

Learning strategies

http://homes.dsi.unimi.it/~borgh

•Empirical models: Broomhead and Lowe, 1988; Moody and Darken, 1989; Park and Sandberg, 1991.

•<u>Regularisation theory:</u> Yuille e Grzywacz, 1988; Poggio and Girosi, 1990; Girosi et al., 1995; Wahba and Xu, 1998.

The parameters: M, $\{P_k\}$ and σ_k are set through an optimization process. Sparse approximation *but* non linear optimization-

•**Filtering Theory:** Sanner e Slotine, 1992; Canon and Slotine 1995, Borghese and Ferrari, 1996, 2001; Canny, 1986.

Laboratory of Motion Analysis & Virtual Reality, MAVR

 $\underbrace{\text{Linear Gaussian filter}}_{z = s(x) = \sum_{k=1}^{M} w_k G(x; c_k, \Sigma_k)}$ Let us suppose: $\Sigma k = \Sigma \forall k \quad (c_{k+1} - c_k) \rightarrow 0$ Continuos RBF: $s(x) = \int_R w(c)G((x-c)|\sigma)dc$ $\underbrace{STATEMENT 1:}_{R} \text{ Let } w(x), s(x) \text{ and } G(x-c|\sigma) \in L1(R) \text{ and be invariant to translation, then the continuos RBF Network is equivalent to the convolution of the function <math>w(x)$ with the Gaussian function: $s(x) = w(x)^* g(x; \sigma)$ In the frequency domain: $S(v) = W(v) G(v; \sigma)$ W(v) plays the role of a noisy version of S(v).
Laboratory of Motion Analysis & Virtual Reality, MAVR $\underbrace{Laboratory of Motion Analysis & Virtual Reality, MAVR}$

Mesh compression. Why?

http://homes.dsi.unimi.it/~borgh

•Limited bandwidth, limited capacity of processing and memory. •Simplification of mesh processing.

•Compression - Transmission - Decompression.

•<u>Two large families</u>: lossy or non-lossy compression.

•• Lossy compression. The information lost in not relevant to the data usage. For example, here we want to loose noise.

Laboratory of Motion Analysis & Virtual Reality, MAVR

Wector Quantization (VQ) \dots •The data are approximated with a reduced data set of points
called *reference vectors*.Given:
-a set V \subseteq Rⁿ of N data points $(v_1, v_2 \dots v_N)$.
-a set W \subseteq Rⁿ of M reference vectors $(w_1, w_2 \dots w_M)$.The W are a vector quantization coding of V if a certain
function of V and W is minimized.We define as winning reference vector: $\min(\|v - w_j\|^2)$

Metodologia di suddivisione del triangolo						
Classe	Condizione sugli angoli	Condizione sui lati	Classificazione	Selezione dei lati	Esempio	Suddivisione
1	Due angoli > 70°	Due lati > 146% del terzo lato	Isoscele alto	Il lato più lungo è diviso nel suo punto medio	Δ	\square
2	Due angoli < 45°	Due lati < 71% del terzo lato	Isoscele basso	Il lato più lungo è diviso nel suo punto medio	<u></u>	
3	Altrimenti	Altrimenti	Quasi–equilatero	Ogni lato è divi- so nel suo punto medio		\bigwedge
La suddivisione del triangolo porta ad una graduale regolarizzazione della forma.						
Laboratory of Motion Analysis & Virtual Reality, MAVR http://homes.dsi.unimi.it/~borghe						

