

UC firmware moltiplicazione Floating pointer adder

Prof. Alberto Borghese Dipartimento di Informatica

alberto.borghese@unimi.it

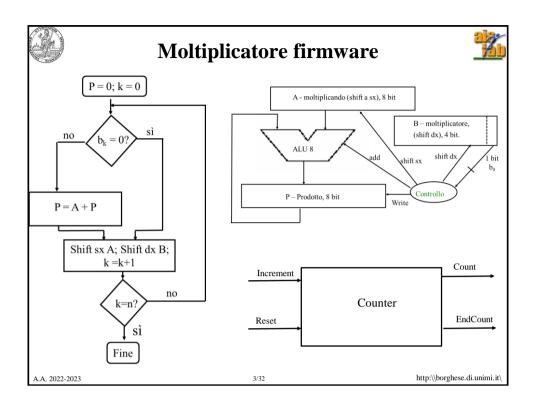
Università degli Studi di Milano Riferimenti sul Patterson, 6a Ed.: 3.4, 3.5, 4.2

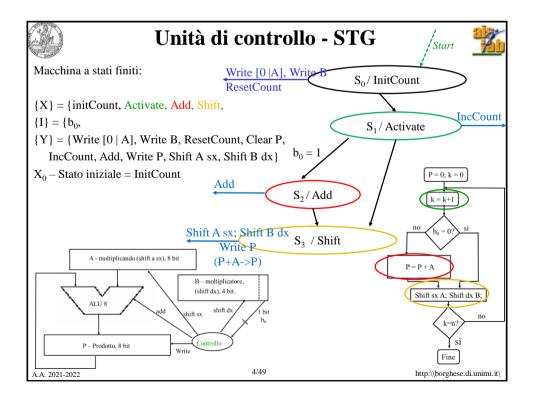
A.A. 2022-2023 1/32 http:\\borghese.di.unimi.it\

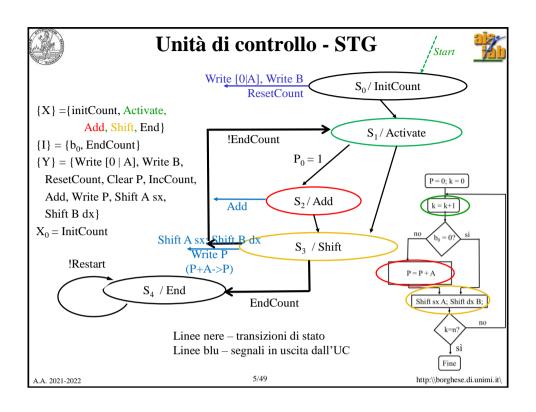
Sommario

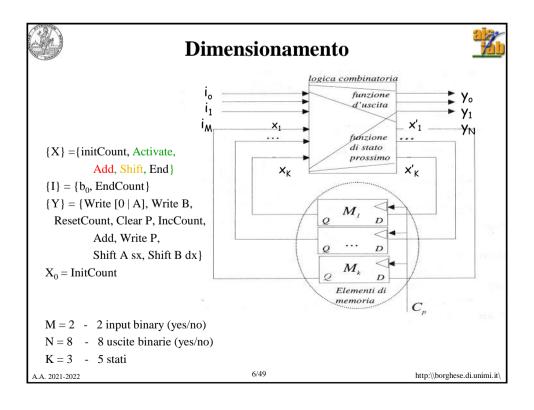
 $http: \hspace{-0.05cm} \ \ \, | borghese.di.unimi.it \rangle$

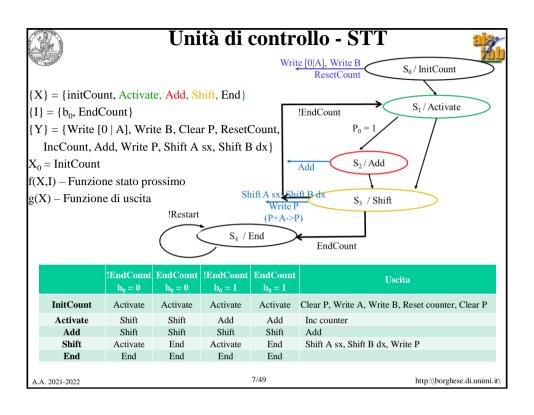
- Unità di controllo del firmware
- Somma in virgola mobile

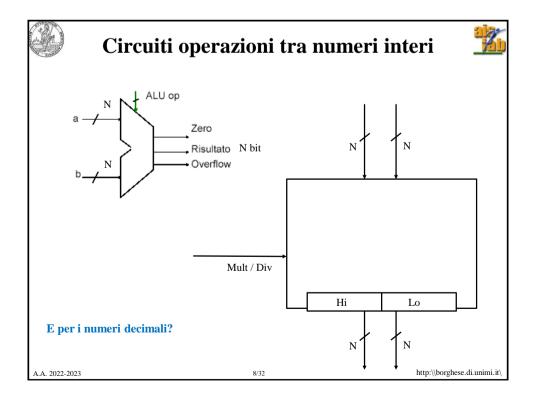








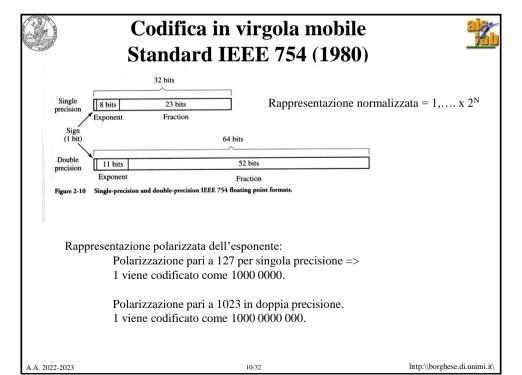




Sommario

- Unità di controllo del firmware
- Somma in virgola mobile

A.A. 2022-2023 9/32 http:\\borghese.di.unimi.it\



Esempio di somma in virgola mobile

a + b = ?

$$a = 7,999 \times 10^{1} \text{ b} = 1,61 \times 10^{-1}$$

NB I numeri decimali sono normalizzati -> vanno riportati alla stessa base (incolonnati correttamente):

Una possibilità è:

$$79,99 + a = 7,999 \times 10^{1} = 79,99 \times 10^{0}$$

 $0,161 = b = 1,61 \times 10^{-1} = 0,161 \times 10^{0}$

 $80,151 \times 10^0 = 80,151 = 8,0151 \times 10^1$ in forma normalizzata

Altre possibilità sono:

$$799.9 + 7.999 + 0.0161 = 0.0161 = 0.0151 \times 10^{-1} = 8.0151 \times 10^{1} = 8.0151 \times 10^{1}$$
in forma normalizzata = 8.0151×10^{1}

A.A. 2022-2023 11/3

Quale forma conviene utilizzare?

http:\\borghese.di.unimi.it\

http:\\borghese.di.unimi.it\

$$a = 7,999 \times 10^{1} \ b = 1,61 \times 10^{-1}$$
 $a + b = ?$

Supponiamo di avere 4 cifre in tutto per il risultato del prodotto: 1 per la parte intera e 3 per la parte decimale:

79,99 +	799,9 +	7,999 +
0,161 =	1,61 =	0,0161 =
$80,151 \times 10^{0}$	80 1,51 x 10 ⁻¹	8,015 1 x 10 ¹

La rappresentazione **migliore** è: 7,999 +

0,0161 =

Risultato normalizzato 8,0154 x 10¹

Con la quale posso scrivere: 1 cifra prima della virgola (8) e 3 cifre dopo la virgola (015), 1 va perso, ma è la cifra che pesa di meno.

Con la rappresentazione più a sinistra, perdo le decine, con quella in mezzo decine e centinaia commettendo un errore grande sulla rappresentazione.

Allineo al numero con esponente maggiore (perdo cifre di peso minore).

Annieo ai numero con esponente maggiore (peruo cirre di peso minore).

Approssimazione

Interi -> risultato esatto (o overflow)

Numeri decimali -> Spesso occorrono delle approssimazioni

- Troncamento (floor): 8,0151 -> 8,015
- Arrotondamento alla cifra superiore (ceil): 8,0151 -> 8,016
- Arrotondamento alla cifra più vicina: (round) 8,0151 -> 8,015

IEEE754 prevede 2 bit aggiuntivi nei calcoli per mantenere l'accuratezza. bit di guardia (guard) bit di arrotondamento (round)

Invece di approssimare gli operandi, I bit di guardia e arrotondamento consentono di approssimare il risultato finale.

Esempio: aritmetica in floating point accurata

a = 2,34 b = 0,0256 a + b = ? Codifica su 3 cifre decimali totali. Approssimazione mediante **rounding**.

Senza cifre di arrotondamento e utilizzando il troncamento, devo scrivere:

2,34 +

0,02 = ho troncato il secondo addendo per rimanere nella capacità

2,36

Con il bit di guardia e di arrotondamento posso scrivere:

2,3400 +

0,0256 =

2,3656

L'arrotondamento finale (round) viene effettuato sul risultato per rientrare in 3 cifre decimali fornisce: 2,37

A.A. 2022-2023 http://borghese.di.unimi.it/

L'effetto perverso del troncamento

C = A + Bif (C > A) then

(a)...

else

(b)....

 $A = 7.999 \times 10^{1} B = 1.61 \times 10^{-1}$ $C = A + B = (7.999 + 0.0161) \times 10^{1} = 8.0151 \times 10^{1}$ Passando alla codifica su 4 bit con troncamento degli operandi ottengo:

 $A = 7,999 \times 10^{1} B = 1,61 \times 10^{-1}$ $C = A + B = (7,999 + 0,0161) \times 10^{1} = 8,015$ => C > A correttamente

 $A = 7,999 \times 10^{1} B = 1,61 \times 10^{-4}$ C = A + B = 7,999161

Passando alla codifica su 4 bit con troncamento degli operandi ottengo:

 $A = 7.999 \times 10^{1} B = 1.61 \times 10^{-4}$ $C = A + B = (7,999 + 0,0000161) \times 10^{1} = 7,999$ => C = A errore sull'istruzione di test!!!

Questo è un errore molto comune quando si considera l'aritmetica con i numeri decimali

http:\\borghese.di.unimi.it\ A.A. 2022-2023 15/32

Non vale la proprietà associativa della somma

Z = A + (B + C)

 $A = -10^{38}$ $B = 10^{38}$

C = 1

 $(B + C) = 10^{38}$ Risultato sbagliato $\mathbf{Z} = \mathbf{0}$

Z = (A + B) + C

(A+B)=0Z = 1Risultato corretto

Risultati molto diversi.

Problemi di arrotondamento – IEEE 754

A = 4

 $B = 1,0000003576278686523438 \times 10^{0}$

In IEEE754:

 $A = 1 \times 2^2 = 4$

 $B = 1,00000\,00000\,00000\,00000\,011\,x\,2^0$ parte frazionaria su 23 bit

 $A = 0 \ 1000 \ 0001 \ 00000 \ 00000 \ 00000 \ 00000 \ 0000 \ codifica \ IEEE754 \ su \ 32 \ bit$ $B = 0 \ 1111 \ 1111 \ 00000 \ 00000 \ 00000 \ 00000 \ 011 \ codifica \ IEEE754 \ su \ 32 \ bit$

Allineo B ad A: => B = 0, 01000 00000 00000 00000 00011 x 2^2 parte frazionaria su 23 bit

Segue che: $=> C = A + B = 1,01000\,00000\,00000\,0000\,0000\,x\,2^2\,su\,23$ bit

 $0,01000\ 00000\ 00000\ 00001\ +\ su\ 23\ bit$ Base = 2^2

 $1,00000\,00000\,00000\,0000\,000 = su\,23$ bit

 $1,01000\,00000\,00000\,00000\,0000$ su 23 bit Base = 2^2

 $C = A + B = 5 \\ \text{http://borghese.di.unimi.it/}$

Problemi di troncamento – IEEE 754

 $B = 1,0000003576278686523438 \times 10^{0}$

In IEEE754:

 $A = 1 \times 2^2$

 $B = 1,00000\,00000\,00000\,00000\,011\,x\,2^0$ parte frazionaria su 23 bit

Senza aggiungere i bit di guardia e arrotondamento quando allineo B ad A (Potenza : 2²):

 $0.01000\,00000\,00000\,00000\,0000 + \text{su } 23 \text{ bit}$ Base = 2^2

1,00000 00000 00000 00000 000 = su 23 bit

Somma $\frac{1,01000\,00000\,00000\,00000\,0000}{1,01000\,00000\,00000\,0000}$ su 23 bit Base = 2^2

Per rounding, $C = 1,01000\ 00000\ 00000\ 00000\ 000$ su 23 bit Base = 2^2

C = A + B = A + 1 = 5 può essere pericoloso.

A.A. 2022-2023 18/32 http:\\borghese.di.unimi.it\

Problemi di troncamento – IEEE 754

 $B = 1,0000003576278686523438 \times 10^{0}$

In IEEE754:

 $A = 1 \times 2^2$

 $B = 1,00000\,00000\,00000\,00000\,011\,x\,2^0$ parte frazionaria su 23 bit

 $A = 0 \ 1000 \ 0001 \ 00000 \ 00000 \ 00000 \ 00000 \ 0000 \ codifica \ IEEE754 \ su \ 32 \ bit$ $B = 0 \ 1111 \ 1111 \ 00000 \ 00000 \ 00000 \ 00000 \ 011 \ codifica \ IEEE754 \ su \ 32 \ bit$

Se aggiungo i bit di guardia e arrotondamento quando allineo B ad A (Potenza : 2²):

 $0,01000\ 00000\ 00000\ 00000\ 00011 + \ \ su\ 25\ bit$ Base = 2^2

1,00000 00000 00000 00000 00000 = su 25 bit

Somma $1.01000\,00000\,00000\,00000\,00011$ su 25 bit Base = 2^2

Per rounding, $C = 1.01000\ 00000\ 00000\ 00000\ 00000$ su 23 bit Base = 2^2

 $C = A + B = 5 + 2^{-23}2^2 = 5 + 0.000000476837158203125$

molto più vicino al valore vero!

A.A. 2022-2023 http:\\borghese.di.unimi.it\

Algoritmo di somma in virgola mobile - I

 Trasformare uno dei due numeri (normalizzati) in modo che le due rappresentazioni abbiano la stessa base: allineamento della virgola. Si allinea all'esponente più alto (denormalizzo il numero più piccolo).

2) Effettuare la somma delle mantisse.

$$9,12 + 0,899 =$$

 $10,019 \times 10^{0}$

Se il numero risultante è normalizzato termino qui. Altrimenti:

3) Normalizzare il risultato. $10,019 \times 10^{0} \implies 1,0019 \times 10^{1}$

Esempio di somma in virgola mobile - II

$$a = 9,999 \times 10^{1} b = 1,61 \times 10^{-1}$$

$$a + b = ?$$

Supponiamo di avere a disposizione 4 cifre per la mantissa e due per l'esponente.

1) Esprimo entrambi i numeri con la base 10^1 $1,61 \times 10^{-1} = 0.0161 \times 10^1$

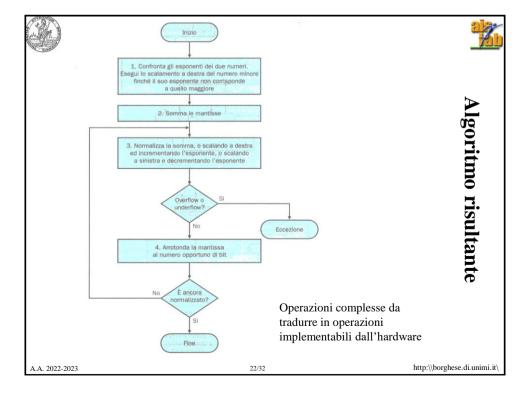
2) Somma delle mantisse:

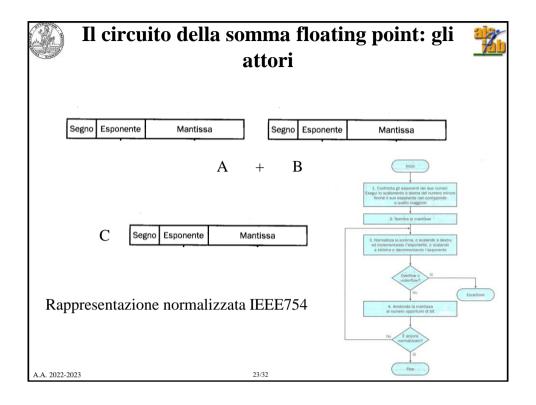
0,016(1) = Perdo una cifra perchè non rientra nella capacità della mantissa (troncamento)

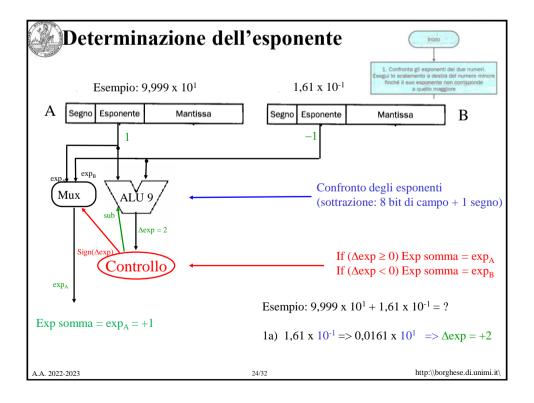
10,015 x 10¹ Il risultato non è più normalizzato, anche se i due addendi sono normalizzati.

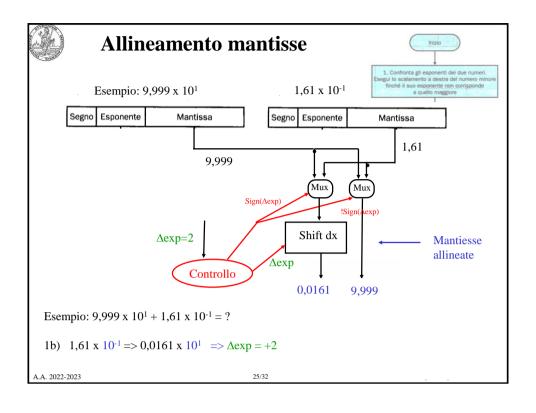
NB: In questa fase si può generare la necessità di rinormalizzare il numero (passo 3):

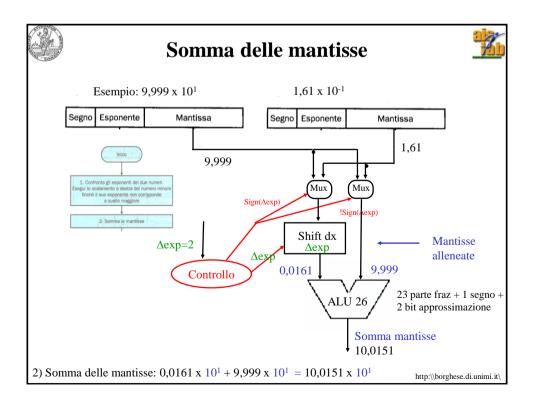
 $10,015 \times 10^1 = 1,001 \times 10^2$ in forma normalizzata (per una cifra per effetto del troncamento)

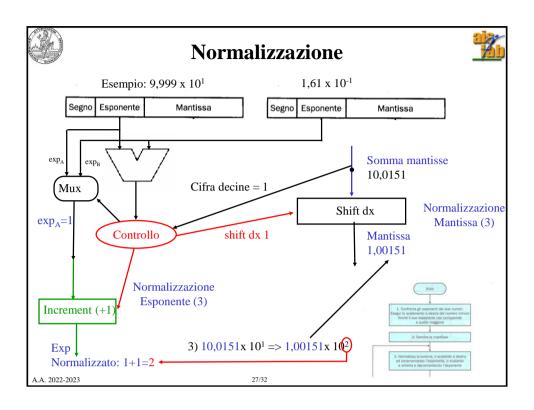


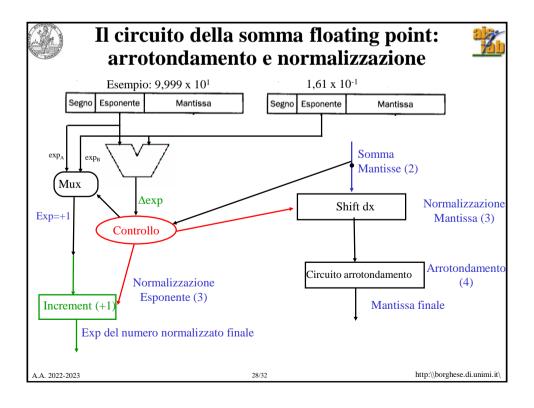


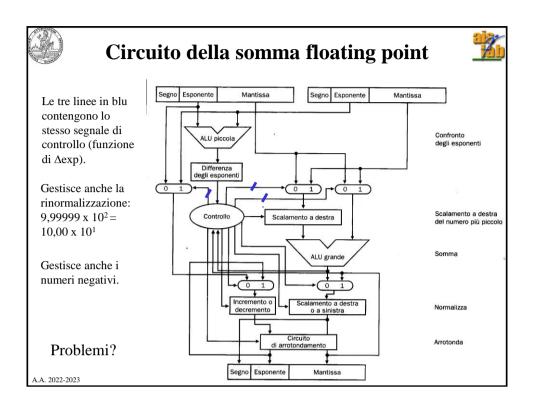


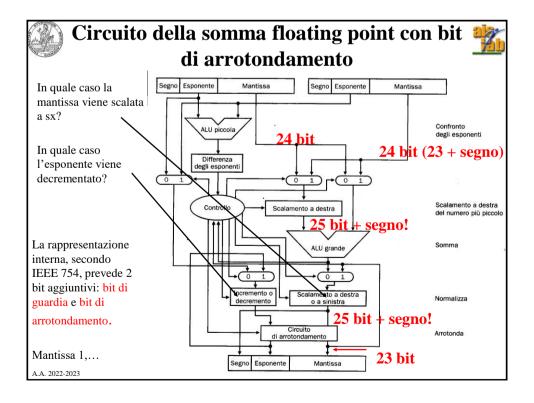












Prodotto e divisione in virgola mobile

- Prodotto delle mantisse
- · Somma degli esponenti
- Normalizzazione
- Divisione in virgola mobile = Prodotto di un numero per il suo inverso.

A.A. 2022-2023

Sommario

http:\\borghese.di.unimi.it\

- UC del firmware
- Somma in virgola mobile

Δ 2022-2023 32/32

http:\\borghese.di.unimi.it\