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Which is real, which is virtual?
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General schema

Video Acquisition

Points Acquisition
Colored 
Topological
Mesh

Control Mesh

Construction of a
Control mesh

Fuzzy
Connection

Color
Application

Costruzione della
Mesh Topologica

ANIMATION

Motion Capture

Topological mesh
construction
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Outline

•Points acquisition

•From points to surface (mesh)

•Mesh compression

•Application of colour attribute

•Animation
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Construction of the topological mesh

Digitization

Registration and 
fusion

Mesh construction
(filtering)

Mesh compression
(filtering)

Sets of points

Real object

Sets of 
meshes

Single mesh

Final mesh
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In-house Digitizers

• Projection of patterns 
through a standard 
video projector.

• Imaging through
standard photocameras.

• Image processing to
extract range data 
points and texture.

•There is some rigidity in the distribution of the range data.
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Minolta digitizers

•Speed - scans in less than one second 
(Fast Mode) 

•Precision - over 300,000 points with 
range resolution to 0.0016" (Fine Mode) 

•Simplicity - point and shoot simplicity 
for consistently excellent results 

•Flexibility - only Minolta offers 
interchangeable lenses for variable 
scanning volumes 

http://www.minolta-3d.com/
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Face digitization (Autoscan)

Direct tessellationAcquisition session Points cloud

• Pair of video-cameras + standard laser pointer.
• The range data are obtained by “painting” the surface manually.
• Set of range data, which is denser where required.
• High precision in spot localization (cross-correlation, bright image).

Drawback:   High scanning time. Direct tessellation produces an undesirable result.
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Digitization introduces errors

⇒

Interpolation schemes (e.g. 
Delauney tessellation) fails 
because of measurement noise.

The need of filtering is evident.
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How to convert the points into a mesh?

Problem: noise
Solution: regularized
solutions.

• Human body parts are “smooth” (lisce). 
• Noise has spatial frequencies higher that surface.
• Surface has been over-sampled.
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HRBF Networks
Incremental Reconstruction, error-driven.
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Gaussian RBF Networks

z = s(x)= wk G(x;c k ,Σk
k =1

M

∑ )Linear combination of Gaussian functions:

Pioneers in exploring properties of quasi-local units:
•Broomhead e Lowe, 1988.
•Moody e Darken, 1989.
•Poggio e Girosi, 1990.
•Park e Sandberg, 1991.

Linear filtering:
•Sanner and Slotine, 1992.
•Canon and Slotine, 1995.
•Borghese and Ferrari, 1996, 2001.
•Poggio et al., 1993.
•Canny, 1986 (Computer vision domain).
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Gaussian functions 
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The RBF parameters

M, µk, σk are the structural parameters.
wj are the synaptic weights.
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Learning strategies

•Empirical models: Broomhead and Lowe, 1988; Moody and
Darken, 1989; Park and Sandberg, 1991.

•Regularisation theory: Yuille e Grzywacz, 1988; Poggio
and Girosi, 1990; Girosi et al., 1995; Wahba and Xu, 1998.

•Filtering Theory: Sanner e Slotine, 1992; Canon and
Slotine 1995, Borghese and Ferrari, 1996, 2001; Canny,
1986.

The parameters: M, {Pk} and σk are set through an 
optimization process. Sparse approximation but non 
linear optimization-
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Let us suppose: Σk=Σ ∀ k    

Continuos RBF:

STATEMENT 1: Let w(x), s(x) and G(x-c|σ) ∈ L1(R) and be invariant to 
translation, then the continous RBF Network is equivalent to the 
convolution of the function w(x) with the Gaussian function:
s(x) = w(x)*g(x;σ)

W(v) plays the role of a noisy version of S(v).

Linear Gaussian filter

z = s(x)= w k G(x;c k ,Σk
k =1

M

∑ )

0)( 1 →−+ kk cc

∫ −=
R

dccxGcwxs )|)(()()( σ

In the frequency domain: S(ν) = W(ν) G(ν;σ)
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Low-pass behavior of the Gaussian filter

Pass band [0 νcut-off]
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Discrete linear filter

z = s(x)= wk G(x;c k ,Σk
k =1

M

∑ )ck+1 – ck = ∆c ∀ ck
Equally spaced Gaussians

Output: interpolation 
through the Gaussian 
basis

Pass band [0 νcut-off]
Stop band [νM νs/2]

vs = 1/∆c
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Low-pass behavior of the Gaussian filter

Pass band [0 νcut-off] Stop band [νM νs/2]
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Gaussian filtering
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Linear filtering

21

Artificial Vision. Filter grids which 
operate at different scales.

Small scale (high frequency)
Large scale (low frequency)

Linear combination of Basis Functions: ( )∑ −= M

k kk PPGSPS σ|)(
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HRBF Networks operation

Quasi-local operations => Receptive field.

•S(Pk) is estimated through a local weighted mean in the grid crossings: 

∑
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Problem with this approach

Single scale. 3D objects have different scales in different spatial 
locations.

Small scale. There may be not enough points inside the receptive 
field of a Gaussian function. Small scale  ⇒ Dense packing.

Solutions:
•Wavelets (from fine to coarse). 
•Adaptive hierarchical approach.
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HRBF Networks

a1(x)

a2(x)

s(x)

r1(x)

r2(x)

aJ(x) rJ(x)

Incremental 
Construction of the network

noise
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HRBF Networks operation

Quasi-local operations => Receptive field.

•S(Pk) is estimated through a local weighted mean in the grid crossings: 

∑
∑

−
−

=
m km

m kmmm
k xxG

xxGxS
PS

)|(
)|()(
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σ

σ

R(Pm) = S(Pm) - Sm(Pm)
•A residual is computed for each measured point m as:

• The local reconstruction error is evaluated with a local integral metric 
for each crossing k as: 

MRE(Pk) =   
k

m mmm

N
xSxR∑ − |)()(|
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The surface is therefore 
reconstructed as:
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Hierarchical Radial Basis Function Network 
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Incremental Reconstruction
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Sparse approximation
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First layer: a(Pk1) estimates S(Pk)
l-th layer: a(Pkl) estimates rl-1(Pkl)=
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From linear filtering theory:

Setting the parameters of the HRBF
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r  =  Reconstructed through HRBF

• a(Pkl) is determined through a local Maximum a-posteriori estimate:

Ph ∈ Receptive field of G(Pkl|σl)
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Hierarchical Radial Basis Functions Network
(Borghese and Ferrari, 1998 - Neurocomputing)

• Stacking grids of Gaussians one over the other

• Computation of the parameters with local operations
(no “learning” = no iterations)

• Uniform reconstruction error

It belongs to the family of
“Incremental Surface-Oriented Reconstruction” 

(Mencl and Muller, 1998) 
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HRBF summary

•Stacking grids (not complete) of Gaussians one over the other. Sparse 
approximation.

•Quasi-local operations => Receptive field.
•High parallelism.

•Computation of the parameters with local operations (no “learning” = 
no iterations).

•Uniform residual error  ≈ measurement noise.

It belongs to the family of “Incremental Surface-Oriented 
Reconstruction” (Mencl and Muller, 1998). 
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HRBF Networks
Incremental Reconstruction, error-driven takes a few seconds
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Surface sampling and mesh semplification
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Results on breast reconstruction

Error estimation:
• Volume computation error: 4.3 %
• Linear error: 2 %
• Surface topography: 5 %

• 7 subjects
• 30 secs aquisition
• 3 lasers array (9000 points)
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Results on morphing
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Data compression

Interpolation schemes (e.g. Delauney 
tessellation) fails, because of measurement 
noise.

100,000 data points

2,000 Reference Vectors
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Mesh compression. Why?

•Limited bandwidth, limited capacity of processing and memory.
•Simplification of mesh processing.

•Compression - Transmission – Decompression.

•Two large families: lossy or non-lossy compression. 
•
•• Lossy compression. The information lost in not relevant to the data 
usage. For example, here we want to loose noise.
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Vector Quantization (VQ)

•The data are approximated with a reduced data set of points 
called reference vectors.

Given:
-a set V ⊆ Rn of N data points (v1, v2 … vN).
-a set W ⊆ Rn of M reference vectors (w1, w2 … wM).

The W are a vector quantization coding of V if a certain 
function of V and W is minimized.

We define as winning reference vector: ( )2

min j
w

wv
j

−
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Compression through VQ

• Techniques widely used for lossy compression. 
• They are used here to loose the digitizing noise.
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• V is input: the set of range data of cardinality N.
• W is the output: a reduced set of points, of cardinality M << N

called Reference Vectors.
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Hard learning

E= P(v)(v −wi(v ) )
2 dv

V
∫

∆wi =εδi(v )(v − w i )
Displacement of only 1 RV for each data point.
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Soft-Max adaptation

( )( ) ( )jjjtj wtvwtvkh(t)tw −⋅=∆ )(~),(~)( )(λε

)(thλ determines the receptive field for

• The wjs receive an adaptation, which decreases with their distance from

•For each iteration, t, extract a data point )(~ tv

•For all the Reference Vectors, w, compute a displacement, such that
E(V,W) decreases:

)(~ tv

)(~ tv

Its amplitude decreases as optimization progresses.

• Good solution in a computational time O(NM logM).

λ(.)

hλ
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Speed-up through HB Processing

Enhanced
Vector
Quantization
(EVQ).
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How to use the HBs?

• “Intelligent” initialization. RVs are distributed such that their 
asymptotical density is locally observed:
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γ depends on the space dimension (Zador, 1982): γ = D/(D+2)

Mk does not depend on metric information.

Laboratory of  Motion Analysis & Virtual Reality, MAVR http://homes.dsi.unimi.it/~borghese

•The receptive field is defined here as the 2D closest boxes.
wjs far from          receive little updating because the Receptive
Field shrinks.

Optimization

( )( ) ( )jjjtj wtvwtvkh(t)tw −⋅=∆ )(~),(~)( )(λε

A receptive field is defined for )(~ tv
Ordering and updating is only for those wj inside the receptive field.

)(~ tv

Parameters setting

•Algorithms for automatically setting the parameters: ε, λ, the box side, 
have been derived.
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New pipe-line for mesh construction

Digitization

Registration and 
fusion

Mesh construction
(filtering)

Mesh compression
(filtering)

Sets of points

Real object

Sets of 
meshes

Single mesh

Final mesh

Digitization

Data reduction
(filtering)

Mesh construction

Real object

Filtered and reduced 
set of points

Final mesh

Single set 
of points

Traditional pipe-line Pipe-line proposed here.

Mesh is constructed and managed from a reduced set of (filtered) points

Laboratory of  Motion Analysis & Virtual Reality, MAVR http://homes.dsi.unimi.it/~borghese

Constructiong the topological mesh 
(summary)

Hipothesis: surfaces are smooth.

• Regularized reconstruction through HRBF networks.
• Regular dense sampling.
• Mesh compression through VQ.

Result: a topological mesh, geometrically accurate.
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Range data from Raw Video sequences

• Camera internally calibrated (metric cameras).
• At least two pictures.

• Automatic identification of a set of features to initialize Bundle 
Adjustment or estimate the Essential matrix and identify
additional corresponding points through them.
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Identification of sub-images

1. Three regions clustering.
2. Vertical & horizontal projection of

middle range region.
3. Identification of the peaks in 

horizontal and vertical 
histograms and geometrical
considerations leads to the 
identification of sub-regions.
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Features found

•Algorithm tested on a 
database of 46 images.

• Processing time 14s to 2 
minutes with interpreted 
language (IDL) which 
rises hopes for real-time.

• Sobel gradient detector
• Colour clustering.
• Curve fitting.
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General schema

Video Acquisition

Points Acquisition
Colored 
Topological
Mesh

Control Mesh

Construction of a
Control mesh

Fuzzy
Connection

Color
Application

Costruzione della
Mesh Topologica

ANIMATION

Motion Capture

Topological mesh
construction
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Colour Application

Coloured MeshTopological mesh Bitmap

Gouraud shading: vertex colour interpolation => colour field.
Low power graphics and soft shading. 
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Colour

Grey level images: white -> black.

Colour images: Red Green Blue (additive mix). Same primary 
colours present in the human retina.

Hue. Describes the colour (red, green…)
Saturation. Quantity of the colour. It differentiates red from rose. It 
can be viewed as the difference from the colour and a grey with the 
same brightness.
Lightness. Intensità del colore, it depends on the hue and saturation. 
It can be viewed as the colour of the image in B/W. It is due to the 
illumination intensity.

Colour is the colour which is perceived, seen, that is the colour which
is reflected by the objects surface. 
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Colors
(examples)

White

Grey

Dark grey

Black

Red

Yellow

Pale blue

Green
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Picking up the vertexes colour

•Alignment: porjection of topological mesh onto the bitmap plane. 
•Colouring: Assigning the colour of the proper pixel to the vertexes.
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Chromatic scanning

Geometric accuracy does not imply colour accuracy!
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Recursive re-tiling

A limited chromatic error can be guaranteed.
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Metodologia di suddivisione del triangolo

La suddivisione del triangolo 
porta ad una graduale 

regolarizzazione della forma.
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Re-tiling technique

2,505 polygons 4,307 polygons 10,513 polygons

Computational
time < 1s
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General schema

Video Acquisition

Points Acquisition
Colored 
Topological
Mesh

Control Mesh

Construction of a
Control mesh

Fuzzy
Connection

Color
Application

Costruzione della
Mesh Topologica

ANIMATION

Motion Capture

Topological mesh
construction
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Two-layers Animation
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Two-layers technique

•Deformation of a topological mesh induced by a control mesh. 
•The control mesh connects the marker points. 
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Markers disposition

Position of the feature points 
according to MPEG-4 standard:

principali
secondari

Problems with:
Eyes and tongue.
Nose basis (visibility).
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Real and Virtual markers

Real markers (51)
Virtual markers solid with the head (7)
Virtual markers solid with other markers (2)

Total: 60 marker
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Construction of the Control Mesh

51 Markers acquired (cf. MPEG-4 specifications). 
7 virtual markers defined through the LRF (green).
2 Virtual markers defined through Real Markers (blue). 
56 control points for the mesh + 4 for LRF.

47 markers on the skin:
- Problems with:

Eyes and tongue.
Nose basis (visibility).

4 markers on an elastic band:
To identify a local Reference Frame (LRF).
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Construction of the Control Mesh
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The topological and control mesh

Control mesh Topological mesh The 2 meshes aligned
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Aligning the control and topological meshes

•The vertexes of the control mesh are superimposed to those of the topological mesh.
•The vertexes on the coloured topological mesh can be made more evident by using the 
adaptive tessellation procedure.
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Markering the markers on the topological mesh
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Towards animation

Video Acquisition

Points Acquisition
Colored 
Topological
Mesh

Control Mesh

Construction of a
Control mesh

Fuzzy
Connection

Color
Application

Costruzione della
Mesh Topologica

ANIMATION

Motion Capture

Topological mesh
construction
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Connection through intrinsic coordinates

O

A

Bv
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P’

quv •+•+•+= nOAOBOP r

n

u, v and q are the intrinsic coordinates of P
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Determination of the proper control triangle
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Stretches can form
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Fuzzy association at the borders
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Connection between topological and control meshes

P1 P3 P2 P1 P3 P2

Control mesh

Topologicalmesh

Control mesh

Topologicalmesh

T1 T2 T1 T2

P1 ⊥ T1 ∈ T1      P3 ⊥ T1 ∉ T1
P2 ⊥ T2 ∈ T2      P3 ⊥ T2 ∉ T2

P1 ⊥ T1 ∈ T1      P3 ⊥ T1 ∈ T1
P2 ⊥ T2 ∈ T2      P3 ⊥ T2 ∈ T2

Two projections for point P3.No projection for point P3.

∀ Pi of the topological mesh: 
1) Determination of the tringle on which it is projected. 
2) Computation of the intrinsic coordinates (for T1 and T2). 

Problem at the border of the control tringles due to linear approximation:

The solution is to give a fuzzy assignment at the borders.
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Result on fuzzy connection

Rigid association Fuzzy association
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Results: anger
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Results: surprise
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Results: disgust

78 http://www.inb.mi.cnr.it
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Results: happiness
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Real-time Animation

•Compact and realistic mesh, adequate for real-time animation.

•Future developments: Insert biomechanics “rules” into the exterior 
reproduction.

• Attract “good” psychologists to work with.

• Develop better compact models for virtual interactions.


