

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP)

Prof. Alberto Borghese Dipartimento di Informatica

alberto.borghese@unimi.it

Università degli Studi di Milano

Riferimento al testo: Patterson Hennessy, Sezione B.3 on-line; Approfondimento sulle forme canoniche: Fummi et al., Progettazione Digitale, McGrawHill, capitolo 3.

A.A. 2019-2020 1/42 http://borghese.di.unimi.it/

Sommario

http::borghese.di.unimi.it\

I circuiti combinatori.

Semplificazione algebrica.

Dalla tabella della verità al circuito: la prima forma canonica: SOP.

Circuiti combinatori

- Circuiti logici digitali in cui le operazioni (logiche) dipendono solo da una combinazione
 degli input. Come nelle funzioni algebriche, il risultato è aggiornato immediatamente dopo il
 cambiamento dell'input (si suppone il tempo di commutazione trascurabile, tempo di attesa
 prima di guardare l'output sufficientemente ampio per permettere a tutti i circuiti la
 commutazione).
- Circuiti senza memoria. Ogni volta che si inseriscono in ingresso gli stessi valuri, si
 ottengono le stesse uscite. Il risultato non dipende dallo stato del circuito.
- I circuiti combinatori descrivono delle funzioni Booleane. Queste funzioni si ottengono
 combinando tra loro (in parallelo o in cascata) gli operatori logici: NOT, AND, OR.
- Il loro funzionamento può essere descritto come tabella della verità.
- Dato un circuito è univoca l'espressione algebrica che ne rappresenta il funzionamento.

A.A. 2019-2020 3/41 http::borghese.di.unimi.it\

Un po' di tassonomia

 Espressione logica. Combinazione di operatori logici che implementa la funzione logica. Ad ogni espressione logica è associato un ben preciso circuito.

$$AB + BC$$

 Funzione logica. Corrispondenza tra un insieme di ingresso (valori possibili di A, B, C) e insieme di uscita (valori possibili di Y)

$$Y = A B + BC$$

Regole manipolazione algebrica

	=
Doppia Inversione	x = x

AND OR
Identità 1 x = x 0 + x = xElemento nullo 0 x = 0 1 + x = 1Idempotenza x x = x x + x = xInverso x = 0 x + x = 1

Commutativa x y = y x x + y = y + x

Associativa (x y) z = x (y z) (x + y) + z = x + (y + z)

AND rispetto ad OR OR rispetto ad AND

Distributiva $x (y + z) = x y + x z \quad x + y z = (x + y) (x + z)$

Assorbimento x(x + y) = x x + xy = x

De Morgan xy = x + y x + y = x y

Si possono dimostrare sostituendo 0/1 alle variabili.

A.A. 2019-2020 5/41 http::borghese.di.unimi.it/

Regole algebriche su più variabili

Commutativa
$$x$$
 y $z=y$ x $z=z$ x y $x+y+z=y+x+z=z+x+y$

AND rispetto ad OR OR rispetto ad AND

Distributiva x (yh+z) = xyh+xz xh + yz = (xh+y)(xh+z)

De Morgan xyz = x + y + z x+y+z = x y z

Si possono dimostrare sostituendo 0/1 alle variabili.

Una seconda rappresentazione

$$Y = A B + BC$$

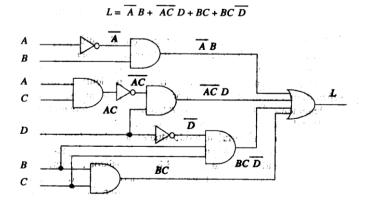
Applico De Morgan ai prodotti logici:

$$Y = A + B + B + C$$
 NB !B e !B non si sommano!!

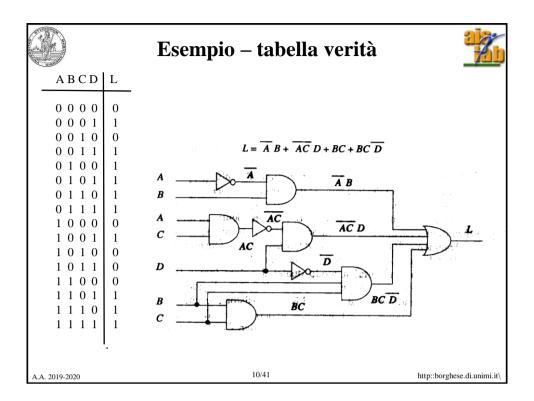
1 0 0 0 1 0 1 0 1 1 0 1

A.A. 2019-2020 8/41 1 1 1

http::borghese.di.unimi.it\



A.A. 2019-202



Manipolazione algebrica

Applichiamo De Morgan.

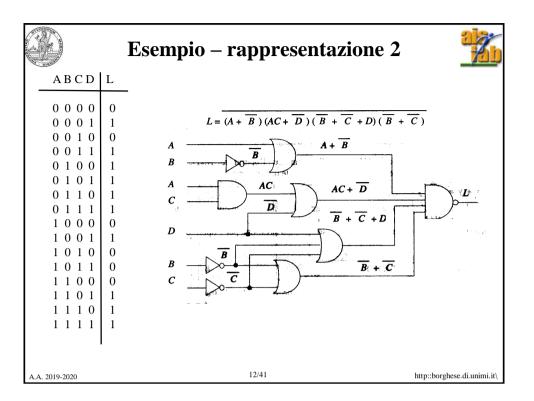
$$L = A B + AC D + BC D + BC =$$

$$= A + B + AC + D + BC + D + B + C =$$

$$x y = x + y$$

$$x + y = xy$$

A.A. 2019-2020 11/41 http::borghese.di.unimi.it\



Sommario

I circuiti combinatori.

Semplificazione algebrica.

Dalla tabella della verità al circuito: la prima forma canonica: SOP.

Semplificazioni notevoli

Dimostrare che: A + AB = A + B

Proprietà distributiva di OR rispetto ad AND:

$$A + AB = (A + A)(A + B)$$

Sviluppando il prodotto:

$$(A + B)(A + A) = AA + AA + BA + BA = A + AB + AB$$

Raccogliendo A:

$$A + AB + AB = A + (A + A)B = A + B$$

NB: posso anche identificare i 3 «1» della funzione OR:

$$A + AB = A(B + B) + AB = AB + AB + AB = A + B$$

A.A. 2017-2018 14/41 http:\\borghese.di.unimi.it\

Semplificazioni notevoli

Dimostrare che: (A + B)(B + C) = AB + AC + BC

Dimostrare che: A + AB = A + B

Esempio di semplificazione algebrica (esercizio)

 $Y = \overrightarrow{ABC} + \overrightarrow{ABC} + \overrightarrow{ABC} =$

Raccogliendo BC:

$$(A + A)BC + ABC =$$

Proprietà dell'inverso: " $\overline{A} + A = 1$ "

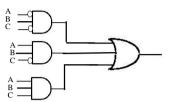
$$= 1B\overline{C} + ABC =$$

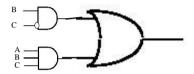
Proprietà dell'identità: "1B = B"

$$=$$
 \overrightarrow{BC} + \overrightarrow{ABC} $=$

Dalla slide precedente:

$$= B (C + AC) = B(C + A)$$





A.A. 2017-2018

16/41

http:\\borghese.di.unimi.it\

Esempi di manipolazione algebrica

Y = !xyv + yz + !y!zv + !xy!v + x!yv =

$$Y = A !B !C + A B C + A B !C + A !B C = A$$

Somma di prodotti di 3 variabili: A, B, C (inverso dell'esercizio precedente):

Esercizi

• Calcolare le TT per le seguenti funzioni

 $DA + AC + \sim B$

A + B + C + D

 \sim D \sim ABC + \sim DABC + \sim D \sim AB \sim C + \sim DAB \sim C

 Trasformare in funzioni equivalenti le seguenti ~(ABCD)

 \sim (DA) + \sim (B + \sim C)

A.A. 2017-2018 18/41

Sommario

http::borghese.di.unimi.it\

I circuiti combinatori.

Dall'espressione logica al circuito. Semplificazione algebrica.

Dalla tabella della verità al circuito: la prima forma canonica: SOP.

FPGA

Field Programmable Gate Array (Matrice di porte logiche programmabili sul campo) 2020 mercato di 8.5 miliardi di dollari.



Definizione della funzione logica

Semplificazione e fitting Programmazione

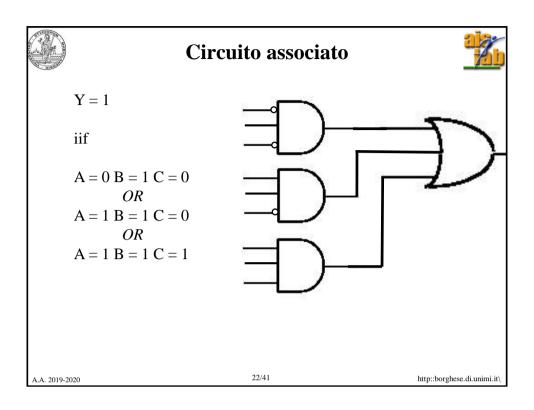
Da circuiti logici relativamente semplici fino a microprocessori interi:

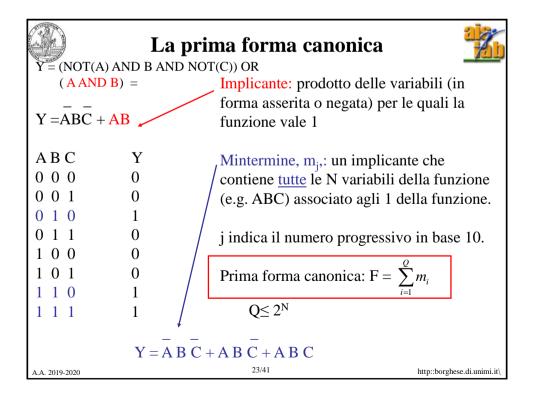
https://www.arm.com/resources/designstart/designstart-fpga https://venturebeat.com/2018/10/01/xilinx-will-use-arm-cores-in-fpga-chips/

A.A. 2019-2020 20/41 http::borghese.di.unimi.it\

Funzione come espressione logica o come tabella delle verità

A 2019-2020 21/41





Mmintermini e Maxtermini

Mintermine, m_j.: un implicante che contiene <u>tutte</u> le N variabili della funzione (e.g. ABC) associato agli 1 della funzione.

j indica il numero progressivo in base 10.

$$F = \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$$

Maxtermine, M_k: un implicante che contiene <u>tutte</u> le N variabili della funzione associato agli 0 della funzione.

A.A. 2019-2020

24/41

http::borghese.di.unimi.it\

Dall'espressione algebrica alla SOP

- Passare attraverso la tabella della verità
- Y = (NOT(A) AND B AND NOT(C)) OR (A AND B) =

$$- - ABC + AB(C + C) =$$

$$ABC + ABC + ABC$$

La SOP è la prima forma canonica

- La forma canonica di una funzione è la somma dei suoi mintermini.
- Qualunque funzione è esprimibile in forma canonica.

Esempio: Y = f(A,B,C,D) = AC + BC + ABC

= A(B + B)C(D + D) + (A + A)BC(D + D) + ABC(D + D)

= ABCD + ABCD

La stessa espressione si ricaverebbe dalla tabella della verità:

Y = A B C D + A B C D + A B C D + A B C D + A B C D + A B C D + A B C D + A B C D + A B C D

A B C + A B C + A B C + A B C = A B C + A B C + A C =

A B C + C (A + A B) = A B C + A C + B C

A.A. 2019-2020 26/41 http::borghese.di.unimi.it

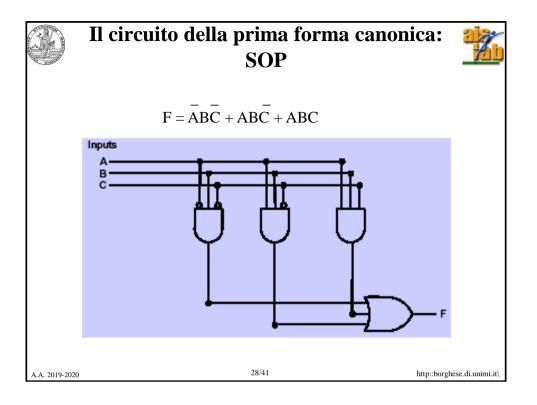
Perchè SOP è una forma canonica

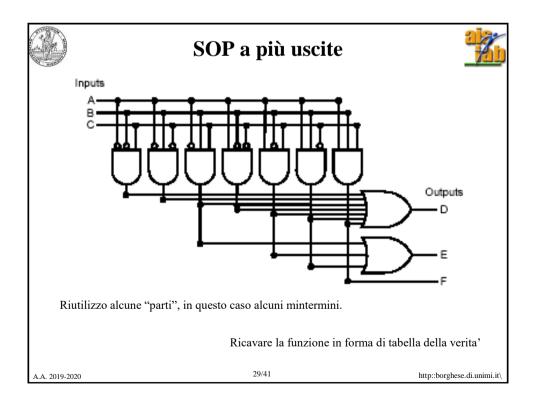
- \bullet Forma universale mediante la quale è possibile rappresentare qualunque funzione booleana.
- In generale una forma canonica non è una forma ottima, ma un punto di partenza per l'ottimizzazione.
- Si basa su componenti caratterizzanti la struttura della funzione (mintermine), che traducono le condizioni logiche espresse dalla funzione.

Minternine, m_i:

- E' una funzione booleana a n ingressi che vale 1 in corrispondenza della sola iesima configurazione di ingresso.
- Al massimo, 2ⁿ mintermini per ogni n variabili.
- ogni mintermine è rappresentabile con un AND con n ingressi.

A 2019-2020 27/41





Dalla SOP al circuito: osservazioni

- Dalla forma canonica (somma di mintermini) è facile passare al circuito:
 Ogni mintermine è un AND
 Tutti gli AND entrano in un OR
- · Implementazione regolare
- Solo due livelli di porte
- Blocchi generali personalizzabili purché ci sia un numero sufficiente di componenti elementari.

A.A. 2019-2020 30/41 http::borghese.di.unimi.it\

Sommario

I circuiti combinatori.

Dall'espressione logica al circuito. Semplificazione algebrica.

Dalla tabella della verità al circuito: la prima forma canonica: SOP.

Dall'espressione logica al circuito

Ad ogni espressione logica corrisponde un circuito, ad ogni circuito corrisponde una tabella delle verità, ad ogni tabella della verità, in generale, **non corrisponde** un unico circuito possibile.

- Esistono più espressioni tra loro equivalenti: 2 espressioni sono equivalenti se hanno la stessa tabella di verità.
- Quale è la "migliore"?
- È possibile trovare un metodo di semplificazione sfruttando le proprietà dell'algebra booleana.
- Esistono tecniche automatiche o semi-automatiche di semplificazione.

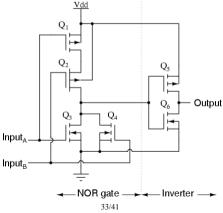
A.A. 2019-2020 32/41 http::borghese.di.unimi.it\

Valutazione della semplicità di un circuito

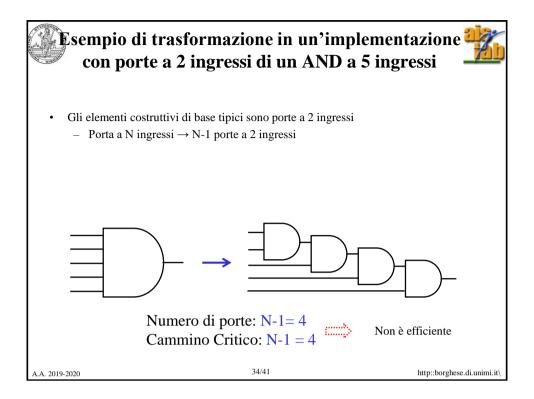
Area (numero di porte) = "ampiezza"
Tempo di commutazione (numero di transistor attraversati = "profondità")

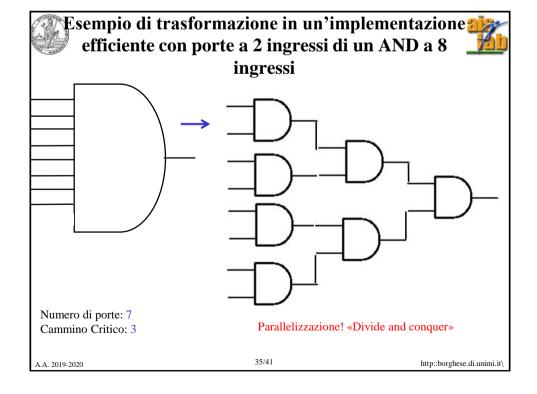
Soddisfazione di vincoli, potenza dissipata, facilità di debug...

CMOS OR gate



A. 2019-2020 33/41 http::borghese.di.unimi.it/



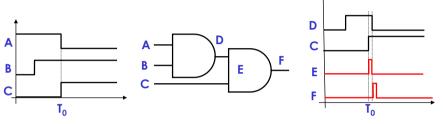


Cammino critico

- Ogni circuito logico è caratterizzato da un tempo di commutazione
 - Più porte devo attraversare, più è lungo il tempo della transizione del circuito nel suo complesso.

CAMMINO CRITICO

- max numero di porte da attraversare da ingresso a uscita
- Non si contano gli inverters (inclusi nelle porte)



A e C commutano contemporaneamente in To, E raggiunge il valore corretto dopo un tempo 2 ΔT (la commutazione di D segue la commutazione di B con un ritardo ΔT .

A.A. 2019-2020 36/41 http::borghese.di.unimi.it\

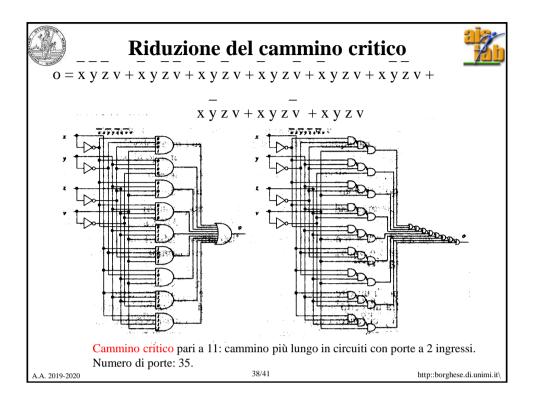
SOP dell'OR

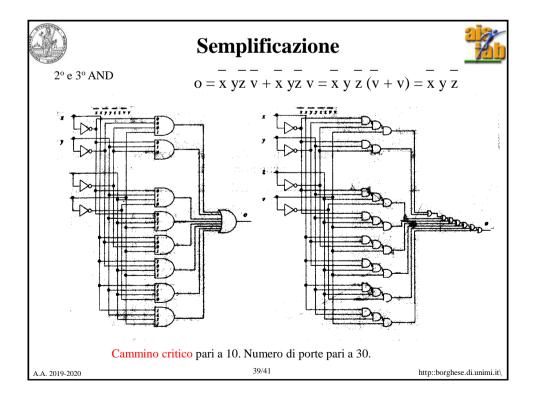
Sintetizziamo la funzione OR come SOP

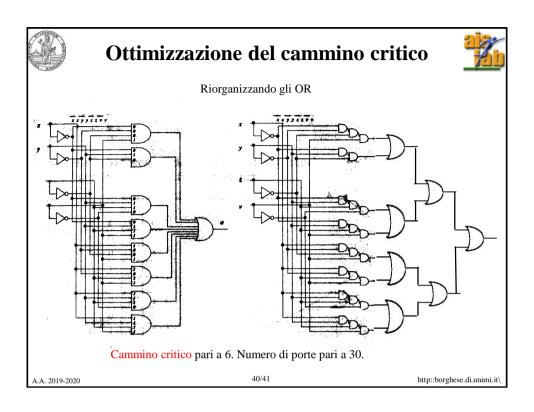
$$Y = AB + AB + AB$$
 Complessità = 5 – Cammino critico = 3

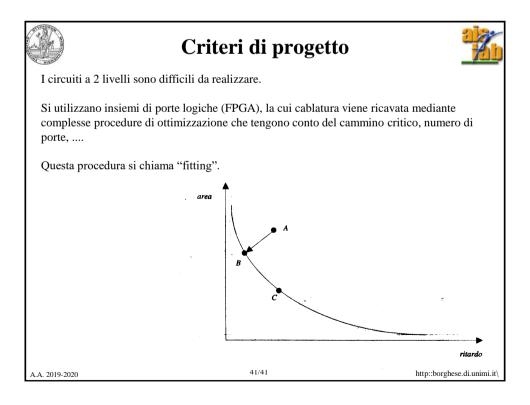
Semplifico:

$$Y = AB + AB + AB = B(A + A) + AB = B + AB = B + A = A + B = OR(A,B)$$









Sommario

I circuiti combinatori.

Dall'espressione logica al circuito. Semplificazione algebrica.

Dalla tabella della verità al circuito: la prima forma canonica: SOP.

Criteri di ottimalità.

A.A. 2019-2020 42/41 http::borghese.di.unimi.it\