

I sommatori

Prof. Alberto Borghese Dipartimento di Informatica

borghese@di.unimi.it

Università degli Studi di Milano

Riferimenti: Appendice B5 prima parte.

A.A. 2022-2023 1/39

Sommario

http:\\borghese.di.unimi.it\

Addizionatori

Addizionatori ad anticipazione di riporto

A 2022-2023 2/39

Implementazione di funzioni algebriche

And, Or, Not per ottenere:

Operazioni algebriche (somme, prodotti, sottrazioni e divisioni) su numeri binari.

Operazioni logiche su numeri binari.

A.A. 2022-2023 3/39 http:\\borghese.di.unimi.it\

Operazione di somma

3 Attori: addendo 1, addendo 2, riporto.

Gli addendi sono presenti all'inizio Il riporto viene generato via via che la somma viene svolta

Viene eseguita sequenzialmente da dx a sx.

.A. 2022-2023 4/39 http:\\borghese.di.unimi.it\

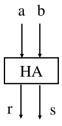

(Half) Adder a 1 bit

Tabella della verità della somma:

a b	somma	riporto
0.0	0	0
0 1	1	0
10	1	0
1 1	0	1

 $s = a \oplus b$ r = ab

a b	xor
0.0	0
0 1 1 0	1
10	1
1 1	0

La somma è diventata un'operazione logica!

Cammini critici: Somma = 1; Complessità Somma = 1 porta;

Riporto = 1;

Riporto = 1 porta;

A.A. 2022-2023

5/39

http:\\borghese.di.unimi.it\

Operazione di somma

$$\begin{array}{r}
 110 \\
 1011 + \\
 110 =
 \end{array}$$

← Riporto

111

← Addendo 1 ← Addendo 2 01011 + 00110 =

10001

3 Attori: addendo 1, addendo 2, riporto.

Gli addendi sono presenti all'inizio

10001

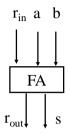
- Non c'è riporto in ingresso per il primo bit (HA)
- Il riporto viene generato via via che la somma viene svolta per i bit successivi al primo

Viene eseguita sequenzialmente da dx a sx.

A A 2022 202

6/39

 $http: \hspace{-0.05cm} \ \ \, | borghese.di.unimi.it \rangle$



Full Adder a 1 bit

Tabella della verità della somma completa:

a b	r_{in}	somma	riporto
0 0	0	0	0
0 1	0	1	0
10	0	1	0
1 1	0	0	1
0 0	1	1	0
0 1	1	0	1
10	1	0	1
1 1	1	1	1
		•	

$$\begin{split} s &= m_1 + m_2 + m_4 + m_7 \\ r &= m_3 + m_5 + m_6 + m_7 \end{split}$$

7/39 http:\\borghese.di.unimi.it\ A.A. 2022-2023

Full Adder a 1 bit – espressione logica di s

Tabella della verità della somma completa:

$$s = m_1 + m_2 + m_4 + m_7$$

ab r _{in}	somma	ripo	orto			
000	0	0				
010	1	0				
100	1	0				
110	0	1	$s = a b r_{in} + a b r_{in} + a b r_{in} + a b r_{in} + a b r_{in} =$			
001	1	0				
0 1 1	0	1	$= (ab + ab)r_{in} + (ab + ab) r_{in} =$	XOR /	/ XN	OR
101	0	1				_
111	1	1	$= (a \oplus b) r_{in} + (ab + ab) r_{in} = \underline{\hspace{1cm}}$	a b	У	y
	•			0.0	0	1
			$= (a \oplus b) r_{in} + (a \oplus b) r_{in}$	0 1	1	0
				10	1	0
			XOR(a,b) = (ab + ab)	1 1	0	1
				I		
A.A. 2022-2023			!XOR(a,b) = XNOR(a,b) = (ab + ab)	orghese.	.di.uni	mi.it\

Full Adder a 1 bit – espressione logica di r_{out}

Tabella della verità della somma completa:

$$r = m_3 + m_5 + m_6 + m_7$$

ab r _{in}	somma	riporto	
0 0 0	0	0	
010	1	0	
100	1	0	
110	0	1	$r_{out} = a b r_{in} + a b r_{in} + a b r_{in} + a b r_{in} + a b r_{in} =$
001	1	0	out in in in in
0 1 1	0	1	1) $ab + (a \oplus b) r_{in}$
101	0	1	
$ \begin{array}{cccc} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array} $	1	1	$2) a r_{in} + (a \oplus r_{in}) b$
	1		

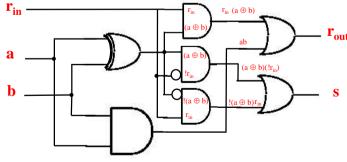
Quale è meglio?

A.A. 2022-2023 9/39

Implementazione circuitale

http:\\borghese.di.unimi.it\

$$s = (a \oplus b) \stackrel{-}{r_{in}} + (\overline{a \oplus b}) \stackrel{-}{r_{in}}$$


$$s = (a \oplus b) \overline{r_{in}} + (\overline{a \oplus b}) r_{in}$$

$$r_{out} = ab + (a \oplus b) r_{in}$$

$$r_{out} = a r_{in} + (a \oplus r_{in}) b$$

Complessità: 7 porte logiche (Riutilizzo l'XOR 2 volte)

Complessità: 8 porte logiche (Riutilizzo l'XOR 1 volta)

Complessità: 7 porte logiche. Cammini critici: $s \rightarrow 3$; $r_{out} \rightarrow 3$

A.A. 2022-2023 10/39 http:\\borghese.di.unimi.it\

Semplificazione circuitale
$$s = (a \oplus b) \stackrel{\cdot}{r_{in}} + (a \oplus b) \stackrel{\cdot}{r_{in}} = a \oplus b \oplus r_{in}$$

$$z \triangleq (a \oplus b) \Rightarrow z \stackrel{\cdot}{r_{in}} + z \stackrel{\cdot}{r_{in}} = (z \oplus r_{in}) = ((a \oplus b) \oplus r_{in}) = a \oplus b \oplus r_{in}$$

$$r_{out} = ab + (a \oplus b) r_{in}$$

$$a$$

$$b$$

$$r_{in}$$
6 porte logiche.
Cammini critici: $s \rightarrow 2$; $r_{out} \rightarrow 3$

A.A. 2022-2023

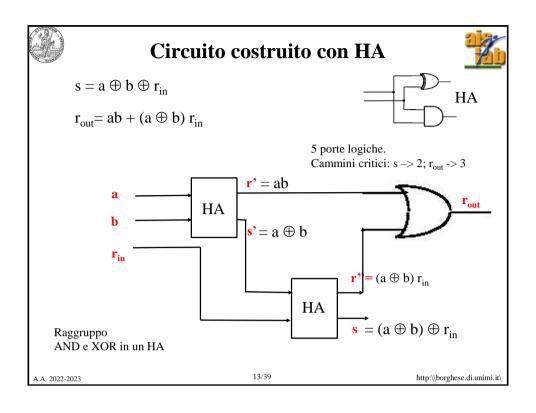
Semplificazione ulteriore

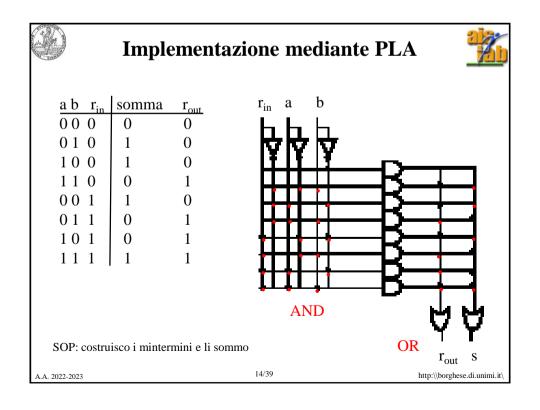

11/39

http:\\borghese.di.unimi.it\

$$s = a \oplus b \oplus r_{in}$$

$$r_{out} = ab + (a \oplus b) r_{in}$$


5 porte logiche.


Cammini critici: $s \rightarrow 2$; $r_{out} \rightarrow 3$

s - rilevatore di (dis)parità

 r_{out} – riporto se generato (a = b = 1) o se propagato (a \oplus b = 1) r_{out} = r_{in}

12/39 $http: \hspace{-0.05cm} \ \ \, | borghese.di.unimi.it \rangle$ A.A. 2022-2023

Esercizi con ROM e PLA

Implementare il circuito del Full Adder mediante ROM

Scrivere il circuito che esegue la somma di: 3 + 4 in base 2. Riportare <u>tutte le uscite</u> delle porte logiche.

Scrivere il circuito che esegue la seguente sottrazione: 5-2 in base 2. Riportare <u>tutte le uscite</u> delle porte logiche.

A.A. 2022-2023 15/39

Sommario

http:\\borghese.di.unimi.it\

Addizionatori

Addizionatori ad anticipazione di riporto

OR su più bit

1 0 0 1

OR

1 1 0 0

=

1 1 0 1

Ogni bit viene elaborato separatamente

A.A. 2022-2023 17/39 http:\\borghese.di.unimi.it\

AND su più bit

1 0 0 1

AND

1 1 0 0

=

1 0 0 0

Ogni bit viene elaborato separatamente

Δ Δ 2022-202

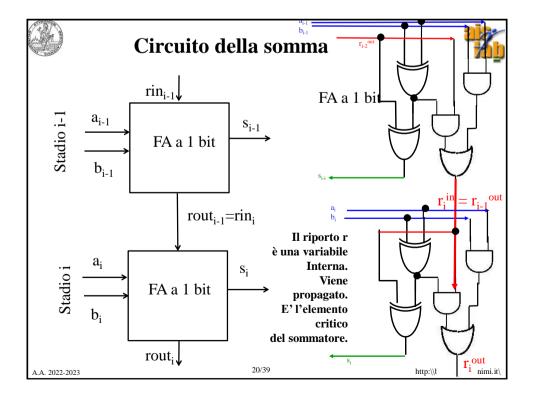
18/39

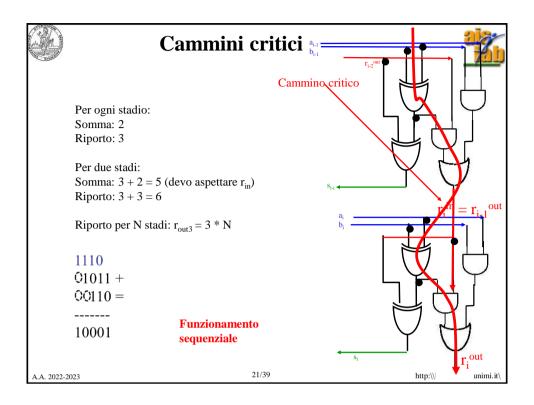
 $http: \hspace{-0.05cm} \ \ \, | borghese.di.unimi.it \rangle$

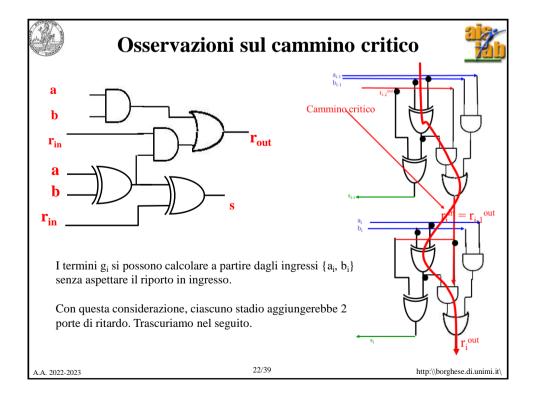
Operazione di somma

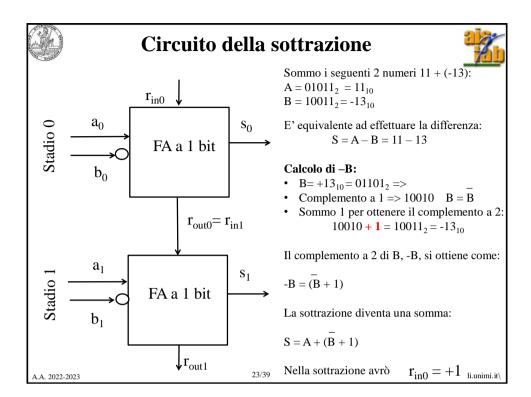

```
1110 ← Riporto
```

01011 + ← Addendo 1 00110 = ← Addendo 2


10001


Per ogni bit ho 3 Attori: addendo 1, addendo 2, riporto.


Gli addendi sono presenti all'inizio Il riporto viene generato via via che la somma viene svolta


Viene eseguita sequenzialmente da dx a sx.

A.A. 2022-2023 19/39 http:\\borghese.di.unimi.it\

I problemi del full-adder

Il full adder con propagazione del riporto è lento.

- Il riporto si propaga sequenzialmente caratteristica dell'algoritmo di calcolo
- la commutazione dei circuiti non è istantanea (tempo di commutazione)

caratteristica fisica dei dispositvi

Soluzioni

modificare l'algortimo modificare i dispositivi

Prima possibilità: forma tabellare

Riscrivo le equazioni del riporto in modo non sequenziale. Come?

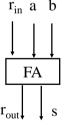
$$\{r_{out3},\,s_{out3},\,s_{out2},\,s_{out1},\,s_{out0}\} = f(r_{in0},\,a_0,\,b_0,\,a_1,\,b_1,\,a_2,\,b_2,\,a_3,\,b_3,....)$$

Scrivo la tabella della verità dove in uscita ho il riporto in uscita e I bit di somma e In ingresso 2 * N valori (gli N bit dei 2 addendi).

La tabella della verità ha 2^(2N+1) righe (per N=32, ...)

A.A. 2022-2023 25/39

Carry look-ahead (anticipazione di riporto


http:\\borghese.di.unimi.it\

Approccio strutturato per diminuire la latenza della somma.

$$r_{out} = ab + (a \oplus b) r_{in}$$

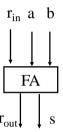
Analisi del singolo stadio.

Quando si genera un riporto in uscita?

Quando ho almeno due 1, in ingresso; cioè almeno due «1» tra $r_{\rm in}$, a e b.

.A. 2022-2023 26/39 http:\\borghese.di.unimi.it\

Propagazione e generazione


Ho riporto quando ho almeno due 1, in ingresso; cioè tra r_{in} , a e b.

Osservazioni:

- Viene generato un riporto dallo stadio i, qualsiasi sia il riporto in ingresso se $a_i = b_i = 1 \Rightarrow g_i = a_i b_i$.
- Viene generato un riporto allo stadio i, se il riporto in ingresso è = 1 ed una delle due variabili in ingresso è = 1 => se $p_i = (a_i \oplus b_i) =>$ viene generato riporto se $p_i r_i^{in} = 1$ $(p_i propaga il segnale di riporto <math>r_i^{in})$.

Quando sia la condizione 1) che la condizione 2) è verificata? Cosa succede se entrambe le condizioni sono verificate?

ab r _{in}	somma	riporto
0 0 0	0	0
0 1 0	1	0
100	1	0
110	0	1
0 0 1	1	0
0 1 1	0	1
101	0	1
111	1	1

http:\\borghese.di.unimi.it\ A.A. 2022-2023

Esempio

Sono interessato ad r_0^{out} . Supponiamo anche il riporto in ingresso al primo stadio: $r_0^{\text{in}} = 0$.

$$1\ 0\ 1\ 0\ 1\ 1\ 0\ 1 + \\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0 =$$

$$0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0$$
$$1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0$$
$$0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 =$$

0111000

$$r_5^{in} = r_4^{out} = 0$$

$$r_5^{\text{in}} = r_4^{\text{out}} = 1$$
 $r_5^{\text{in}} = r_4^{\text{out}} = 1$

$$r_5^{in} = r_4^{out} = 1$$

Per propagazione Per generazione

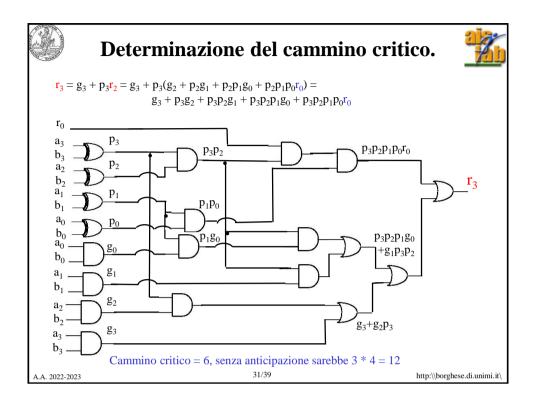
$$p_4 = (a_4 \oplus b_4)r_4^{\text{in}}.$$
 $g_4 = a_4b_4$

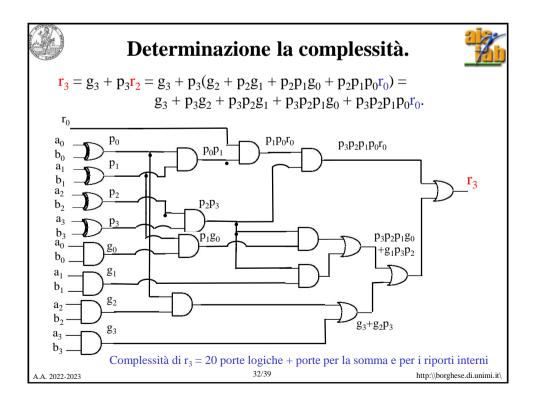
$$g_4 = a_4 b_4$$

28/39

http:\\borghese.di.unimi.it\

Sviluppo della funzione logica riporto




Propago il riporto

http:\\borghese.di.unimi.it\

$$\begin{split} & \textbf{r}_i^{\text{out}} \!\!= ab + (a \oplus b) \, \textbf{r}_i^{\text{in}} \\ & \downarrow \quad / \\ & \textbf{r}_i^{\text{out}} \!\!= g_i + p_i \, \textbf{r}_i^{\text{in}} \\ & \textbf{r}_0 \!\!= g_0 + p_0 \textbf{r}_0 \\ & \textbf{r}_1 \!\!= g_1 + p_1 \textbf{r}_0 \!\!= g_1 + p_1 g_0 + p_1 p_0 \textbf{r}_0 \\ & \textbf{r}_2 \!\!= g_2 + p_2 \textbf{r}_1 \!\!= g_2 + p_2 (g_1 + p_1 g_0 + p_1 p_0 \textbf{r}_0) \!\!= g_2 + p_2 g_1 + p_2 p_1 g_0 + \\ & p_2 p_1 p_0 \textbf{r}_0. \\ & \textbf{r}_3 \!\!= g_3 + p_3 \textbf{r}_2 \!\!= g_3 + p_3 (g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 \textbf{r}_0) \!\!= \\ & g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 \textbf{r}_0. \end{split}$$

30/39

Complessità aggiuntiva per gli altri bit di riporto

$$\begin{aligned} r_2 &= g_2 + p_2 r_1 = g_2 + p_2 (g_1 + p_1 g_0 + p_1 p_0 r_0) = \\ g_2 &+ p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 r_0 \end{aligned}$$

In rosso le porte già presenti nel circuito di r_{out3}

Complessità aggiuntiva pari a 6 porte logiche.

$$r_1 = g_1 + p_1 r_0 = g_1 + p_1 g_0 + p_1 p_0 r_0$$

Complessità aggiuntiva pari a 2 porte logiche.

Complessità aggiuntiva totale per i riporti: 8 porte logiche.

A.A. 2022-2023 33/39

Complessità aggiuntiva per i bit di somma

http:\\borghese.di.unimi.it

$$s_k = (a_k \oplus b_k) \oplus r_{k_{in}} = p_k \oplus r_{k_{in}}$$

Ogni bit di somma aggiunge una porta logica XOR => La complessità aumenta di N * 1 = 4 porte logiche.

Un CLA su 4 bit ha quindi una complessità di 20 + 6 + 2 + 4 = 32 porte logiche.

Un sommatore a propagazione di riporto ha una complessità di 4*5 = 20 porte logiche.

Quanto si guadagna con l'anticipazione del🎎 riporto per N stadi?

Cammino critico per le variabili interne:

 $r_0^{\text{out}} => 3$

 $r_1^{\text{out}} => 4$

 $r_2^{\text{out}} = > 5$

Cammino critico per le variabili esterne:

 $r_3^{\text{out}} => 6$

 $s_3 => 6$ NB la prima porta XOR è in comune con r_2^{out}

=> 5 NB la prima porta XOR è in comune con r_1^{out}

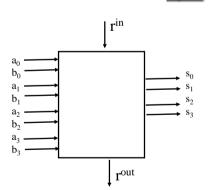
 $s_1 => 4$ NB la prima porta XOR è in comune con r_0^{out}

=> 2

Cammino critico scala come $CC_{(1 \text{ stadio})} *log(N)$

35/39 A.A. 2022-2023

Addizionatori modulari



http:\\borghese.di.unimi.it\

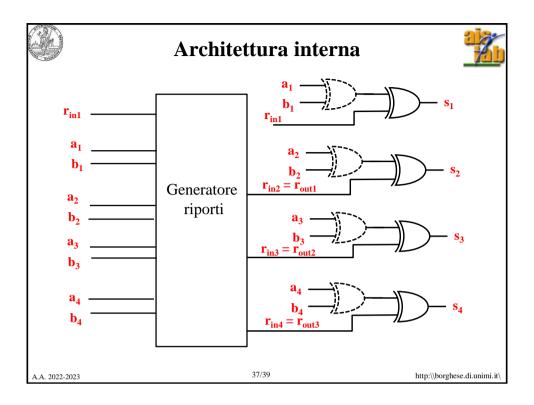
La complessità del circuito è tollerata per piccoli n.

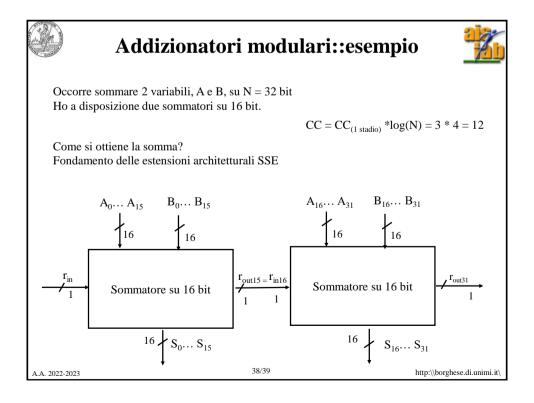
Circuiti sommatori indipendenti si hanno per 4 bit.

Moduli elementari.

Come si ottiene la somma?

Collegando in cascata i moduli (sommatori elementari).


Cammino critico = 6 (CC di un modulo a 4 bit) * N/4. Per 32 bit, 48 (ciascun modulo dimezza il CC).


Per confronto, senza parallelizzazione, sommatore a propagazione di riporto, per 32 bit, N * 3 = 96.

.A. 2022-2023

36/39

http:\\borghese.di.unimi.it\

Sommario

Addizionatori

Addizionatori ad anticipazione di riporto

A.A. 2022-2023 39/39 http:\\borghese.di.unimi.it\