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Dynamic Knowledge Inference and Learning under
Adaptive Fuzzy Petri Net Framework

Xiaoou Li, Wen Yy Member, IEEEand Felipe Lara-Rosanéssociate Member, IEEE

Abstract—Since knowledge in expert system is vague and Recently, some adjustable FPNs were proposed. [3] gave an
modified frequently, expert systems are fuzzy and dynamic algorithm to adjust thresholds of FPN, but weights’ adjustments
systems. It is very important to design a dynamic knowledge \yere yeglized by test. [6] proposed a generalized FPN model

inference framework which is adjustable according to knowledge . . .
variation as human cognition and thinking. Aiming at this object, (GFPN) which can be transformed into neural networks with

a generalized fuzzy Petri net model is proposed in this paper, itis OR/AND logic neurons [5], thus, parameters of the corre-
called adaptive fuzzy Petri net (AFPN). AFPN not only takes the sponding neural networks can be learned (trained). In fact, the
descriptive advantages of fuzzy Petri net, but also has leaming knowledge learning in [6] was under the framework of neural
ability like neural network. Just as other fuzzy Petri net (FPN) networks. Adaptive Fuzzy Petri Net (AFPN) [13] has also the
models, AFPN can be used for knowledge representation and . . .

reasoning, but AFPN has one important advantage: it is suitable learning ability o_f a neural network, but it does not need _to
for dynamic knowledge, i.e., the weights of AFPN are ajustable. b€ transformed into neural networks. However the learning
Based on AFPN transition firing rule, a modified back propaga- algorithm in [13] is based on a special transition firing rule,
tion learning algorithm is developed to assure the convergence of it js necessary to know certainty factors of each consequence
the weights. proposition in the system. Obviously, this restriction is too

Index Terms—Expert system, fuzzy reasoning, knowledge strict for an expert system.

learning, neural network, Petri net. In this paper, we propose a more generalized reasoning rule
for AFPN. Back propagation algorithm is developed for the
I. INTRODUCTION knowledge learning under generalized conditions. The structure

of the paper is organized as follows: after the introduction of the

PETR| NETS (PNs) have ability to represent and analyze {fpN and AFPN models, the reasoning algorithm and the weight

1 aneasywayconcurrency and sypchromzaﬂon phenomepgyning algorithm are developed, examples are included as an
like concurrent evolutions, where various processes that evolNgstration.

simultaneously are partially independent. Furthermore, PN ap-
proach can be easily combined with other techniques and theoy  k NowLEDGE REPRESENTATION ANDFUZZY PETRI NET
ries such as object-oriented programming, fuzzy theory, neural ) ] ) . . .
networks, etc. These modified PNs are widely used in computer/" this section, we will review weighted fuzzy production
manufacturing, robotic, knowledge based systems, process dafies and FPN.
trol, as well as qther kinds of_en_gmeerlng apphcaﬂ_ons._ A Weighted Fuzzy Production Rules
PNs have an inherent quality in representing logic in intuitive
and visual way, and FPNs take all the advantages of PNs. Soln many situations, it may be difficult to capture data in a
the reasoning path of expert systems can be reduced to sinfpRcise form. In order to properly represent real world knowl-
sprouting trees if FPN-based reasoning algorithms are applR@pe, fuzzy production rules have been used for knowledge rep-
as an inference engine. FPN are also used for fuzzy knowledggentation [2]. A fuzzy production rule (FPR) is a rule which
representation and reasoning, many results prove that FPNIgscribes the fuzzy relation between two propositions. If the an-
suitable to represent and reason misty logic implication relatioi@sedent portion of a fuzzy production rule contains “AND” or
121, I3, [1], [12], [4], [8]. “OR” connectors, then it is called a composite fuzzy production
Knowledge in expert systems is updated or modified fréule. If the relative degree of importance of each proposition
quently, expert systems may be regarded as dynamic systeléhe antecedent contributing to the consequent is considered,
Suitable models for them should be adaptable. In other word¥eighted Fuzzy Production Rule (WFPR) has to be introduced
the models must have ability to adjust themselves accordibg-
to the systems’ changes. However, the lack of adjustment-€t R be a set of weighted fuzzy production rules

(learning) mechanism in FPNs can not cope with potenti#l = {Ri,Rs,...R.}. The general formulation of the
changes of actual systems [5]. 1_th weighted fuzzy production rule is as follows:
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¢ consequent proposition; pj,/lj, w; t D
b certainty factor of the rule; |
Th threshold; O > O
w weight. |

In general, WFPRs are categorized into three types which are dj u dy

defined as follows.

Type 1: A Simple Fuzzy Production Rule Fig. 1.

R:IFaTHEN ¢ (CF = p), \,w

pi AW,

For this type of rule, since there is only one proposition
in the antecedent, the weightis meaningless.
Type 2: A Composite Conjunctive Rule

R :IF a; AND as AND --- AND a,, THEN ¢ (CF = p),

)‘la)‘Qa"'a)‘nawlana"'awn
Type 3: A Composite Disjunctive Rule

R:IFa; ORaz; OR --- ORa, THEN ¢ (CF = p),

FPN of Type 1 WFPR in [7].

association function which assigns a
certainty value to each transition;

A A9y A W01, 202, + - W Fig. 2. FPN of Type 2 WFPR in [7].
For Type 2 and Type 3; is theith antecedent proposition of FiT —[0.1]
rule R, andc the consequent one. Each propositigrtan have ' ’
the format % is f,”, where f, is an element of a set of fuzzy a: P —[0,1]

setsF'. j are the threshold and certainty factor of a simple or
composite rule};, w; are the threshold and weight of tith an-
tecedent of a composite conjuctive or disjunctive rule. In above
R . .. fB:P—D
definition, thresholds are assigned to antecedent propositions.
For composite conjuctive rules, thresholds are assigned to the
weighted sum of all antecedent propositions.
In this paper, in order to cope with Adaptive Fuzzy Petri Net
(AFPN), we define WFPRs as following new forms:

Type 1: A Simple Fuzzy Production Rule
R:IFaTHEN ¢ (CF = p), \,w

association function which assigns
a real value between zero to one to
each place;

bijective mapping between the
proposition and place label for each
node.

PNnTnD=4¢,|Pl=|D|.

In order to capture more information of the WFPRs, the FPN
model has been enhanced to include a set of threshold values
and weights, it consists of a 13-tuple [7]

FPN=(P,T,D,Th,1,0,F,W, f,a,3,7,6)  (2)

Type 2: A Composite Conjunctive Rule

where
R . IF agt AND as AND --- AND a,, THEN ¢ (CF: u), Th={\1, A
)\,TUl,?UQ,...,wn FZ{flvf?v"'fS}
Type 3: A Composite Disjunctive Rule W = {wy,wy, ..
a:P— F
R:IFa; ORaz; OR --- ORa, THEN ¢ (CF = p),
v: P —Th

AL, A2y ey Ap, W, wo, . Wy

., A, } set of threshold values;

set of fuzzy sets;

., w, + set of weights of WFPRs;

association function which assigns a
fuzzy set to each place;

association function which defines
a mapping from places to threshold
values.

B. Definition of Fuzzy Petri Net The definitions ofP, 7", D, I, O, f andg are the same as above.
FPN is a promising modeling methodology for expert systefrach proposition in the antecedent is assigned a threshold value,

[2], [6], [12]. A GFPN structure is defined as a 8-tuple [2] and§ : P — W is an association function which assigns a
weight to each place.

FPN = (P,T,D,1,0, f,a, ) Q)
where C. Mapping WFPRs into FPN
P ={p1,p2,...,pn} setof places; The mapping of the three types of weighted fuzzy production
T = {t1,t2,...,tm} setof transitions; rules into the FPNs in [7] are shown in Figs. 1, 2, and 3, respec-
D ={dy,ds,...,d,} setofpropositions; tively. For example, a rule of Type 2 may be represented as
1{(0): T — P input (output) function which de- R : IF d; AND d» AND --- AND d,, THEN ¢ (CF =

fines a mapping from transitions to), v(p;) = A;,8(p;) = w;, alp;) = f;,5 = 1,2,...,n (to-
bags of places; kens representing fuzzy sets of given facts).
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Fig. 3. FPN of Type 3 WFPR in [7].

I1l. ADAPTIVE Fuzzy PETRI NET

FPN [7] can represent WFPRs perfectly. But it can not adjust
itself according to the knowledge updating. In another word,dy 4 AFpN of Type 1 WFPR.
has not learning ability. In this paper, we introduce the concep-
tion “adaptive” into FPN, the proposed model is called AFPN.

A. Definition of AFPN
Definition 1: An AFPN is a 9-tuple

AFPN = (P,T,D,1,0,,8, Th,W)

whereP, T, D, 1,0, «, 3 are definedthesameas[2]h: T —
[0,1] is the function which assigns a threshold valefrom
zero to one to transitioty. Th = {A1, A2, ... A ). W = WU Fig. 5. AFPN of Type 3 WFPR.
Wo.Wr 1 — [0,1]andWs : O — [0, 1], are sets of input

weights and output weights which assign weights to all the arcs Fuzzy Reasoning Using AFPN
of a net.

Firstly, we give some basic definitions which are useful to
i ) explain the transition firing rule of AFPN.
B. Mapping WFPR into AFPN Definition 2 (Source Places, Sink Places)placep is called
The mappings of the three types of WFPR into the AFPNssource place if it has no input transitions. It is called a sink
are shown as Figs. 4, Section 1I-B, and 5 respectively. The thnglace if it has no output transitions.
types of WFPR may be represented as follows. A source place corresponds to a precondition proposition in
Type 1: A Simple Fuzzy Production Rule WFPR, and a sink place corresponds to a consequent. For ex-
ample, in Fig. 6 1, P, P; are source placeg’ is a sink place.
R:IFaTHENc Th(t) = X\, Wo(t,p,;) = p, Wi(pi, t) = w
Definition 3 (Route): Given a placep, a transition string

Type 2: A Composite Conjunctive Rule t1ts...t, is called a route t@ if p can get a token through
firing this transition string in sequence from a group of source
R :IF a; AND a; AND --- AND a, THENc, places. If a transition string fire in sequence, we call the
Th(t) = A, corresponding routactive

For a placey, it is possible that there are more than one route

i) = ; =w;,t=1,... . A . .
Wol(t.pj) = 1 Wipi,t) = wii A to it. For example, in Fig. &, #3t, is a route taP, t» is another

. : s . route to it. LetI(t) = {pil Pi2, .- pin} Wi, W2, ..., W[n
Type 3: A Composite Disjunctive Rule A T Wnb by ey L gy ’ LA
yp pos! Sjunctive =u the corresponding input weights to these plagesis, ..., A,
R . IF ay OR as OR . ORCLn THEN c, threShO|dS Let O(t) = {p0.17p027 e 7p0’rn}!' and
Wo1,Wo2, - - -, Wom the corresponding output weights to
Th(t;) = Ai, Wol(ti,pj) = 1. Wi(pj, ti) these places.
=wpt=1,...,n We divide the set of place® into three parts” = Pyr U

Py U Po, whereP is the set of places of AFPN?yr = {p €
P|p=0},p e Pyris called a user input plac&,,; = {p €
The mapping between AFPN and WFPR may be understofd 'p # @ andp # 0},p € P, is called an interior place;
as each transition corresponds to a simple rule, composite cdlr = {p" = @}, p € Pp is called an output place. In this paper,
junctive rule or a disjunctive branch of a composite disjunctiviéis an empty set.
rule; each place corresponds to a proposition (antecedent or corefinition 4: The marking of a place:(p) is defined as the
sequent). certainty factor of the token in it.
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Fig. 6. AFPN of Example 1.

Definition 5: V¢ € T, ¢t is enabled iVpr,; € I(t),m(ps;) >
0,7 =1,2,...,n.
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t4; A4

_\

it is greater than its threshold, theffires, so an AFPN can be
implemented. Thus, through firing transitions, certainty factors

Definition 6: Whent is enabled, it produces a new certaintgan be reasoned from a set of known antecedent propositions to

factor CF(¢)
Zm(plj) “wry, Z m(pr;) - wrj > Th(t)
C _ J J
F) 0, Zm(pjj) ~wr; < Th(t).

J

We may use a continuous functidi¥(¢)(x) to approximate
CF(t)

CFt)(z) =z - F(x)
where

e=_ mlpr)-wi
j

where F'(x) is a sigmoid function which approximates the

threshold oft
Fz) = 1/(1 +C—b(m—Th(t)))

where b is an instant. Ifb is big enough, whenz >
Th(t),e~*@=Th)) =~ 0, then F(z) =~ 1, and when
x < Th(t),e~@=Tht) — o0, thenF(z) =~ 0.

Definition 7: If = > Th(¢), transitiont fires, at the same

time, token transmission takes place.
1) If a placep,; only has one input transitio a new token

with certainty factorw,, - CF(t) is put into each output

placep,i,k = 1,2,...,m, and all tokens irp;;,j =
1,2,...,n are removed.

2) If a placep,, has more than one input transitions (as
Fig. 5), and more than one of them fire, i.e. more than

a set of consequent propositions step by step.

Let Tpitian = {t € T | tN Py #Pandt N Py, = 0},¢ €
Tinitial IS called an initially enabled transition.

Let Tcurrent = {t S ﬂnitial | sz S 'tv m(pz) >
0, andCF(t) > Th(t)},t € Teurrent IS called a current
enabled transition.

Fuzzy Reasoning Algorithm

INPUT: the certainty factors of a set of antecedent proposi-
tions (correspond t@yt in AFPN)

OUTPUT: the certainty factors of a set of consequence propo-
sitions (correspond t&,,; U Po in AFPN)
Step 1) Build the set of user input placEsr.
Step 2) Build the set of initially enabled transitiofis; ;.-
Step 3) Find current enabled transitiohi§,....t according

to Definition 5
Step 4) Calculate new certainty factors produced by fired
transitions according tBefinition 6.

Step 5) Make token transmission accordindptefinition 7.
Step 6) Letl’ =T — Towerent, P = P — Teurrent-
Step 7) Go tdStep 3and repeat, until;reny = 0.

IV. KNOWLEDGE LEARNING AND AFPN TRAINING

In[13], we developed a weights learning algorithm under fol-

lowing conditions.

1) Itis necessary to know the certainty factors of all output
places (i.e. the right hand of all rules).

2) Only one layer of weights can be learned.

3) For rules of Type 3, if there are more than one transition
fire, we must know which input transition is the token
contributor to the output place.

one routes are active at the same time, then the new cer4) In case 2 of the Definition 7, error distribution.
tainty factor ofp,. is decided by the center of gravity of These conditions are very strict, because these information in

the fired transitions

> lwey - CF(¢5)]
Zj Woj

m(pok) =

wheret; fires, ;€ pox.
According to above definitions, a transitiois enabled if all

real expert systems may be not available. In this paper we will
relax these conditions to more general cases. The main idea is
that all layer weights can be updated through the back-propaga-
tion algorithm if certainty factors of all sink places are given.
Back propagation algorithm
We assume that

its input places have tokens, if the certainty factor produced by « AFPN model of an expert system has been developed;
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o(a)w, TABLE |
\ RESULTS OFAFPN
/v@_> a(c) Group No. | a(P1) | a(P2) | a(P3) | «(P4) | a(P6) | a(PS)
ala,)w, 1 0.2190 | 0.0470 | 0.6789 | 0 0 |0.3243
2 0.6793 | 0.9347 | 0.3835 | 0.5434 | 0.5850 | 0.3055
3 4 3 0.5194 | 0.8310 | 0.0346 | 0.4072 | 0.4517 | 0.2359
“r r_.'_T.T.'.iili.'.f.‘.:;.'..':."..'..‘..‘ 4 0.0535 | 0.5297 | 0.6711| 0 0 |0.3206
o8r L ,_,_} ___________________ 5 0.0077 | 0.3834 | 0.0668 | 0 0 0
o7r ;',/ 1 T 6 0.4175 | 0.6868 | 0.5890 | 0 0 |0.0279
st il' 2 7 0.9304 | 0.8462 | 0.5269 | 0.7443 | 0.6647 | 0.3472
osk I:: 8 0.0920 | 0.6539 | 0.4160 | 0 0 0
oal E: 9 0.7012 | 0.9103 | 0.7622 | 0.5610 | 0.5867 | 0.6705
i 10 0.2625 | 0.0475 [ 0.7361| 0 0 |0.3516
0.3 : ,
)
o2l i : whereG™® (k = 1...n) is the active function of thé_th layer,
o1r RN W& (k= 1...n)isthe weight of thé:_th layer. If the real data
A . . . s | is O*, the output error vector is

0 . )
-0.2 0 02 04 06 08 1 12 14 16

en =0() — 0.
Fig. 7. Sigmiod functions in Example 1.
Since we do not process the tokens in the output layer, the output
layer may be selected as the rule of the center of gravity (see

* in AFPN model, ThandW, are known; Definition 7), i.e.,

* set of certainty factor values @f; and Py, is given.
Here we take Type 2 as an illustration to show knowledge a™ (z) = x (4)
learning procedure using AFPN. Type 2 can be translated into an Zj Woj

AFPN like Section I1I-B, this AFPN structure can be translated

further into a neural networks-like structure (see Section IvJhe learning algorithm is the same as the backpropagation of
multilayer neural networks:

whereG is
» The weights in output layer is updated as
G(x) == f(z) @ (3) WOk 4 1) = W (k) — 7, AT
where
" M) where
p=WIA = YL awi, f(z) = p/l+e TV sig ) input of then_th layer;
moid function; v > 0, adaptive gain;
b constant which adjust the steepnesg @f); W (k) weight at the time of.
W weight vectoW := [w1,ws ... wy];
o output vector of previous layerA = ¢i = i GV ()W ® (5)

[ar, ... an]t.
. . . . . . the weights are updated as
This continuous function may approximate a logic factqr, i g P

and ) are selected suitable values. For example, no. 1 in Fig. 7W(n—1)(k +1)= W(n—l)(k) 1 GV AGD
has the values gs = 0.8, b = 200 and\ = 0.5.
For a placep, there are some learning routes which are from :
a set of source places to it. The weights in these routes can be /() 1 1) = W@ (k) — 1, GP e, AP
trained according the back propagation algorithm developed in oy A (D (1 1
this section. Along the selected rou®e the feedforward prop- Wi )(k +1)= w )(k) —nGWe A )
agation process (one hidden layer) is that given any input data \yherec is the derivative of the nonlinear functic.
U and the fixed weights;, the outputO(£2) can be expressed

o- St
0(2) = G {WeI G [ DD @ dz |1 _t(i:i()’“”

X (W(l)U)” - (fib:—b(m—x))? Ty ei(m—k)' (7)
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The justification of backpropagation can be found in [11]. Fi- «(P2) Wy
nally, we summarize the learning algorithm of AFPN as
Step 1) Select a set of initial weight values.
Step 2) For each set of input data, find all active routes, and
mark themy, Qs, ..., Q. @
Step 3) Following each active route, according to the
reasoning algorithm, calculate the corresponding
output. o P4) wy
Step 4) Set the difference between the idea output and the
calculated output as the errerselecty,, use (6) to Fig. 8. The neural network translation of the learning part in Example 1.
adjust the weights on these routes.

a(P5)

V. SIMULATION

0.8 b
In this section, two typical examples are selected to show tf ; ., M i
results in the prior sections. e

Example 1: P1, P2, P3, P4, P5 and P6 are related propo- ©-6
sitions of an expert systeti;. Between them there exist the 451
following weighted fuzzy production rules

0.9 T T T

W,
RI1: IF P1 THEN P4 (Ay, 111) 04L .
R2: IF P2 AND P4 THEN P5 (ws, wa, As, 1i3) 0.3 1
R3: IF P3 OR P5 THEN P6 (Ao, Ay, o, fia)-
This example includes all the three types of rules, in whicl°? ]
R1is a simple WFPRR2 is a composite conjunctive one, and o.1 . . 4
100 200 300 400 500 600

R3 is a composite disjunctive one. We want to show the fuzzy
réasoning and the weights |e§m'ng_algomhm- . Fig. 9. Single layer learning results of Example 1.
First, based on the translation principle, we niapinto an

AFPN as follows (shown as Fig. 6) a(P1) = 0.2190, the threshold\; is 0.50. Sincex(P1) < Ay,

transitiont; cannot fire, so the output certainty factori€P4)

is 0. The use a sigmoid function to approximate a threshold
means that exact zero isim ibl for example, 0. 1).

where P = {pupmmsmh = e, pOE e s small enougn, the sigmoid

fo.ta, D = {P1 P2, P3, P4, P5, PG}, Th = {i, A, function canaIO roximate the threshold with o%d,accurrfc

)‘3a)‘4}aWI = {TUQ,ZU4},WO = {NlaNQaN3au4}' PP g 4

We have three input proposition8{, P2 and P3) and three b It thedweight.s are uhnknownr], ne_?rr]al lnetwprks tech?i?]ueAn;gyN
consequence propositionB4, P5 and P6). The data are given € used to estimate the weights. The learning part of the

as (see the part in the dashed box in Fig. 6) may be formed as a
standard single layer neural networks (see Fig. 8). Assume the

g = 0.80, o =075 pg=085 =082 ideal weights are
AL =050, Ao=0060, A3=055 \i=0.40 W, =063, Wy =037,
Wy = 0.63, Wo = 0.37

AFPN, ={P.,T,D,1,0,q,8, Th,W}

The sigmoid function is
We use four sigmoid functions as .
Fa@) = 1o ®
ti . S 200z —055)
-Fz(l’) = m, 121,2,3,4
te If the inputsa(P1) anda(P2) are given random data from
to approximate the four thresholds, A», A3, A4, the steepness 1 to 0, we can get the real outpaf°5) according to the ex-

b; are selected as 200 (see Fig. 7). Especially, for the transitipert systeni’;. Given any initial condition forv, andws, put

t3, the argument of functioi#(x) is the same inputs to the neural network. The error between the
output of neural networky’(P5)) and that of the expert system
x = a(P4)ws + a( P2)ws. I'1 («(P5)) can be used to modified the weights, we may use the

following learning law
Using fuzzy reasoning algorithm, a set of output data (cer- .
tainty factors of consequence propositions) can be calculated ~ W (k + 1) = W(k) + Gée(k)A(P(k)) 6 >0
according to the input data (certainty factors of antecedent e(k) :== a(P5)(k) — « (P5)(k) (9)
propositions). Table | gives the results of AFPN.
One can see that some data are 0. This means that the comegere § is learning rate, a smallé may assure the
sponding thresholds were not passed. For example, in Groupehrning process is stable. Here, we seléct = 0.07.
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t3, A3

Fig. 10. AFPN of Example 2.

a(PD) a(P6)

a(P2) __ " ANa(PE) a(P10)

> G2

»(G1
U/,
/ K

a(P3) \
Hyy
)

NN2 a(P12)

a(P9) /

oc(P4) *‘ /
/ a(’%\
Ws

a(P5) \&
NN1 @—> a(P11)
i

a(PT)

Fig. 11. The neural networks translation of the AFPN in Fig. 12.

W (k) = [wa(k), wa(k)], A(P(k)) = [a(P2(k)), «(P4(k))], expert systenl’;. There exist the following weighted fuzzy

and production rules
0.85x RI: IF P1 AND P2 AND P3 THEN
Gla) = 1+ ¢—200(z—0.55)" P8 (w1, w2, w3, A1, p1)
o _ R2: IF P4 AND P5 THEN P9 (wy, ws, A2, ft2)
After a training procesék > 400), the weights convergence g3- IF P6 AND P8 THEN P10 (wg, ws, As, ft5)
to real values. Fig. 9 shows simulation results. R4 IF P7 OR P9 THEN P11 (A3, Ay, p3, j12)
In this example there is only one learning layer. Example gs- IF P9 OR P10 THEN P12 (A4, Ag, ptaz, i)
will show a more complicated case where two learning layersgased on the translation principle, we niapinto an AFPN
(multilayer perceptrons) is used. (see Fig. 10).
Example 2: P1, P2, P3, P4, P5, P6,

P7, P8, P9, P10, P11 and P12 are related propositions of an AFPN, ={P,T,D,1,0,c,3, Th,W}
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1 - - The learning algorithms for single layer neural network NN1
0.9 HE — e is the same as thatin Example 1. The adaptive law for multilayer
*'}."* s perceptrons NN2 is as in (6). We assume the ideal weights are
0.8 1
4 w
0.7 WMW Wi =053 W,=017, W3;=09, Ws=0.37,
o6l W, We = 0.68
OSHE v a set of data about the learning part of the AFPN
R | B e o -
0 31{ P N | A1 =05, A;=04, p1 =09, p; =08,
Tk ¢ W, by =by =20
0.2 - _ o )
0.1 . Give a set of initial value of the weights
% 500 1000 1500 wi(1) =08, wx(1)=02, ws(l)=0.5,
ws(1) = 0.7, we(1) =0.1

Fig. 12. MLP learning results of Example 2.

and the learning rat& = 0.5. The on-line MLP learning results

where

are shown in Fig. 12.

From these two examples, we can see that the fuzzy reasoning

P = {p1,p2,p3, 4, D5, P6, P7, P8, P9, P10, P11, P12}

T = {t1,to,t3,t4,t5, 16}

D ={P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11,
P12}

Th = {1, A2, A3, Aa, A3, A6}

algorithm and the back propagation algorithm are very effec-
tively if we do not know the weights of AFPN. After a training
process, we can get an excellent input—output mapping of the
knowledge system.

VI. CONCLUSION

WI = {w17w27w37w47w57w67w8}

Wo = {pa, 2, pia, fra1, faz, s, 116

So AFPN model for this expert system may be repressed
in Fig. 10, the two dashed-boxes are the learning parts. Th

This paper introduce a new modified fuzzy Petri net: Adap-
tive Fuzzy Petri Net (AFPN). It has learning ability as neural
networks. So fuzzy knowledge in expert systems can be learned

tggough an AFPN model. The idea proposed in this paper is a
lew formal way to solve the knowledge learning problem in ex-
ert systems. Our ongoing research is to predict expert systems

AFPN model may be transferred into a normal neural networEs
as Fig. 11.

Since the weights of.41, 1142, 3 andue are known, we may
simplify this complex neural networks as two sub neural net-
works: NN1 and NN2. Here sub-networks NN1 is single layer [1]
and sub-networks NN2 is multilayer. The neural networks cor-
responding td7; are fixed.

We can train the two networks independently. The original
learning error is:1>. Because the output function is select as (4) [

(2]

@py = —
G (z) T e x = paya(P9) + pea( P10) 4]
. . ) 5
* In case 1 of Definition 7, if only, fires, then: Bl
[6]
€9 = pq1€12, €0 =70 [7]
if only ¢ fires, then:
[8]
€10 = pe€1z, €9 =0 [9]
* In case 2 of Definition 7, wheg, andtg fire at the same
X . . [10]
time, according to error backpropagation rule (5)
11
692612X—XN41=L612 =
a1 + e a1 + e [12]
€10 = €12 X ! X pe = Ko e
10 — €12 - 6 — — €12
Ha1 + e pa1 + pe

ehavior using AFPN framework.
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