These models correspond to placing two Gaussians at
each data point xi� with one Gaussian elongated in the
x direction and one elongated in the y direction� In the
�rst case �RBF� there is no elongation� in the second case
�elliptical Gaussian� there is moderate elongation� and
in the last case �additive� there is in�nite elongation� In
these three models� the centers were �xed in the learning
algorithm and equal to the training examples� The only
parameters that were learned were the coe
cients ci�
The fourth model is an additive model of the form

����� in which the number of centers is smaller than the
number of data points� but the additive components are
independent� and can be written as�

f�x� y� 	
nX

���

b�G�x� t�x � �
nX

���

c�G�y � t�y �

where the basis function is the Gaussian�

G�x� 	 e��x� �

In this model� the centers were also �xed in the learn�
ing algorithm� and were a proper subset of the training
examples� so that there were fewer centers than exam�
ples� In the experiments that follow� � centers were used
with this model� and the coe
cients b� and c� were de�
termined by least squares�
The �fth model is a Generalized Regularization Net�

work model� of the form ����� that uses a Gaussian basis
function�

f�x� 	
nX

���

c�e
��w��x�t��� �

In this model the weight vectors� centers� and coe
�
cients are all learned�
The coe
cients of the �rst four models were set by

solving the linear system of equations by using the
pseudo�inverse� which �nds the best mean squared �t
of the linear model to the data�
The �fth model was trained by �tting one basis func�

tion at a time according to the following algorithm�

	 Add a new basis function�
	 Optimize the parameters w�� t� and c� using the
random step algorithm �described below��

	 Back�tting� for each basis function � added so far�

 hold the parameters of all other functions
�xed�


 reoptimize the parameters of function ��

	 Repeat the back�tting stage until there is no sig�
ni�cant decrease in L� error�

The random step algorithm �Caprile and Girosi� �����
for optimizing a set of parameters works as follows� Pick
random changes to each parameter such that each ran�
dom change lies within some interval �a� b�� Add the
random changes to each parameter and then calculate
the new error between the output of the network and
the target values� If the error decreases� then keep the
changes and double the length of the interval for pick�
ing random changes� If the error increases� then throw
out the changes and halve the size of the interval� If the
length of the interval becomes less than some threshold�
then reset the length of the interval to some larger value�
The �ve models were each tested on two di�erent func�

tions� a two�dimensional additive function�

h�x� y� 	 sin���x� � 
�y � �����
and the two�dimensional Gabor function�

g�x� y� 	 e�kxk
�

cos������x� y���

The graphs of these functions are shown in �gure
��� The training data for the additive function con�
sisted of �� points picked from a uniform distribution
on ��� ��� ��� ��� Another ������ points were randomly
chosen to serve as test data� The training data for the
Gabor function consisted of �� points picked from a uni�
form distribution on ���� ��� ���� �� with an additional
������ points used as test data�
In order to see how sensitive were the performances

to the choice of basis function� we also repeated the ex�
periments for the models �� 
 and � with a sigmoid �that
is not a basis function that can be derived from regular�
ization theory� replacing the Gaussian basis function� In
our experiments we used the standard sigmoid function�


�x� 	
�

�� e�x
�

These models ��� � and �� are shown in table � together
with models � to �� Notice that only model � is a Multi�
layer Perceptron in the standard sense� The results are
summarized in table ��
Plots of some of the approximations are shown in �g�

ures ��� ��� �� and �
� As expected� the results show
that the additive model was able to approximate the ad�
ditive function� h�x� y� better than both the RBF model
and the elliptical Gaussian model� Also� there seems to
be a smooth degradation of performance as the model
changes from the additive to the Radial Basis Function
��gure ���� Just the opposite results are seen in approx�
imating the non�additive Gabor function� g�x� y�� The
RBF model did very well� while the additive model did
a very poor job in approximating the Gabor function
��gures �� and ��a�� However� we see that the GRN
scheme �model ��� gives a fairly good approximation ��g�
ure ��b�� This is due to the fact that the learning al�
gorithm was able to �nd better directions to project the
data than the x and y axes as in the pure additive model�
We can also see from table � that the additive model
with fewer centers than examples �model 
� has a larger
training error than the purely additive model �� but a
much smaller test error� The results for the sigmoidal
additive model learning the additive function h ��gure

�



�
� show that it is comparable to the Gaussian additive
model� The �rst three models we considered had a num�
ber of parameters equal to the number of data points�
and were supposed to exactly interpolate the data� so
that one may wonder why the training errors are not
exactly zero� This is due to the ill�conditioning of the
associated linear system� which is a common problem in
Radial Basis Functions �Dyn� Levin and Rippa� ������


 Summary and remarks

A large number of approximation techniques can be writ�
ten as multilayer networks with one hidden layer� as
shown in �gure ����� In past papers �Poggio and Girosi�
����� Poggio and Girosi� ����� ����b� Maruyama� Girosi
and Poggio� ����� we showed how to derive RBF� HBF
and several types of multidimensional splines from reg�
ularization principles of the form used to deal with the
ill�posed problem of function approximation� We had
not used regularization to yield approximation schemes
of the additive type �Wahba� ����� Hastie and Tibshi�
rani� ������ such as additive splines� ridge approxima�
tion of the PPR type and hinge functions� In this paper�
we show that appropriate stabilizers can be de�ned to
justify such additive schemes� and that the same exten�
sions that leads from RBF to HBF leads from additive
splines to ridge function approximation schemes of the
Projection Pursuit Regression type� Our Generalized
Regularization Networks include� depending on the sta�
bilizer �that is on the prior knowledge on the functions
we want to approximate�� HBF networks� ridge approxi�
mation and tensor products splines� Figure ���� shows a
diagram of the relationships� Notice that HBF networks
and Ridge Regression networks are directly related in
the special case of normalized inputs �Maruyama� Girosi
and Poggio� ������ Also note that Gaussian HBF net�
works� as described by Poggio and Girosi ������ contain
in the limit the additive models we describe here�
We feel that there is now a theoretical framework that

justi�es a large spectrum of approximation schemes in
terms of di�erent smoothness constraints imposed within
the same regularization functional to solve the ill�posed
problem of function approximation from sparse data�
The claim is that all the di�erent networks and cor�
responding approximation schemes can be justi�ed in
terms of the variational principle

H�f � 	
NX
i��

�f�xi� � yi�
� � ���f � � ����

They di�er because of di�erent choices of stabilizers
�� which correspond to di�erent assumptions of smooth�
ness� In this context� we believe that the Bayesian inter�
pretation is one of the main advantages of regularization�
it makes clear that di�erent network architectures cor�
respond to di�erent prior assumptions of smoothness of
the functions to be approximated�
The common framework we have derived suggests

that di�erences between the various network architec�
tures are relatively minor� corresponding to di�erent
smoothness assumptions� One would expect that each

architecture will work best for the class of function de�
�ned by the associated prior �that is stabilizer�� an ex�
pectation which is consistent with numerical results �see
our numerical experiments in this paper� and Maruyama
et al� ����� see also Donohue and Johnstone� ������
Of the several points suggested by our results we will

discuss one here� it regards the surprising relative suc�
cess of additive schemes of the ridge approximation type
in real world applications�

As we have seen� ridge approximation schemes depend
on priors that combine additivity of one�dimensional
functions with the usual assumption of smoothness� Do
such priors capture some fundamental property of the
physical world! Consider for example the problem of
object recognition� or the problem of motor control� We
can recognize almost any object from any of many small
subsets of its features� visual and non�visual� We can
performmany motor actions in several di�erent ways� In
most situations� our sensory and motor worlds are redun�
dant� In terms of GRN this means that instead of high�
dimensional centers� any of several lower�dimensional
centers are often su�cient to perform a given task� This
means that the �and� of a high�dimensional conjunction
can be replaced by the �or� of its components � a face
may be recognized by its eyebrows alone� or a mug by
its color� To recognize an object� we may use not only
templates comprising all its features� but also subtem�
plates� comprising subsets of features� Additive� small
centers � in the limit with dimensionality one � with the
appropriate W are of course associated with stabilizers
of the additive type�

Splitting the recognizable world into its additive parts
may well be preferable to reconstructing it in its full mul�
tidimensionality� because a system composed of several
independently accessible parts is inherently more robust
than a whole simultaneously dependent on each of its
parts� The small loss in uniqueness of recognition is eas�
ily o�set by the gain against noise and occlusion� There
is also a possible meta�argument that we report here only
for the sake of curiosity� It may be argued that humans
possibly would not be able to understand the world if
it were not additive because of the too�large number of
necessary examples �because of high dimensionality of
any sensory input such as an image�� Thus one may be
tempted to conjecture that our sensory world is biased
towards an �additive structure��

A Derivation of the general form of

solution of the regularization
problem

We have seen in section ��� that the regularized solu�
tion of the approximation problem is the function that
minimizes a cost functional of the following form�

H�f � 	
NX
i��

�yi � f�xi��
� � ���f � � ����

where the smoothness functional ��f � is given by
��



��f � 	

Z
Rd

ds
j �f�s�j�
�G�s�

�

The �rst term measures the distance between the data
and the desired solution f � and the second termmeasures
the cost associated with the deviation from smoothness�
For a wide class of functionals � the solutions of the
minimization problem ���� all have the same form� A
detailed and rigorous derivation of the solution of the
variational principle associated with eq� ���� is outside
the scope of this paper� We present here a simple deriva�
tion and refer the reader to the current literature for the
mathematical details �Wahba� ����� Madych and Nel�
son� ����� Dyn� ������
We �rst notice that� depending on the choice of G�

the functional ��f � can have a non�empty null space�
and therefore there is a certain class of functions that
are �invisible� to it� To cope with this problem we �rst
de�ne an equivalence relation among all the functions
that di�er for an element of the null space of ��f �� Then
we express the �rst term of H�f � in terms of the Fourier
transform of f �

f�x� 	 C

Z
Rd

ds �f �s�eix�s

obtaining the functional

H� �f � 	
NX
i��

�yi�C
Z
Rd

ds �f �s�eixi�s����
Z
Rd

ds
j �f�s�j�
�G�s�

�

Then we notice that since f is real� its Fourier transform
satis�es the constraint�

�f��s� 	 �f ��s�
so that the functional can be rewritten as�

H� �f � 	
NX
i��

�yi�C
Z
Rd

ds �f �s�eixi�s����
Z
Rd

ds
�f��s� �f �s�
�G�s�

�

In order to �nd the minimum of this functional we take
its functional derivatives with respect to �f �


H� �f �


 �f �t�
	 � 
t � Rd � ����

We now proceed to compute the functional derivatives
of the �rst and second term of H� �f �� For the �rst term
we have�
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�yi � f�xi��e
ixi�t

For the smoothness functional we have�





 �f �t�

Z
Rd

ds
�f ��s� �f �s�
�G�s�

	 �

Z
Rd

ds
�f ��s�
�G�s�


 �f �s�


 �f �t�

	 �

Z
Rd

ds
�f��s�
�G�s�


�s� t� 	 �
�f��t�
�G�t�

�

Using these results we can now write eq� ���� as�

NX
i��

�yi � f�xi��e
ixi�t � �

�f ��t�
�G�t�

	 � �

Changing t in �t and multiplying by �G�t� on both sides
of this equation we get�

�f �t� 	 �G��t�
NX
i��

�yi � f�xi��

�
eixi�t �

We now de�ne the coe
cients

ci 	
�yi � f�xi��

�
i 	 �� � � � � N �

assume that �G is symmetric �so that its Fourier trans�
form is real�� and take the Fourier transform of the last
equation� obtaining�

f�x� 	
NX
i��

ci
�xi � x� �G�x� 	
NX
i��

ciG�x� xi� �

We now remember that we had de�ned as equivalent all
the functions di�ering by a term that lies in the null
space of ��f �� and therefore the most general solution of
the minimization problem is

f�x� 	
NX
i��

ciG�x � xi� � p�x�

where p�x� is a term that lies in the null space of ��f ��

B Approximation of vector �elds

through multioutput regularization
networks

Consider the problem of approximating a vector �eld
y�x� from a set of sparse data� the examples� which are
pairs �yi�xi� for i 	 � � � �N � Choose a Generalized Reg�
ularization Network as the approximation scheme� that
is� a network with one �hidden� layer and linear output
units� Consider the case of N examples� n � N centers�
input dimensionality d and output dimensionality q �see
�gure ���� Then the approximation is

y�x� 	
nX
i��

ciG�x� xi�

with G being the chosen Green function� The equation
can be rewritten in matrix notation as

y�x� 	 Cg�x�
��



where g is the vector with elements gi 	 G�x� xi��
Let us de�ne as G the matrix of the chosen Green func�
tion evaluated at the examples� that is� the matrix with
elements Gi�j 	 G�xi � xj�� Then the �weights� c are
�learned� from the examples by solving

Y 	 CG

where Y is de�ned as the matrix in which column l is
the example yl� C is de�ned as the matrix in which row
m is the vector cm� This means that x is a d�� matrix�
C is a q � n matrix� Y is a q � N matrix and G is a
n� N matrix� Then the set of weights C is given by

C 	 YG�

It also follows �though it is not so well known� that
the vector �eld y is approximated by the network as the
linear combination of the example �elds yl � that is

y�x� 	 YG�g�x�

which can be rewritten as

y�x� 	
NX
l��

bl�x�yl

where the bl depend on the chosen G� according to

b�x� 	G�g�x�

Thus for any choice of the regularization network �
even HBF � and any choice of the Green function � in�
cluding Green functions corresponding to additive splines
and tensor product splines � the estimated output vec�
tor is always a linear combination of example vectors
with coe�cients b that depend �nonlinearly� on the in�
put value� The result is valid for all networks with one
hidden layer and linear outputs� provided that a L� cri�
terion is used for training� Thus� for all types of regu�
larization networks and all Green functions the output
is always a linear combination of output examples �see
Poggio and Girosi ������
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�� �������� ������



�Sigmoidal� train� �������� �������� �������� �����
�� ��������
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����� ������
� �������� �������
 �������

test� ���
��
� �������
 �������� �������� ��������

Table �� L� training and test error for each of the � piecewise linear models using di�erent numbers of basis functions�
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Model � f�x� y� 	
Pn

��� c�e
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Model � f�x� y� 	
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i�� ci�
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Model � f�x� y� 	
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Table �� The eight models we tested in our numerical experiments�

Model � Model � Model � Model 
 Model � Model � Model � Model �
h�x� y� train� �������� �������� �������� �������� �������� �������� �������� ������
�

test� �������� �������� �������� �������� �����
�� �������� �������� ��������
g�x� y� train� �������� �������� �������� ���
�
�� �������� �������� ��
����� ������



test� �������� ���

��� �������� �������� �������
 ���
����� �������� ��������

Table �� A summary of the results of our numerical experiments� Each table entry contains the L� errors for both
the training set and the test set�
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G(r) = r^2 ln(r)

Figure �� The �thin plate� radial basis function G�r� 	 r� ln�r�� where r 	 kxk�

��



z = exp(- x^2 - y^2)

Figure �� The Gaussian basis function G�r� 	 e�r
�
� where r 	 kxk�
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z = exp(- |x| - |y|)

Figure �� The basis function G�x� 	 e�kxkL�

��



a�

z = exp(-x^2) 

b�

z = exp(-y^2) 

c�

z = exp(-x^2) + exp(-y^2)

Figure 
� In �c� it is shown an additive basis function� in the case in which the additive component of the basis
functions �a and b� are gaussian�

��



-0.4-0.2 0.2 0.4

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

-0.4-0.2 0.2 0.4

0.2

0.4

0.6

0.8

1

a b c

Figure �� a� Absolute value basis function� jxj� b� �Sigmoidal� basis function 
L�x� c� Gaussian�like basis function
gL�x�

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

Figure �� Sin���x�

��



0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

a b

c

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

d

e

Figure �� a� Approximation using one absolute value basis function b� � basis functions c� 
 basis functions d� �
basis functions e� �� basis functions

��



0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1

-0.5

-0.25

0.25

0.5

0.75

0.2 0.4 0.6 0.8 1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

a b

c d

e

Figure �� a� Approximation using one �sigmoidal� basis function b� � basis functions c� 
 basis functions d� � basis
functions e� �� basis functions

��



0.2 0.4 0.6 0.8 1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

a b

c d

e

Figure �� a� Approximation using one �Gaussian� basis function b� � basis functions c� 
 basis functions d� � basis
functions e� �� basis functions

��



-1
-0.5

0
0.5

1-1

-0.5

0

0.5

1

-0.5
0

0.5

1

-1
-0.5

0
0.5

1-1

-0.5

0

0.5

1

.5
0

5

1

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6

0.8

1

-1

0

1

2

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6

0.8

1

-1

0

1

2

a b

Figure ��� a� Graph of h�x� y�� b� Graph of g�x� y��

0
0.2

0.4
0.6

0.8
10

0.2
0.4
0.6
0.8
1

-1
0
1
2

0
0.2

0.4
0.6

0.8
10

0.2
0.4
0.6
0.8
1

-1
0
1
2

0
0.2

0.4
0.6

0.8
10

0.2
0.4
0.6
0.8
1

-1
0
1
2

0
0.2

0.4
0.6

0.8
10

0.2
0.4
0.6
0.8
1

-1
0
1
2

0
0.2

0.4
0.6

0.8
10

0.2
0.4
0.6
0.8
1

-1
0
1
2

0
0.2

0.4
0.6

0.8
10

0.2
0.4
0.6
0.8
1

-1
0
1
2

a b c

Figure ��� a� RBF Gaussian model approximation of h�x� y� �model ��� b� Elliptical Gaussian model approximation
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Figure �
� a� Sigmoidal additive model approximation of h�x� y� �model ��� b� Sigmoidal additive model approxi�
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Figure ��� Several classes of approximation schemes and associated network architectures can be derived from
regularization with the appropriate choice of smoothness priors and corresponding stabilizers and Greens functions
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Figure ��� The most general network with one hidden layer and scalar output�
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Figure ��� The most general network with one hidden layer and vector output� Notice that this approximation
of a q�dimensional vector �eld has in general fewer parameters than the alternative representation consisting of q
networks with one�dimensional outputs� If the only free parameters are the weights from the hidden layer to the
output �as for simple RBF with if n 	 N � the two representations are equivalent�
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