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networks are easier to train than MLP but are not as efficient as
MLP; i.e., RBFN requires a relatively large number of hidden
units as compared to MLP. The approach in this brief showed
that any decision surface formed by a class of RBFNs can be
approximated accurately by MLPQ with the same number of
hidden units, but with a few extra parameters per hidden unit.
It also implied that the performance of RBFN with Gaussian
basis function and Euclidean norm can always be accurately
matched by MLPQ. With further training, it is very likely
that the MLPQ will outperform the RBFN from which it was
initialized.

The technique presented in this brief may also be useful in
deep learning methods [11], [19]. Deep learning often involves
unsupervised pre-training stage. Unsupervised learning was
used for training GMMs [9]. The GMMs can then be mapped
into the feed-forward network to form a layer inside the deep
network.

Hidden Markov models (HMMs) are popular in speech
recognition [13]. The hybrid systems consisting of MLPs
and HMMs were shown considerably promising [3]. HMMs
consist of one or more states composed of GMMs. The
approach presented in this brief is directly applicable to MLP-
HMM hybrid systems in that each GMM can be replaced with
an MLPQ that is initialized from the GMM parameters. The
MLPQ can then be trained further with the expectation that it
would lead to better performance.
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A Novel Approach to the Problem of Non-uniqueness of
the Solution in Hierarchical Clustering
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Abstract— The existence of multiple solutions in clustering,
and in hierarchical clustering in particular, is often ignored in
practical applications. However, this is a non-trivial problem, as
different data orderings can result in different cluster sets that, in
turns, may lead to different interpretations of the same data. The
method presented here offers a solution to this issue. It is based
on the definition of an equivalence relation over dendrograms
that allows developing all and only the significantly different den-
drograms for the same dataset, thus reducing the computational
complexity to polynomial from the exponential obtained when all
possible dendrograms are considered. Experimental results in the
neuroimaging and bioinformatics domains show the effectiveness
of the proposed method.

Index Terms— Bioinformatics, dendrogram equivalence rela-
tion, hierarchical clustering (HC), neuroimaging.

I. INTRODUCTION

Discovering similarities in the real world is a fundamental
task for both humans and machines, as it allows, for instance,
reasoning by categories [1]. This task can be carried out

Manuscript received May 16, 2012; accepted February 11, 2013. Date of
publication April 12, 2013; date of current version May 14, 2013.

I. Cattinelli is with the Department of Computer Science, Università
degli Studi di Milano, Milan 20135, Italy, and also with the Department of
Psychology, Università degli Studi di Milano-Bicocca, Milan 20126, Italy (e-
mail: icattinelli@gmail.com).

G. Valentini and N. A. Borghese are with the Department of Computer
Science, Università degli Studi di Milano, Milan 20135, Italy (e-mail:
giorgio.valentini@unimi.it; alberto.borghese@unimi.it).

E. Paulesu is with the Department of Psychology, Università degli Studi di
Milano-Bicocca, Milan 20126, Italy and with IRCSS Galeazzi, Milan 20126,
Italy (e-mail: eraldo.paulesu@unimib.it).

Supplemental Material is available online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNNLS.2013.2247058

2162-237X/$31.00 © 2013 IEEE



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 24, NO. 7, JULY 2013 1167

by clustering, which groups elements into subsets, called
clusters, according to some homogeneity measure, so that
objects inside a cluster are more similar among themselves
and more dissimilar to objects belonging to other clusters
[2]–[4]. Although other clustering algorithm families, such as
spectral clustering [5], have been proposed, two main families
are usually identified: hierarchical and partitional clustering.
In hierarchical clustering (HC), a progressive partitioning of
the data elements is achieved by iterative operations (either
merging or splitting) on the dataset aimed at grouping pairs
of elements that are closest according to a given similarity
measure. In partitional clustering, instead, a set of prototypes
is positioned and moved inside the data space to obtain the
best representation of the input data according to a specified
cost function.

The algorithms of both families suffer from several issues,
most notably the optimal value of the cost function is rarely
reached. In partitional clustering, local minima cannot be
easily escaped. Mechanisms proposed in the literature include
convex relaxations [6], the costly stochastic optimization [7],
and careful initialization of cluster prototypes [8], [9], but they
do not provide a general solution to this problem. Similarly,
in (agglomerative) HC, although each processing step can be
locally optimal since the pair of elements to be merged is
chosen so as to minimize a dissimilarity function, the global
optimality of the clustering solution cannot be guaranteed
[10, p. 330]. Although statistical methods can be employed
for both obtaining and validating clusters from data whose
distribution is known, or can be reasonably assumed, in the
most general case (i.e., no assumptions can be safely made)
there is still lack of clear theoretical foundations for clustering
optimality [11].

A reasonable requirement for clustering is that the returned
solution is unique. However, in HC multiple solutions can
be returned for the same dataset, depending on input data
order [12], [13] because of ties in the dissimilarity value of the
data. This problem “certainly is not widely known” [14] and
it is usually disregarded. Thus, actual conclusions drawn from
clustering may be just the result of a particular presentation
order of the input data. The large datasets available today lead
to a possible explosion of the number of clustering solutions,
as the authors themselves experienced when working on
real-world datasets (such as the BioGRID [15], and the neu-
roimaging activation data [16]; see Section IV). This provides
a well-grounded practical motivation for the present research.

Few attempts have been made to solve this problem. In [14],
it is suggested to run the clustering process on different
permutations of the input data and to choose the solution that
minimizes the defined cost function. However, it cannot be
guaranteed that a different data permutation would not produce
an even better solution. On the other side, an exhaustive
generation and exploration of all alternative solutions
associated with a dataset is computationally infeasible. A
solution based on simultaneously merging all the clusters
sharing the same minimal distance into one “supercluster” has
been advanced [17]. However, this choice may not produce
the same clusters that would be obtained merging two clusters
at a time.
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Fig. 1. At the start, each input element (IDs on the x-axis) is assigned
to a singleton cluster (partition S1). At each step, the two closest clusters
are merged, decreasing the number of clusters by 1. At the last step, only
one large cluster is obtained (partition S12). The sequence of merging steps
is represented in a tree structure, called a dendrogram. The height of the
horizontal segments representing merging steps is the dissimilarity value of
the two clusters being merged. The dendrogram is then cut at the desired level
to get the final clustering solution.

We propose here a novel approach that addresses directly
this problem. It is based on generating only the subset of
significantly different solutions, thus keeping the computa-
tional load relatively low but, at the same time, ensuring
that no interesting solution is missed. The algorithm is based
on an equivalence definition of HC solutions associated with
a dataset. The method has been extensively applied to the
analysis of both bioinformatics and functional neuroimaging
data achieving a dramatic reduction in the number of solu-
tions generated (Section E), demonstrating the relevance and
practical utility of the approach.

II. HIERARCHICAL CLUSTERING

Let us assume that X = {x1, x2, . . . , xj, . . . , xN},
with xj = (x1

j , x2
j , . . . , x D

j ), is a dataset of N elements
that belong to the multidimensional space R

D . xj can be seen
as the set of features of a given pattern, or, equivalently, as
the position of a point inside R

D .
Suppose also that a dissimilarity function, d : X × X → R,

is defined over this space such that for every x, y ∈ X

d(x, y) ≥ 0, and d(x, y) = d(y, x). (1)

If reflexivity (d(x, y) = 0 iff x = y) and triangle inequality
(d(x, y) ≤ d(x, z)+ d(z, y) ∀x, y, z ∈ X) also hold, then d is
a metric. d(.) defines the degree of similarity between pairs of
input elements, and different functions, with different proper-
ties, have been proposed to implement it [2], [10]. For instance,
l1 metric (city-block distance) limits the impact of outliers,
while l∞ metric attributes to outliers a very high weight.

Our goal is to partition X into M sets, called clusters,
S = {C1,C2, . . . ,Ck, . . . ,CM }, such that each of them is
composed of elements that are closer to each other and farther
from elements in any other cluster according to the chosen
dissimilarity measure.

Agglomerative HC partitions the data as follows. At start,
each element is assigned to a different cluster (partition S1).
At each step, two clusters are merged, and a new data
partition is generated. The procedure is repeated iteratively
until a partition containing a single cluster is obtained (SN ).
The result is a hierarchy of nested clustering solutions
(i.e., partitions of the data), T = {S1, S2, . . . , SN }, where
Sm is the clustering solution obtained after m steps and
it is constituted of N − m + 1 clusters. The hierarchy of
partitions can be represented in a tree-like structure, called



1168 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 24, NO. 7, JULY 2013

dendrogram (Fig. 1). The final clusters are obtained by cutting
the dendrogram at the proper level according to the given
criterion, like, for instance, the number of desired clusters or
the average intra-cluster variance. The cut can be performed
climbing up the dendrogram, starting from the leaves, and
stopping just before the figure of merit exceeds the defined
threshold. Different HC algorithms have been proposed, each
employing a different dissimilarity measure between clusters;
among these, single linkage, complete linkage, (weighted)
group average linkage, centroid linkage, and Ward’s method
are the most popular ones [2]. For instance, single linkage
defines the dissimilarity between two clusters Ci and C j as
the minimum dissimilarity between pairs of elements x ∈ Ci ,
y ∈ C j ; that is, D(Ci ,C j ) = minx∈Ci ,y∈C j d(x, y). Notice
that we have two notions of dissimilarity measure: one defined
over single input elements [d(.)], and one defined over clusters
[D(.)]. The values of D are stored in a matrix H , called
dissimilarity matrix; at each step, the pair of clusters with
the minimum dissimilarity value is merged into a new cluster,
and the dissimilarity value between this new cluster and any
other existent cluster is computed. The dissimilarity value for
the merged clusters is referred to as the merging coefficient for
that time step. The update of H can be conveniently carried
out by employing the Lance–Williams formula [18]

D(Ck , {Ci ,C j }) = αi D(Ck ,Ci )+ α j D(Ck ,C j )

+ βD(Ci ,C j )+ γ
∣∣D(Ck ,Ci )− D(Ck ,C j )

∣∣ (2)

where Ci and C j are the two clusters joined to form the
new cluster, and Ck is any other cluster (k �= i, j ). Different
values of αi , α j , β, and γ are associated with different HC
methods. For instance, with αi = α j = 1/2, γ = −1/2,
and β = 0, the single-linkage HC is obtained. In this paper,
we will focus on Ward’s dissimilarity measure [19] but we
demonstrate in the Supplemental Material that it can be applied
to other dissimilarity measures. The effect of using Ward’s
method, along with the use of the squared Euclidean distance
as a measure of dissimilarity between elements, is to obtain
compact (i.e., having low within-cluster variance), spherical
clusters, which is especially desirable when clustering cerebral
activation peaks (see Section E). In Ward’s method, the
dissimilarity between two clusters is defined as the increase in
the total error sum of squares due to the merging of those two
clusters. Thus, at each step, the measure being minimized is

�ESSi, j = ESSi, j − ESSi − ESS j (3)

with ESSk = ∑
x∈Ck

(x − µk)
2 where µk is the centroid of

cluster Ck . Thus, in Ward’s method the dissimilarity between
two clusters is a measure of their (collective) variance. As a
result, each solution Sm in the final hierarchy is an approxi-
mation to the m-partition of the input data having minimum
total intra-cluster variance, ESS

ESS =
|C |∑
k=1

ESSk (4)

with |C| the number of clusters. To implement Ward’s method
through the Lance–Williams formula, the following coeffi-

Fig. 2. Four data points lie at the corners of a square; pairs on each side
have the same (Euclidean) distance, which leads to four minimal-dissimilarity
(MD) pairs. If we run an HC algorithm on this dataset and cut the resulting
dendrogram to get a two-clusters solution, two different solutions are obtained
(shown in yellow and purple, respectively), according to which pair of points
is selected first.

(c)

(a)

(b)

Fig. 3. (a) The purple and yellow pairs are non-critical pairs, i.e., MD pairs
that have no cluster in common. Whichever pair of points is merged first, the
final dendrogram is the same. (b), (c) These three elements produce two crit-
ical pairs (blue-green and green-red) from which two different dendrograms
are obtained, depending on which pair is selected first.

cients are used

αi = (nk + ni )/(nk + ni + n j )

α j = (nk + n j )/(nk + ni + n j )

β = −nk/(nk + ni + n j )

γ = 0 (5)

where nx is the cardinality of cluster Cx . It can be proved
that, if d(x, y) = ‖x − y‖2, then the above formula yields
D(Ci ,C j ) = 2�ESSi, j .

E. Non-Uniqueness of the Solution in HC

HC can return different solutions depending on the order in
which the input data are presented (see Fig. 2). This is due to
the presence of ties in the dissimilarity matrix at a given step;
that is, the minimum dissimilarity value v is shared by more
than one cluster pair.

Definition 2: Let v = minCi ,C j D(Ci ,C j ), where Ci and
C j are clusters available at the current processing step t .
We call minimal-dissimilarity pair (MD pair) each pair of clus-
ters p = (Ci ,C j ) such that p ∈ Pt = arg minCi ,C j D(Ci ,C j );
that is, D(p) = v for each minimal distance pair p.

At each step t (i.e., every time the dissimilarity matrix
is updated), we might have more than one MD pair; that
is, |Pt | > 1. The order in which the input data points are
presented to the algorithm determines the order in which
cluster pairs are found inside matrix H ; current algorithms
just select the first MD pair encountered when browsing H .
Therefore, a different permutation of the input data points
can lead to the selection of a different MD pair, and this, in
turn, can produce a different dendrogram. It also turns out
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that different dendrograms and associated solutions can be
associated with different interpretations for the same set of
data: therefore, the existence of ties in the dissimilarity matrix
can potentially lead to unstable, and unreliable, conclusions
about the structure underlying a dataset. Ties can occur quite
frequently, especially at the initial merging steps, when dealing
with discrete data (although they cannot be completely ruled
out even for real-valued applications). Current hierarchical
clustering algorithms, lacking any control on the existence of
multiple solutions, choose arbitrarily a feasible dendrogram,
according to one of the possible permutations of the input
data. This may lead to different clustering solutions and to
possible misinterpretations of clustering results.

III. ALGORITHM DESCRIPTION

The solution proposed here is based on identifying what
we have called significantly different alternative dendrograms
that result from the selection of different MD pairs. This
requires making a first distinction between critical and non-
critical MD pairs; whereas differences in clustering introduced
by non-critical pairs can safely be disregarded, critical pairs
require more attention. Second, to reduce complexity, a further
distinction on critical pairs is introduced, aimed at identifying
equivalence classes within them; in this way, only one repre-
sentative per class can be fully developed.

The notion of non-critical pairs follows from the observation
that, in some cases, the choice between different MD pairs,
although leading to different merging sequences, do not result
in different dendrograms [see Fig. 3(a)].

Definition 3: An MD pair p = (Ci ,C j ) is a non-critical
pair if ∀p′ = (Ci ′ ,C j ′), p′ �= p being a MD pair, i �= {i ′, j ′}
and j �= {i ′, j ′} hold.

Non-critical pairs are therefore those pairs that do not share
any element with other MD pairs. The choice of merging
one non-critical pair in place of another does not affect the
shape of the resulting dendrogram because these choices are
not mutually exclusive: the choice of a non-critical pair leaves
other non-critical pairs available for subsequent merging.

This can be also seen by analyzing H . Let us suppose that
H contains n p entries that have the same MD value v, and
that these entries are distributed such that for each row and
column at most one entry is equal to v (it can be shown that
this is another way to state Definition 3). Whenever one MD
pair, say (Ci ,C j ), is merged, dissimilarity values for clusters
Ci and C j are discarded, which corresponds to deleting the i th
row and the j th column.1 None of the other MD pairs would
be touched by this operation. Therefore, at the subsequent
clustering step, one of the remaining MD pairs, with D(.) = v,
would be selected for merging, and so on, until all the non-
critical pairs with D(.) = v have been merged. Since all
these pairs have merging coefficient equal to v, the same
dendrogram is obtained regardless of the specific merging
sequence. In other words, the choice among non-critical pairs
cannot open new scenarios where a novel MD pair appears,

1We implicitly assume here that H is stored as a triangular matrix.

which would make the order whereby non-critical pairs are
selected relevant. This is guaranteed by the following theorem:

Theorem 0.2: Let v be the minimum value in the dissimilar-
ity matrix and therefore the merging coefficient in the current
clustering step; let Ci and C j be the clusters being merged.
In an HC algorithm employing Ward’s method, each new
dissimilarity value v ′ for the newly created cluster {Ci ,C j }
is such that v ′ ≥ v. If (Ci ,C j ) is a non-critical pair, then
v ′ > v.

Proof: According to the Lance–Williams updating equa-
tion for Ward’s method [see (2) and (5)], for a generic cluster
Ck (k �= i, j ) the dissimilarity value v ′ of Ck from the new
cluster {Ci ,C j } is computed as

v ′ = 1

ni + n j + nk

(
z(nk + ni )+ w(nk + n j )− v(nk)

)

= 1

ni + n j + nk

(
nk(z +w − v) + ni z + n jw

)

where z = D(Ck ,Ci ), w = D(Ck ,C j ). Since v is the
minimum value in the dissimilarity matrix, and (Ci ,C j ) is a
non-critical pair, z > v and w > v hold; that is, (Ck,Ci ) and
(Ck,C j ) cannot be MD pairs; otherwise, (Ci ,C j ) would not
be non-critical by definition. Therefore we can write z = v+ε,
w = v + η (ε > 0, η > 0), and

v ′ = 1

ni + n j + nk

(
nk(v + ε + η)+ ni (v + ε)+ n j (v + η)

)

= (ni + n j + nk)v

ni + n j + nk
+ nkε + nkη + niε + n jη

ni + n j + nk

from which v ′ > v follows.2

At each merging step, all the MD pairs are identified
and distinguished into non-critical and critical ones. As the
merging sequence of non-critical pairs is not relevant, they
are simply merged in a random order, producing a single
dendrogram. On the other hand, a separate dendrogram can
be developed for each alternative choice of a critical pair. In
this way, the number of dendrograms that must be generated is
reduced with respect to an exhaustive exploration of the space
of all alternative dendrograms; however, in many practical
situations, such reduction is not large enough (cf. Section E).
For this reason, we introduce an equivalence relation on the
dendrograms [Fig. 4(a), (b)] so that the dendrogram space can
be shrunk and only one representative for equivalence class
can be fully developed. We explicitly remark that equivalent
dendrograms are not identical dendrograms.

Definition 4: Let p = (Ci ,C j ) and p′ = (C j ,Ck) be
two critical pairs for the current step, and C , C ′ the clusters
resulting from their choice. We say that p and p′ are equivalent

2We notice that the case v ′ = v can only occur when both D(Ck ,Ci )
and D(Ck ,C j ) are equal to v = D(Ci ,C j ), i.e., when the three clusters are
equidistant from each other (with dissimilarity v), but in such case they would
not qualify as non-critical pairs.



1170 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 24, NO. 7, JULY 2013

(a) (b) (c) (d)

Fig. 4. (a), (b) Two equivalent pairs, blue-green and green-red. The element closest to the first pair is the red one, and the one closest to the second pair is
the blue one. This guarantees that these three elements will be grouped in the same cluster; although the two dendrograms are different, they are equivalent.
Notice that in intermediate steps the clusters obtained are different, but the sequence of merging coefficients (v , w) is the same independently of which pair is
first merged. The blue-green and the green-yellow pairs shown in panels (c) and (d) are non-equivalent pairs. If the blue-green pair is merged first, the yellow
element will then be merged with the red one, as this is closer to it than the newly created cluster. The two-clusters solution {blue ∪ green} and {yellow ∪ red}
is obtained. If we first merge the green-yellow pair, instead, we would obtain a different two-clusters solution: {blue ∪ green ∪ yellow} and {red}. Notice that
the merging coefficients are different in the two cases: v , v , v ′ and v w, z, respectively.

pairs if

Ck = arg min
Cx

D(C,Cx ) and C = arg min
Cx

D(Ck ,Cx ), (6a)

Ci = arg min
Cx

D(C ′,Cx ) and C ′ = arg min
Cx

D(Ci ,Cx ), (6b)

D(C,Ck ) = D(C ′,Ci ). (6c)

Theorem 0.3: When Ward’s method is used, (6c) directly
follows from the definition of critical pair (Definition 3).

Proof: Since p = (Ci ,C j ) and p′ = (C j ,Ck) are
critical pairs, then D(Ci ,C j ) = D(C j ,Ck) = v, where v is
the minimum value in the current dissimilarity matrix. Then,
by applying the Lance–Williams formula for Ward’s method
[(2) and (5)], we get

D({Ci ,C j },Ck)

= (ni + nk)D(Ci ,Ck)+ (n j + nk)v − nkv

ni + n j + nk

= (ni + nk)D(Ci ,Ck)+ n jv

ni + n j + nk

and

D({C j ,Ck},Ci )

= (n j + ni )v + (nk + ni )D(Ci ,Ck)− niv

ni + n j + nk

= (ni + nk)D(Ci ,Ck)+ n j v

ni + n j + nk

from which property 6c follows.

We can restate Definition 4 as follows. Considering the
three clusters Ci , C j , and Ck , we can refer to Ck as the
excluded element when pair p is chosen, and to Ci as the
excluded element when pair p′ is selected. Conditions 6a
and 6b state that p and p′ are equivalent if p and its excluded
element are closer to each other than to any other cluster,
and the same holds for p′. This means that, whichever pair
we select for generating a new cluster, the next merging step
involving that cluster will group it with its excluded element.
That is, although the shapes of the dendrograms corresponding
to p and p′ temporarily diverge, they do converge to the
same clustering solution [Fig. 4(a), (b)]; if p and p′ are

non-equivalent, the shape of their corresponding dendrograms
cannot be guaranteed to converge [Fig. 4(c), (d)].

Definition 4 establishes an equivalence relation over den-
drograms. In particular, (6c) guarantees that equivalent
dendrograms—those associated with equivalent pairs—have
the same sequence of merging coefficients. This allows us
to fully develop only one representative dendrogram from
each equivalence class. This drastically reduces the number
of dendrograms to be fully built, making the problem compu-
tationally affordable.

Once all non-equivalent dendrograms (that is, the signifi-
cantly different ones) have been generated, the corresponding
solutions can be obtained cutting each dendrogram according
to the user-designated strategy. Among these solutions, the
best one according to the defined quality criterion is identified.
In the applications presented here, the between-cluster error
sum of squares has been adopted. The maximization of this
measure favors a better separation among clusters:

bESS =
|C |∑
k=1

nk(µk − µX )
2 (7)

where |C| is the number of clusters in the solution, nk and
µk are the number of elements and the mean of cluster
Ck , and µX is the grand mean of the dataset X .3 We remark
that other user-defined measures could be employed to evaluate
the different clustering solutions.

The end result of our method is a clustering solution that is
unique, up to equivalences. It is also optimal, with respect to
the desired measure of quality, among the alternative solutions
that the HC algorithm would return with different orderings of
the input data. The operation flow of the proposed algorithm
is summarized in Fig. 5. The key element is the state of the
clustering process that is saved each time a new dendrogram
has to be developed; specifically, the state contains the current
step t , the dissimilarity matrix, the non-equivalent pairs still
to be examined, the parent dendrogram from which a new
one will be developed, the current merging coefficient, and

3Notice that bE SS = E SSdataset − E SS, where E SS is the total within-
cluster error-sum-of-squares introduced in (4), and with E SSdataset we refer
to the error-sum-of-squares over the whole dataset, considered as a unique
cluster.
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Fig. 5. Flow chart of the proposed algorithm. We employ a stack structure
in which the current state of the process is saved when a new dendrogram
is generated. When a dendrogram is completed, the state on top of the stack
is loaded, and from this the next non-equivalent pair identified at step t is
extracted. From this pair a new dendrogram is developed. Notice that NEP
contains one representative pair for each equivalence class, identified for a
given element shared by the critical pairs at the current step. Pairs that are
equivalent to those stored in NEP are discarded.

additional information about current clusters (their number,
cardinalities, and indexes).

IV. RESULTS

The algorithm presented here has been extensively applied
in two different domains in which ties often occur: analy-
sis of neuroimaging data and of protein–protein interactions
(PPIs).4

HC has been recently introduced in the field of functional
neuroimaging as a tool for a meta-analysis of large sets of
brain activation sites that are reported in a broad collection of
studies investigating different aspects of a specific cognitive
function [20]. In this context, the result of HC is used to
identify groups of anatomically close activation peaks that
may represent functionally meaningful brain regions inside
specific networks of cortical and subcortical areas involved
in the cognitive function of interest. In particular, we have
investigated the possible cortical network involved in single-
word reading through a meta-analysis with HC of a set of
1176 activation peaks collected over 35 different studies.

4See Supplemental Material for more details on these experiments.

(a) (b) (c)

Fig. 6. Left: two alternative clustering solutions for our neuroimaging dataset.
(a) The optimal solution (bESS = 2.4023 × 106). (b) One of the alternative
solutions (bESS = 2.3977 × 106). Each cluster is represented by a blob
centered on its mean coordinate with semiaxes equal to the cluster standard
deviation. The color of a blob codes for its cardinality. Only one section of
the cerebral volume is shown. The white box highlights the difference in the
two clustering solutions. Right: the comparison of the number of GO BP
terms differentially overrepresented at the 0.001 significance level between
the different clustering solutions Si .

128 significantly different dendrograms were found. These
were cut at the level where the average standard deviation
over the clusters in any of the three directions raised above
σ = 7.5; this value was set in agreement with [20], to comply
with the standard resolution of functional images, of about
15 mm. Cutting produced four different solutions, the optimal
one being composed of 57 clusters. The statistical analysis of
the solution allowed us to identify the putative functional role
of each cluster, and thus of its corresponding brain area [16].
Here we want to remark that the optimal clustering found by
our algorithm allows distinguishing between a more lateral
region (in the Angular gyrus) showing a preference for word
stimuli and an occipital one that is less sensitive to lexicality,
whereas in other (non-optimal) solutions this distinction would
be lost [Fig. 6(a), (b)].

The potential risk of misinterpreting data, when multiple
clustering solutions are present, can be further demonstrated
with respect to bioinformatics data. HC is one of the most
used techniques for their analysis, with applications ranging
from biomolecular evolution to multiple sequence alignment,
functional genomics, and DNA microarray data analysis [21].
In several bioinformatics clustering problems data are two-
valued (e.g., they represent whether a given property is present
or not for a given gene or protein) and are characterized by
high dimensionality and sparsity. It is therefore likely to obtain
dissimilarity matrices with ties, but the consequent problem of
non-uniqueness of the solution is largely neglected.

As an example, we report here the clusters of functionally
related proteins obtained analyzing protein-protein interac-
tion (PPI) data of a random subset (of size 500) of the
5367 proteins downloaded from the BioGRID database [15].
96 significantly different dendrograms were identified and
cut with a threshold σ = 5 on the norm of the vector
representing the average cluster standard deviation over each
dimension. This left us with four unique solutions: S1 and
S2, including 9 clusters; S3 and S4, of 10 clusters. To
understand whether the different solutions lead to different



1172 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 24, NO. 7, JULY 2013

biological conclusions with respect to PPIs, we performed a
functional enrichment analysis of the different clusterings [22]
to assess whether known functional categories are significantly
overrepresented in the discovered clusters. To this aim we
have chosen the Gene Ontology (GO) terms of the Biological
Processes (BP) ontology [23] as functional categories. Each
GO term represents a class of gene/proteins with common
functional characteristics (e.g., catabolic process or regulation
of translation). For each clustering solution Si we merged
the GO terms that we found significantly overrepresented in
each cluster. Lastly, we compared the set of GO terms that
biologically characterize each Si . We found that 233, 233,
248, and 249 GO terms were significantly overrepresented
in the unique solutions. These turn out to be quite similar,
but with some relevant differences. Although no difference
exists between S1 and S2, we did find significant differences
between all the other solutions. For instance, S1 and S4
differ for 23 terms overrepresented in S1 but not in S4 and
39 GO BP terms in the opposite direction [Fig. 6(c)] —that
is, about one-fourth of the GO terms identified are different
between S1 and S4 (the “optimal” solution). In particular, by
analyzing the GO terms overrepresented in S4 but not in S1,
we observe that the additional functional classes present in S4
are characterized by BP involved in the structural organization
of cellular components and by its related anabolic/catabolic
processes (see Supplemental Material, Table I). This makes
the two solutions very different also from the semantic point
of view, as they lead to different biological characterization of
clustering results.

V. DISCUSSION

As shown in Section E, the non-uniqueness of the solution
is a critical problem, since it can make results inconsistent,
leading to different interpretations of the same data depending
on the order in which the data are presented. To avoid this,
all possible dendrograms that result from different MD pairs
could be considered, but this is not a feasible approach. In
fact, in the worst case, we obtain p = N/2 non-critical pairs
at the first clustering step, from which (N/2)! dendrograms
are generated, leading to a complexity of O(N !).

Our method allowed us to greatly reduce the number of
generated dendrograms, without sacrificing completeness. This
is achieved by a careful analysis of the ties that arise in
the clustering process. More precisely, we showed that it is
possible to identify the equivalence classes over dendrograms,
according to Definition 4, and to generate a single dendrogram
per class. One can envision the strategy described here as a
shrinkage from a combinatorial space consisting of all possible
dendrograms that can stem from ties, to a reduced space
where only the most salient dendrograms (those that we called
significantly different) are retained.

The reduction in the number of dendrograms is relevant;
only 128 dendrograms were generated for the neuroimaging
data of Section E (96 for the PPI data). On the contrary,
when considering all MD pairs, or even the critical pairs only
(equivalent and non-equivalent ones), the clustering procedure
had to be stopped when 100 000 dendrograms were generated,

because of memory saturation, confirming the combinatorial
explosion due to ties.

This reduction has been obtained by limiting the number of
dendrograms that must be fully developed, although for each
new dendrogram all the data that identify the clustering state
have to be saved. The dominant cost is represented by the
dissimilarity matrix, which is O(N2), at least at the first clus-
tering steps. Overall, the algorithm has therefore a complexity
of O(q N2), where q is the number of non-equivalent pairs
encountered along the clustering process (and of the generated
dendrograms); we explicitly remark that usually q � p. This
figure is much smaller than O(N !), which is obtained when
developing all the dendrograms stemming from MD pairs.
After all clustering solutions have been generated, an addi-
tional step is required to identify the unique solutions: in fact,
some solutions, although deriving from different dendrograms,
may be constituted of the same clusters.

We remark here that equivalent dendrograms are not
identical dendrograms; by choosing one representative for
each equivalence class, we do compress information. Let us
consider, for instance, Fig. 4(a), (b), that show two equivalent
dendrograms. If a two-cluster solution is required, differ-
ent solutions would be obtained from those dendrograms.
Although in both cases the two clusters will be merged into
the same cluster in the subsequent clustering steps, these
two equivalent clusterings do exist in the intermediate steps.
Notice that this is true even for identical dendrograms: the
dendrogram shown in Fig. 3(a) could have been obtained by
either merging the yellow elements first, or the purple ones.
According to which pair was selected first, a different three-
cluster solution is obtained. In these cases, equivalent pairs
should be tracked at each clustering step. More precisely,
by introducing an additional “backtracking” step that traces
back pairs of equivalent dendrograms, we could explore all
the equivalent (but not identical) clusterings associated with
a given dendrogram cut (see Supplemental Material for more
details).

Also notice that, at each step, we identify all the MD pairs,
but only one pair of clusters is merged. A speedup could be
attained if we merged non-critical pairs in one step. This can
be seen as collapsing multiple clustering steps into one. This,
in fact, is akin to the strategy taken by [17], where all MD
pairs for one level, both critical and non-critical ones, are
simultaneously merged into “superclusters”, and the result
is depicted in one multidendrogram. By doing so, however,
some solutions are arbitrarily discarded. Let us consider,
for instance, Fig. 4(c) and (d), and assume that, whereas
{blue, green} and {green, yellow} are MD pairs with d(.) = v,
the pair {yellow, red} has d(.) = v + ε, with ε � v. In [17],
the two-cluster solution depicted in Fig. 4(c), which might
turn out the “optimal” one, would never be obtained, as the
{blue, green, yellow} supercluster would be forced.

The algorithm has been described here with Ward’s dis-
similarity measure but it can be applied to other measures
as well (see Supplemental Material), as long as they are not
prone to inversion [13]. This occurs when the sequence of
merging coefficients is nonmonotonic and, in this case, the
fact that conditions 6a and 6b hold at the current step does
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not guarantee equivalence, as a subsequent merging operation
could produce a cluster Cz that is closer to {Ci ,C j } than
Ck . The monotonicity requirement rules out centroid and
median linkage clustering, whereas simple, complete, group
and weighted group average linkages can be successfully
employed with the presented method.

The proposed approach could also be extended to the case
of real-valued datasets. Although in this case it is unlikely
that exact ties occur, it is possible that the data are affected by
noise; more elaboration on this is given in the Supplemental
Material.

In conclusion, we notice that, although the final solution
returned by our method may be called an optimized solution
since it is the best one according to the criterion set, among
those that have been generated, it cannot be assumed optimal
in a global sense. This directly follows from the greedy nature
of the HC agglomerative process and it represents a distinct
well-known problem, which is out of the scope of the present
work.

VI. CONCLUSION

We discussed how ties in the data can cause HC to yield
very different solutions for different permutations of the
same input data. We showed that, by defining an adequate
equivalence relation over the dendrograms stemming from
the data, all the significantly different clusterings can be
generated with polynomial complexity. This allows obtaining
a unique solution independently of the data presentation order,
which guarantees a unique interpretation of the data. The
identification of the final unique solution was driven here by
the maximum of Equation 7, but it could also be made by a
domain expert based on his experience. As illustrated by the
experimental results, this approach could be a valuable choice
for several neuroimaging and bioinformatics problems, but it
could be suitable also to other application domains in which
discrete data values are present that may easily lead to ties in
the data.
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