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Abstract—Since knowledge in expert system is vague and
modified frequently, expert systems are fuzzy and dynamic
systems. It is very important to design a dynamic knowledge
inference framework which is adjustable according to knowledge
variation as human cognition and thinking. Aiming at this object,
a generalized fuzzy Petri net model is proposed in this paper, it is
called adaptive fuzzy Petri net (AFPN). AFPN not only takes the
descriptive advantages of fuzzy Petri net, but also has learning
ability like neural network. Just as other fuzzy Petri net (FPN)
models, AFPN can be used for knowledge representation and
reasoning, but AFPN has one important advantage: it is suitable
for dynamic knowledge, i.e., the weights of AFPN are ajustable.
Based on AFPN transition firing rule, a modified back propaga-
tion learning algorithm is developed to assure the convergence of
the weights.

Index Terms—Expert system, fuzzy reasoning, knowledge
learning, neural network, Petri net.

I. INTRODUCTION

PETRI NETS (PNs) have ability to represent and analyze in
an easy way concurrency and synchronization phenomena,

like concurrent evolutions, where various processes that evolve
simultaneously are partially independent. Furthermore, PN ap-
proach can be easily combined with other techniques and theo-
ries such as object-oriented programming, fuzzy theory, neural
networks, etc. These modified PNs are widely used in computer,
manufacturing, robotic, knowledge based systems, process con-
trol, as well as other kinds of engineering applications.

PNs have an inherent quality in representing logic in intuitive
and visual way, and FPNs take all the advantages of PNs. So,
the reasoning path of expert systems can be reduced to simple
sprouting trees if FPN-based reasoning algorithms are applied
as an inference engine. FPN are also used for fuzzy knowledge
representation and reasoning, many results prove that FPN is
suitable to represent and reason misty logic implication relations
[2], [3], [1], [12], [4], [8].

Knowledge in expert systems is updated or modified fre-
quently, expert systems may be regarded as dynamic systems.
Suitable models for them should be adaptable. In other words,
the models must have ability to adjust themselves according
to the systems’ changes. However, the lack of adjustment
(learning) mechanism in FPNs can not cope with potential
changes of actual systems [5].
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Recently, some adjustable FPNs were proposed. [3] gave an
algorithm to adjust thresholds of FPN, but weights’ adjustments
were realized by test. [6] proposed a generalized FPN model
(GFPN) which can be transformed into neural networks with
OR/AND logic neurons [5], thus, parameters of the corre-
sponding neural networks can be learned (trained). In fact, the
knowledge learning in [6] was under the framework of neural
networks. Adaptive Fuzzy Petri Net (AFPN) [13] has also the
learning ability of a neural network, but it does not need to
be transformed into neural networks. However the learning
algorithm in [13] is based on a special transition firing rule,
it is necessary to know certainty factors of each consequence
proposition in the system. Obviously, this restriction is too
strict for an expert system.

In this paper, we propose a more generalized reasoning rule
for AFPN. Back propagation algorithm is developed for the
knowledge learning under generalized conditions. The structure
of the paper is organized as follows: after the introduction of the
FPN and AFPN models, the reasoning algorithm and the weight
learning algorithm are developed, examples are included as an
illustration.

II. K NOWLEDGEREPRESENTATION ANDFUZZY PETRI NET

In this section, we will review weighted fuzzy production
rules and FPN.

A. Weighted Fuzzy Production Rules

In many situations, it may be difficult to capture data in a
precise form. In order to properly represent real world knowl-
edge, fuzzy production rules have been used for knowledge rep-
resentation [2]. A fuzzy production rule (FPR) is a rule which
describes the fuzzy relation between two propositions. If the an-
tecedent portion of a fuzzy production rule contains “AND” or
“OR” connectors, then it is called a composite fuzzy production
rule. If the relative degree of importance of each proposition
in the antecedent contributing to the consequent is considered,
Weighted Fuzzy Production Rule (WFPR) has to be introduced
[7].

Let be a set of weighted fuzzy production rules
. The general formulation of the

th weighted fuzzy production rule is as follows:

IF THEN CF Th

where
antecedent portion which comprises
of one or more propositions connected
by either “AND” or “OR”;
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consequent proposition;
certainty factor of the rule;
threshold;
weight.

In general, WFPRs are categorized into three types which are
defined as follows.

Type 1: A Simple Fuzzy Production Rule

IF THEN CF

For this type of rule, since there is only one proposition
in the antecedent, the weightis meaningless.
Type 2: A Composite Conjunctive Rule

IF AND AND AND THEN CF

Type 3: A Composite Disjunctive Rule

IF OR OR OR THEN CF

For Type 2 and Type 3, is the th antecedent proposition of
rule , and the consequent one. Each propositioncan have
the format “ is ”, where is an element of a set of fuzzy
sets . are the threshold and certainty factor of a simple or
composite rule; are the threshold and weight of theth an-
tecedent of a composite conjuctive or disjunctive rule. In above
definition, thresholds are assigned to antecedent propositions.
For composite conjuctive rules, thresholds are assigned to the
weighted sum of all antecedent propositions.

In this paper, in order to cope with Adaptive Fuzzy Petri Net
(AFPN), we define WFPRs as following new forms:

Type 1: A Simple Fuzzy Production Rule

IF THEN CF

Type 2: A Composite Conjunctive Rule

IF AND AND AND THEN CF

Type 3: A Composite Disjunctive Rule

IF OR OR OR THEN CF

B. Definition of Fuzzy Petri Net

FPN is a promising modeling methodology for expert system
[2], [6], [12]. A GFPN structure is defined as a 8-tuple [2]

(1)

where
set of places;
set of transitions;
set of propositions;
input (output) function which de-
fines a mapping from transitions to
bags of places;

Fig. 1. FPN of Type 1 WFPR in [7].

Fig. 2. FPN of Type 2 WFPR in [7].

association function which assigns a
certainty value to each transition;
association function which assigns
a real value between zero to one to
each place;
bijective mapping between the
proposition and place label for each
node.

.
In order to capture more information of the WFPRs, the FPN

model has been enhanced to include a set of threshold values
and weights, it consists of a 13-tuple [7]

Th (2)

where
Th set of threshold values;

set of fuzzy sets;
set of weights of WFPRs;
association function which assigns a
fuzzy set to each place;
association function which defines
a mapping from places to threshold
values.

The definitions of and are the same as above.
Each proposition in the antecedent is assigned a threshold value,
and is an association function which assigns a
weight to each place.

C. Mapping WFPRs into FPN

The mapping of the three types of weighted fuzzy production
rules into the FPNs in [7] are shown in Figs. 1, 2, and 3, respec-
tively. For example, a rule of Type 2 may be represented as

IF AND AND AND THEN CF

(to-
kens representing fuzzy sets of given facts).
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Fig. 3. FPN of Type 3 WFPR in [7].

III. A DAPTIVE FUZZY PETRI NET

FPN [7] can represent WFPRs perfectly. But it can not adjust
itself according to the knowledge updating. In another word, it
has not learning ability. In this paper, we introduce the concep-
tion “adaptive” into FPN, the proposed model is called AFPN.

A. Definition of AFPN

Definition 1: An AFPN is a 9-tuple

Th

where are defined the same as [2].Th
is the function which assigns a threshold valuefrom

zero to one to transition.Th .
. and , are sets of input

weights and output weights which assign weights to all the arcs
of a net.

B. Mapping WFPR into AFPN

The mappings of the three types of WFPR into the AFPNs
are shown as Figs. 4, Section III-B, and 5 respectively. The three
types of WFPR may be represented as follows.

Type 1: A Simple Fuzzy Production Rule

IF THEN Th

Type 2: A Composite Conjunctive Rule

IF AND AND AND THEN

Th

Type 3: A Composite Disjunctive Rule

IF OR OR OR THEN

Th

The mapping between AFPN and WFPR may be understood
as each transition corresponds to a simple rule, composite con-
junctive rule or a disjunctive branch of a composite disjunctive
rule; each place corresponds to a proposition (antecedent or con-
sequent).

Fig. 4. AFPN of Type 1 WFPR.

Fig. 5. AFPN of Type 3 WFPR.

C. Fuzzy Reasoning Using AFPN

Firstly, we give some basic definitions which are useful to
explain the transition firing rule of AFPN.

Definition 2 (Source Places, Sink Places):A place is called
a source place if it has no input transitions. It is called a sink
place if it has no output transitions.

A source place corresponds to a precondition proposition in
WFPR, and a sink place corresponds to a consequent. For ex-
ample, in Fig. 6, are source places, is a sink place.

Definition 3 (Route): Given a place , a transition string
is called a route to if can get a token through

firing this transition string in sequence from a group of source
places. If a transition string fire in sequence, we call the
corresponding routeactive.

For a place , it is possible that there are more than one route
to it. For example, in Fig. 6, is a route to is another
route to it. Let
the corresponding input weights to these places,
thresholds. Let , and

the corresponding output weights to
these places.

We divide the set of places into three parts
, where is the set of places of AFPN;

is called a user input place;
and is called an interior place;

is called an output place. In this paper,
is an empty set.
Definition 4: The marking of a place is defined as the

certainty factor of the token in it.
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Fig. 6. AFPN of Example 1.

Definition 5: is enabled if
.

Definition 6: When is enabled, it produces a new certainty
factorCF

CF

Th

Th

We may use a continuous functionCF to approximate
CF

CF

where

where is a sigmoid function which approximates the
threshold of

where is an instant. If is big enough, when
Th , then , and when

Th , then .
Definition 7: If Th , transition fires, at the same

time, token transmission takes place.

1) If a place only has one input transition, a new token
with certainty factor CF is put into each output
place , and all tokens in

are removed.
2) If a place has more than one input transitions (as

Fig. 5), and more than one of them fire, i.e. more than
one routes are active at the same time, then the new cer-
tainty factor of is decided by the center of gravity of
the fired transitions

CF

where fires, .
According to above definitions, a transitionis enabled if all

its input places have tokens, if the certainty factor produced by

it is greater than its threshold, thenfires, so an AFPN can be
implemented. Thus, through firing transitions, certainty factors
can be reasoned from a set of known antecedent propositions to
a set of consequent propositions step by step.

Let and
is called an initially enabled transition.

Let
andCF Th is called a current

enabled transition.
Fuzzy Reasoning Algorithm
INPUT: the certainty factors of a set of antecedent proposi-

tions (correspond to in AFPN)
OUTPUT: the certainty factors of a set of consequence propo-

sitions (correspond to in AFPN)

Step 1) Build the set of user input places .
Step 2) Build the set of initially enabled transitions .
Step 3) Find current enabled transitions according

to Definition 5.
Step 4) Calculate new certainty factors produced by fired

transitions according toDefinition 6.
Step 5) Make token transmission according toDefinition 7.
Step 6) Let .
Step 7) Go toStep 3and repeat, until .

IV. K NOWLEDGE LEARNING AND AFPN TRAINING

In [13], we developed a weights learning algorithm under fol-
lowing conditions.

1) It is necessary to know the certainty factors of all output
places (i.e. the right hand of all rules).

2) Only one layer of weights can be learned.
3) For rules of Type 3, if there are more than one transition

fire, we must know which input transition is the token
contributor to the output place.

4) In case 2 of the Definition 7, error distribution.
These conditions are very strict, because these information in

real expert systems may be not available. In this paper we will
relax these conditions to more general cases. The main idea is
that all layer weights can be updated through the back-propaga-
tion algorithm if certainty factors of all sink places are given.

Back propagation algorithm
We assume that

• AFPN model of an expert system has been developed;
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Fig. 7. Sigmiod functions in Example 1.

• in AFPN model,Th and are known;
• set of certainty factor values of and is given.

Here we take Type 2 as an illustration to show knowledge
learning procedure using AFPN. Type 2 can be translated into an
AFPN like Section III-B, this AFPN structure can be translated
further into a neural networks-like structure (see Section IV),
where is

(3)

where
sig-

moid function;

constant which adjust the steepness of ;

weight vector ;

output vector of previous layer,
.

This continuous function may approximate a logic factor if
and are selected suitable values. For example, no. 1 in Fig. 7
has the values as and .

For a place , there are some learning routes which are from
a set of source places to it. The weights in these routes can be
trained according the back propagation algorithm developed in
this section. Along the selected route, the feedforward prop-
agation process (one hidden layer) is that given any input data

and the fixed weights , the output can be expressed

TABLE I
RESULTS OFAFPN

where is the active function of the th layer,
is the weight of the th layer. If the real data

is , the output error vector is

Since we do not process the tokens in the output layer, the output
layer may be selected as the rule of the center of gravity (see
Definition 7), i.e.,

(4)

The learning algorithm is the same as the backpropagation of
multilayer neural networks:

• The weights in output layer is updated as

where
input of the th layer;
adaptive gain;
weight at the time of .

(5)

the weights are updated as

...

(6)

where is the derivative of the nonlinear function.

(7)
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The justification of backpropagation can be found in [11]. Fi-
nally, we summarize the learning algorithm of AFPN as

Step 1) Select a set of initial weight values.
Step 2) For each set of input data, find all active routes, and

mark them .
Step 3) Following each active route, according to the

reasoning algorithm, calculate the corresponding
output.

Step 4) Set the difference between the idea output and the
calculated output as the error, select use (6) to
adjust the weights on these routes.

V. SIMULATION

In this section, two typical examples are selected to show the
results in the prior sections.

Example 1: and are related propo-
sitions of an expert system . Between them there exist the
following weighted fuzzy production rules

: IF THEN
: IF AND THEN
: IF OR THEN
This example includes all the three types of rules, in which
is a simple WFPR, is a composite conjunctive one, and
is a composite disjunctive one. We want to show the fuzzy

reasoning and the weights learning algorithm.
First, based on the translation principle, we mapinto an

AFPN as follows (shown as Fig. 6)

Th

where
Th

.
We have three input propositions ( and ) and three

consequence propositions ( and ). The data are given
as

We use four sigmoid functions as

to approximate the four thresholds , the steepness
are selected as 200 (see Fig. 7). Especially, for the transition
, the argument of function is

Using fuzzy reasoning algorithm, a set of output data (cer-
tainty factors of consequence propositions) can be calculated
according to the input data (certainty factors of antecedent
propositions). Table I gives the results of AFPN.

One can see that some data are 0. This means that the corre-
sponding thresholds were not passed. For example, in Group 1,

Fig. 8. The neural network translation of the learning part in Example 1.

Fig. 9. Single layer learning results of Example 1.

, the threshold is 0.50. Since ,
transition cannot fire, so the output certainty factor is
is . The use a sigmoid function to approximate a threshold
means that exact zero is impossible to get (for example, 0.0001).
But if the steepness coefficient is small enough, the sigmoid
function can approximate the threshold with good accuracy.

If the weights are unknown, neural networks technique may
be used to estimate the weights. The learning part of the AFPN
(see the part in the dashed box in Fig. 6) may be formed as a
standard single layer neural networks (see Fig. 8). Assume the
ideal weights are

The sigmoid function is

(8)

If the inputs and are given random data from
1 to 0, we can get the real output according to the ex-
pert system . Given any initial condition for and , put
the same inputs to the neural network. The error between the
output of neural network and that of the expert system

can be used to modified the weights, we may use the
following learning law

(9)

where is learning rate, a small may assure the
learning process is stable. Here, we select .
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Fig. 10. AFPN of Example 2.

Fig. 11. The neural networks translation of the AFPN in Fig. 12.

,
and

After a training process , the weights convergence
to real values. Fig. 9 shows simulation results.

In this example there is only one learning layer. Example 2
will show a more complicated case where two learning layers
(multilayer perceptrons) is used.

Example 2:
and are related propositions of an

expert system . There exist the following weighted fuzzy
production rules

: IF AND AND THEN

: IF AND THEN
: IF AND THEN
: IF OR THEN
: IF OR THEN
Based on the translation principle, we mapinto an AFPN

(see Fig. 10).

Th
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Fig. 12. MLP learning results of Example 2.

where

Th

So AFPN model for this expert system may be repressed as
in Fig. 10, the two dashed-boxes are the learning parts. This
AFPN model may be transferred into a normal neural networks
as Fig. 11.

Since the weights of and are known, we may
simplify this complex neural networks as two sub neural net-
works: NN1 and NN2. Here sub-networks NN1 is single layer
and sub-networks NN2 is multilayer. The neural networks cor-
responding to are fixed.

We can train the two networks independently. The original
learning error is . Because the output function is select as (4)

• In case 1 of Definition 7, if only fires, then:

if only fires, then:

• In case 2 of Definition 7, when and fire at the same
time, according to error backpropagation rule (5)

The learning algorithms for single layer neural network NN1
is the same as that in Example 1. The adaptive law for multilayer
perceptrons NN2 is as in (6). We assume the ideal weights are

a set of data about the learning part of the AFPN

Give a set of initial value of the weights

and the learning rate . The on-line MLP learning results
are shown in Fig. 12.

From these two examples, we can see that the fuzzy reasoning
algorithm and the back propagation algorithm are very effec-
tively if we do not know the weights of AFPN. After a training
process, we can get an excellent input–output mapping of the
knowledge system.

VI. CONCLUSION

This paper introduce a new modified fuzzy Petri net: Adap-
tive Fuzzy Petri Net (AFPN). It has learning ability as neural
networks. So fuzzy knowledge in expert systems can be learned
through an AFPN model. The idea proposed in this paper is a
new formal way to solve the knowledge learning problem in ex-
pert systems. Our ongoing research is to predict expert systems
behavior using AFPN framework.
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