

Rappresentazione dell'informazione

Prof. Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it

Università degli Studi di Milano

Riferimenti al testo: Paragrafi 2.4, 2.9, 3.1, 3.2, 3.5 (codifica IEEE754)

A.A. 2019-2020

Sommario

http:\\borghese.di.unimi.it\

Rappresentazione binaria dell'Informazione

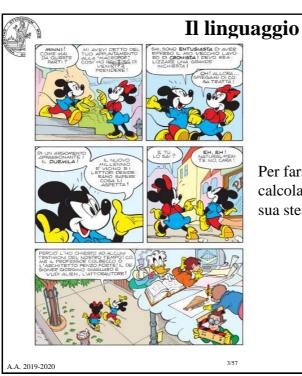
Sistema di numerazione binario

Conversione in e da un numero binario

Operazioni elementari su numeri binari: somma, sottrazioni.

I numeri decimali

Codifica IEEE754 dei numeri reali anche in forma denormalizzata.



Per farsi capire da un calcolatore, occorre parlare la sua stessa lingua.

 $http: \hspace{-0.05cm} \ \ \ \, borghese.di.unimi.it \backslash$

Proprietà di potenze e logaritmi

$$2^K \times 2^M = 2^{(K+M)}$$

$$2^{K^{M}} = 2^{K*M} = 2^{M^{K}} \qquad 2^{-K} = \frac{1}{2^{K}}$$

$$2^{-K} = \frac{1}{2^K}$$

Il logaritmo è l'operazione inversa dell'elevamento a potenza.

$$\log_2(2^{\mathrm{M}}) = \mathrm{M}$$

$$\log_2(2^{\mathrm{M}}) = \mathrm{M} \qquad \qquad \log_2 K = -\log_2\left(\frac{1}{K}\right)$$

$$\log_2 KM = \log_2 K + \log_2 M$$

Rappresentazione dell'informazione

Non solo conteggio, ma anche enumerazione di oggetti....

Noi rappresentiamo gli oggetti tramite parole composte da un alfabeto di simboli: A,B,...,Z,0,1,...,9,...

- Diversi alfabeti possono essere usati per rappresentare gli stessi oggetti.
- I simboli degli alfabeti possono assumere diverse forme.
- Segni su carta, livelli di tensione, fori su carta, segnali di fumo.

....

.A. 2019-2020

5/57

http:\\borghese.di.unimi.it\

Codifica dei caratteri alfanumerici

Quanti bit devono avere le parole binarie usate per identificare i 26 caratteri diversi dell'alfabeto inglese (es: A,B,...,Z)?

$$2^4 < 26 < 2^5$$

Quanti bit devono avere le parole binarie usate per identificare 26+26 oggetti diversi (es: A,B,...,Z, a,b,. z)?

$$2^5 < 52 < 2^6$$

Quanti bit servono per 100 oggetti? ceil [log₂100]

STUDIORY	0		32		64	0	96	•	128	ç	160	á	192	L	224	α	nie
	1	€	33	1	65	A	97	a	129	ü	161	í	193	1	225	B	
	2	8	34	**	66	В	98	b	130	é	162	ó	194	T	226	Γ	i n
SIGH	3	Ψ	35	#	67	C	99	C	131	â	163	ú	195	F	227	Π	Il codice
	4	*	36	\$	68	D	100	d	132		164		196	-	228	Σ	II coulce
	5	٠	37		69	E	101	e	133	-	165	Ñ	197	+	229	σ	ASCII
	6	•	38	å	70	F	102	f	134	-	166	<u>a</u>	198	ŀ	230	μ	ASCII
	7		39	,	71	-	103	g	135		167	9	199	H	231	Τ	-
	8	٠	40	(72	-	104		136	-	168	ن	200		232	₫	la rappresentazione
	9	0	41)	73	I	105	i	137	-	169	г	201	100	233	θ	
	10	\diamond	42	*	74	J	106	J	138	-	170		202		234	Ŋ	dell'informazione
	11	-	43	+	75	K	107	k	139		171	4	203	**	235	δ	uch miormazione
	12		44	,	76	L	108	1	140	6	172	-	204		236		alfanymaniaa
	13		45	-	77	М	109	m	141	-	173		205		237	100	alfanumerica
	14		46		78	N		n	142		174		206	**	238	•	
	15		47		79	0		0	143		175		207		239		
	16		48	0	80	P	112	p	144	_	176		208		240	=	
	17			1	81	Q	113	q	145		177	10	209		241	-	
	18		1000	2	82	R	114	r	146		178	-	210		242		
	19		51	3	83	S	115	S	147	_	179	1	211		243		•8 bit
		P 2	52	4	84	T	116	t	148	7.7	180	1	212		244	Ļ	
2.17		§	53	5	85	U	117	u	149	200	181	1	213		245	J	•0-31 codici di controllo.
(6)	-	- :	54	6	86	ш	118	U	150 151	-	182	11	214	H	- 246		
		±	55 56		87 88	×	119	W	151		183	TI T	215	1	247	~	•128-255 extended ASCII
		1	57	-	89	Ŷ	120	x y	152		184		216		248	50	
		÷			90	Z		9 Z	153	-	185	1			249	Ť	
		+	58 59		90	1	122	{	154	1070	186	1	218	_	250		
		Ĺ	60	,	92		123	1	156		100	1	219	_		n L	
107	28			=	92	1	124	}	156	~		TI	220	7	252		
100	9		61	>	93	7	125		157		189	TI	221	١.	253		
	81	-	63	?	94		126	۵	158	• •	190	1	222	ı.	254 255		
A.A. 201		2020	03		95	-	121	_	159	1	191	1	1/51	_	200		http:\\borghese.di.unimi.it\

L'UNICODE

http://www.unicode.org. Codifica su 8, 16, 32 bit alfabeti diversi.

Latin	Malayalam	Tagbanwa	General Punctuation
Greek	Sinhala	Khmer	Spacing Modifier Letters
Cyrillic	Thai	Mongolian	Currency Symbols
Armenian	Lao	Limbu	Combining Diacritical Marks
Hebrew	Tibetan	Tai Le	Combining Marks for Symbols
Arabic	Myanmar	Kangxi Radicals	Superscripts and Subscripts
Syriac	Georgian	Hiragana	Number Forms
Thaana	Hangul Jamo	Katakana	Mathematical Operators
Devanagari	Ethiopic	Bopomofo	Mathematical Alphanumeric Symbols
Bengali	Cherokee	Kanbun	Braille Patterns
Gurmukhi	Unified Canadian Aboriginal Syllabic	Shavian	Optical Character Recognition
Gujarati	Ogham	Osmanya	Byzantine Musical Symbols
Orlya	Runic	Cypriot Syllabary	Musical Symbols
Tamil	Tagalog	Tai Xuan Jing Symbols	Arrows
Telugu	Hanunoo	Yijing Hexagram Symbols	Box Drawing
Kannada	Buhld	Aegean Numbers	Geometric Shapes

Sommario

Rappresentazione binaria dell'Informazione

Sistema di numerazione binario

Conversione in e da un numero binario

Operazioni elementari su numeri binari: somma, sottrazioni.

I numeri decimali

Codifica IEEE754 dei numeri reali anche in forma denormalizzata.

A.A. 2019-2020 9/57 http://borghese.di.unimi.it/

Tassonomia ed unità di misura

miliardo: 10⁻¹⁵)

Hertz - numero di ciclo al secondo nei moti periodici (clock).

- •MIPS Milioni di istruzioni per secondo.
- •MFLOPS Milioni di istruzioni in virgola mobile (FLOating point) al secondo.

Prefissi:

A.A. 2019-2020 10/57 http://borghese.di.unimi.it/

Approssimazione

			Mul	ltipli del bit	Į.	
	Prefissi SI		F	Prefissi bina	ari	
Nome	Simbolo	Multipli	Nome	Simbolo	Multipli	
kilobit	kbit	103	kibibit	Kibit	210	1024 bit
megabit	Mbit	<u>10⁶</u>	mebibit	Mibit	2^{20}	1 024 Kib
gigabit	Gbit	109	gibibit	Gibit	230	1 048 576 Kib = 1 gibibit
<u>terabit</u>	Tbit	1012	tebibit	Tibit	240	1 024 Gbit
petabit	Pbit	1015	pebibit	Pibit	250	1 024 Tbit
exabit	Ebit	1018	exbibit	Eibit	260	1 024 Pbit
zettabit	Zbit	10 ²¹	zebibit	Zibit	270	1 024 Ebit
yottabit	Ybit	1024	yobibit	Yibit	280	1 024 Zbit

A.A. 2019-2020 http://borghese.di.unimi.it/

Terminologia

Bit = binary digit.

- ■1 byte = 8 bit.
- -1kbyte = 2^{10} byte = 1,024 byte
- -1Mbyte = 2^{20} byte = 1,048,576 byte.
- =1Gbyte $=2^{30}$ byte =1,073,741,824 byte.
- =1Tbyte $=2^{40}$ byte =1,099,511,627,776 byte.
- Parola (word) numero di bit trattati come un unicum dall'elaboratore.
- Le parole oggi arrivano facilmente a 64bit (Itanium).

A.A. 2019-2020 http://borghese.di.unimi.it/

Numerazione Simbolica

Sistema di numerazione mediante simboli (numerazione romana: I, V, X, L, C, M) il cui valore non dipende dalla posizione: e.g. XXXI = 31, XI = 11...

Sistema di numerazione posizionale (decimale): **cifra + peso.** Il peso è la base elevata alla posizione della cifra.

1 ha un valore diverso nelle due scritture:

100 1000

.A. 2019-2020

Numerazione Posizionale

http:\\borghese.di.unimi.it\

Alfabeto della numerazione:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} numerazione araba decimale.

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} numerazione esadecimale.

{0, 1} numerazione binaria.

Sistemi di numerazione binario, ottale ed esadecimale.

Conversioni decimale -> binario e viceversa.

Codifica posizionale di un numero

Fondata sul concetto di <u>base</u>: $B = [b_0, b_1, b_2, b_3,....]$.

Ciasun elemento, N, può essere rappresentato come combinazione lineare degli elementi della base: $N = \sum_{k} c_k b_k$

Esempi:

$$\bullet \ 764, 3_{10} = 7x10^2 + 6x10^1 + 4x10^0 + 3x10^{\text{-}1} = 764, 3 \\ b_k = B^k = 10^k$$

•
$$12,21_{10} = 1 \times 10^{1} + 2 \times 10^{0} + 2 \times 10^{-1} + 1 \times 10^{-2} = 12,21$$
 $b_k = B^k = 10^k$

•
$$100,11_2 = 1x2^2 + 0x2^1 + 0x2^0 + 1x2^{-1} + 1x2^{-2} = 4,75$$
 $b_k = B^k = 2^k$

\text{A. A. 2019-2020} \quad \text{15/57} \quad \text{http:\borghese.di.unimi.it\}

Osservazioni sulla numerazione binaria

Il linguaggio di un elaboratore elettronico è fatto di due segnali: **on** e **off**, rappresentati dai simboli 1 e 0 (alfabeto binario).

- Sia le istruzioni che i dati sono rappresentati da *parole* di numeri binari.
- Un alfabeto binario non limita le funzionalità di un elaboratore a patto di avere parole di lunghezza sufficiente.
- 00000011001010001101000000100000 rappresenta un'istruzione di addizione in MIPS su 32 bit (add \$k0, \$t0, \$t9).

A. 2019-2020

Codifica binaria

Quanti oggetti diversi possiamo rappresentare con parole binarie di k bit?

- Con una parola di 1 bit rappresentiamo 2 oggetti (1 bit ha due possibili valori).
- Supponiamo di avere parole di k-1 bit. Quanti oggetti riescono a rappresentare?

2^{k-1} oggetti.

.A. 2019-2020

Esempio di codifica binaria

http:\\borghese.di.unimi.it\

http:\\borghese.di.unimi.it\

• Quanti oggetti diversi possiamo rappresentare con parole binarie di 3 bit?

0	000	Α
1	001	В
2	010	C
3	011	D
4	100	E
5	101	F
6	110	G
7	111	Η

A 2019-2020

Sommario

Sistema di numerazione binario

Rappresentazione binaria dell'Informazione

Conversione in e da un numero binario

Operazioni elementari su numeri binari (somma, sottrazione e moltiplicazione intera).

I numeri decimali

Codifica IEEE754 dei numeri reali anche in forma denormalizzata.

.A. 2019-2020 19/57

Conversione da base n a base 10

http://borghese.di.unimi.it/

Un numero $N=[c_0, c_1, c_2, c_3,...]$ in base 10, $B=[b_0, b_1, b_2, b_3,...]$ si trasforma in base n, $R=[r_0, r_1, r_2, r_3,...]$, facendo riferimento alla formula: $N=\sum\nolimits_k c_k b_k = \sum\nolimits_{k=0}^{N-1} d_k r^k$

- \bullet ciascuna cifra k-esima viene moltiplicata per la base corrispondente: $r_k=\mathbf{n}^{\mathbf{k}}.$
- i valori così ottenuti sono sommati per ottenere il numero in notazione decimale.

101 1101 0101due =
$$1x2^{10} + 0x2^9 + 1x2^8 + 1x2^7 + 1x2^6 + 0x2^5 + 1x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 1024 + 256 + 128 + 64 + 16 + 4 + 1 = 1493$$

A A 2008-2009

20/45

http:\\homes.dsi.unimi.it\~borghese

"Spelling" di un numero

Vogliamo rappresentare 1493_{dieci}

Unità
$$1493 = 10 \times 149 + 3$$
 \leftarrow Cifra meno significativa

Decine
$$(10x)$$
 $149 = 10 \times 14 + 9$

Centinaia
$$(100x)$$
 $14 = 10 x 1 + 4$

Migliaia (1000x)
$$1 = 10 \times 0 + 1$$
 \leftarrow Cifra più significativa

$$1493 = 3x1 + 9x10 + 4x100 + 1x1000$$

A.A. 2019-2020 21/57 http://borghese.di.unimi.it/

"estrazione" delle cifre decimali

Vogliamo estrarre le cifre di $1493_{\rm dieci}$. Porto le cifre alla destra della virgola:

1493 / 10 = 149,3	→ esamino 149	→ 3 unità
149 / 10 =14,9	→ esamino 14	→ 9 decine
14 / 10 = 1,4	→ esamino 1	→ 4 centinaia
1/10 = 0,1	→ termina	→ 1 migliaia

Meccanismo di "estrazione"

Vogliamo estrarre le cifre di 1493_{dieci}. Porto le cifre alla destra della virgola.

Utilizzo la divisione intera per la base 10, il resto rappresenta la cifra decimale meno significativa.

$$1493 / 10 = 149 \text{ con } R = 3 \rightarrow 3 \text{ unita}$$

$$149 / 10 = 14 \text{ con } R = 9 \rightarrow 9 \text{ decine}$$

$$14/10 = 1$$
 con $R = 4 \rightarrow 4$ centinaia

$$1/10 = 0$$
 con $R = 1 \rightarrow 1$ migliaia

Termina perchè non è rimasto nulla del numero.

http:\\borghese.di.unimi.it\

Conversione base 10 -> base 2

"estrazione" delle cifre binarie

Vogliamo rappresentare 1493_{dieci} in binario: **10111010101**_{due}

$$1493 / 2 = 746 + 1$$

← Bit meno significativo (LSB)

$$746 / 2 = 373 + 0$$

 $373 / 2 = 186 + 1$

$$373*2 + 0 = 746$$

$$186*2 + 1 = 373 => (186*2+1)*2 = 373$$

$$186 / 2 = 93 + 0$$

$$93/2 = 46 + 1$$

$$46/2 = 23 + 0$$

$$23/2 = 11 + 1$$

$$11/2 = 5 + 1$$

$$5/2 = 2 + 1$$

$$2/2 = 1 + 0$$

$$1/2 = 0 + 1$$

← Bit più significativo (MSB)

http:\\borghese.di.unimi.it\

24/57 A 2019-2020

Perché funziona?

Prendiamo il numero E0 e dividiamo per 2.

Chiamiamo E1 = int(E0/2) e procediamo.

Se E0 è pari il resto, R0, sarà 0, altrimenti sarà 1. Infatti:

int (E0/2) * 2 + R0 = E0.

R0 = resto(5/2) = 1E1 = quoz(5/2) = 2

Esempio: $E0 = 5_{10} = ?_2$

Prendiamo E1 e dividiamo per 2. Chiamiamo E2 = int(E1 / 2). Se E1 è pari il resto, R1, sarà 0, altrimenti sarà 1. E1

= int (E1 / 2) * 2 + R1

R1 = resto(2/2) = 0

E2 = quoz(2/2) = 1

Chiamiamo E2 = int(E1 / 2) e procediamo.

Prendiamo E2 e dividiamo per 2. Se E2 è pari il resto, R2, sarà 0, altrimenti sarà 1. E2 = int (E2 / 2) * 2 + R2.

R2 = resto(1/2) = 0

Si procede fino a quando Ei non è < 2 (=1).

E0 = int [E0 / 2] * 2 + R0.

 $E0 = R0 + R1 * 2 + R2 * 2^{2}$ = 101

E0 = int [E1] * 2 + R0.

E0 = int [int (E1 / 2) * 2 + R1] * 2 + R0.

E0 = int [int(E2) * 2 + R1] * 2 + R0.

E0 = int [int[int(E2/2)*2 +R2] * 2 + R1] * 2 + R0.

int(E2/2) = 0http:\\borghese.di.unimi.it\

Conversione base 10 -> base n: algoritmo

Un numero *x* in base 10 si trasforma in base *n* usando il seguente procedimento:

- Dividere il numero x per n
- Il resto della divisione è la cifra di posto 0 in base n
- Il quoziente della divisione è a sua volta diviso per n
- Il resto ottenuto a questo passo è la cifra di posto 1 in base n
- Si prosegue con le divisioni dei quozienti ottenuti al passo precedente fino a che l'ultimo quoziente è 0.
- l'ultimo resto è la cifra più significativa in base n

Esercizi

Dati i numeri decimali 23456, 89765, 67489, 121331, 2453, 111010101

- si trasformino in base 3
- si trasformino in base 7
- si trasformino in base 2
- Dati i numeri 23456₇, 121331₅, 2453₈, 111010101₂
- convertire ciascuno in decimale e in binario

A.A. 2019-2020 27/57 http://borghese.di.unimi.it/

Codifica esadecimale

Il codice esadecimale viene utilizzato come forma compatta per rappresentare numeri binari:

- 16 simboli: 0,1,...,9,A,B,...,F
- Diverse notazioni equivalenti:

0x9F

 $9F_{16}$

9Fhex

$$0x9F = 9x16^1 + 15x16^0 = 159_{10}$$

Conversione esadecimale -> binario

Vogliamo rappresentare 9Fhex in binario. E' semplice.

- Ogni simbolo viene convertito in un numero binario di 4 cifre:
- 9**hex** --> 1001_{due}
- **Fhex** --> 1111_{due}
- 9Fhex --> 10011111_{due}
- È sufficiente ricordarsi come si rappresentano in binario i numeri decimali da 0 a 15 (o derivarli)

A. 2019-2020

Conversione binario -> esadecimale

http:\\borghese.di.unimi.it\

Da binario ad esadecimale si procede in modo analogo:

•Ogni gruppo di 4 cifre viene tradotto nel simbolo corrispondente:

Esempio: convertire 1101011_{due} in esadecimale:

$$1011_{due} --> B_{hex}$$

$$110_{\text{due}} --> 6_{\text{hex}}$$

Viene aggiunto un "leading" 0

 $1101011_{\text{due}} --> 6B_{\text{hex}}$

00000011001010001101000000100000 - add \$k0, \$t0, \$t9

0x0328d020

A. 2019-2020 30/57

http:\\borghese.di.unimi.it\

Codifica dei numeri interi

Viene replicato il bit più significativo

Codifica su 16 bit:

Numeri naturali: $11_{10} = 1011_2 = 0000 0000 0000 1011$ Replico il primo bit, parte integrante del numero

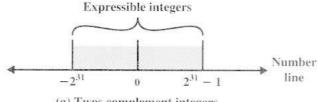
Numeri relativi: $+5_{10} = 0101_2 = 0000 0000 0000 0101$ Numeri relativi: $-5_{10} = 1011_2 = 1111 1111 1111 1011$ Replico il primo bit, quello del segno

http:\\borghese.di.unimi.it\ .A. 2019-2020

Capacità di rappresentazione: Numeri Interi

Interi con segno su N bit. Range: $-2^{N-1} \le n \le 2^{N-1} - 1$.

Esempio: Visual C++. Intero è su 4byte (word di 32 bit): $-2^{31} = -2.147.483.650 \le n \le 2.147.483.649 = 2^{31} - 1$



(a) Twos complement integers

32/57 http:\\borghese.di.unimi.it\ .A. 2019-2020

Sommario

Sistema di numerazione binario

Rappresentazione binaria dell'Informazione

Conversione in e da un numero binario

Operazioni elementari su numeri binari: somma, sottrazione

I numeri decimali

Codifica IEEE754 dei numeri reali anche in forma denormalizzata.

A.A. 2019-2020 33/57 http://borghese.di.unimi.it/

Somma


```
111 ← Riporto

1011 +

110 =

------

10001
```

Vorrei definire solo l'operazione di somma e non utilizzare la sottrazione

Numeri negativi: complemento a 1

I numeri negativi sono complementari ai numeri positivi: a + (-a) = 0

Codifica in complemento a 1: il numero negativo si ottiene cambiando 0 con 1 e viceversa.

Problema: 000 0 Doppia codifica per lo 0.

A.A. 2019-2020 35/57

Numeri negativi: complemento a 2

http:\\borghese.di.unimi.it\

I numeri negativi sono complementari ai numeri positivi: a + (-a) = 0

Codifica in complemento a 2: il numero negativo si ottiene cambiando 0 con 1 e viceversa, e sommando 1.

000 0 001 1 negativo: 110 + 1 = 111 = -1negativo: 101 + 1 = 110 = -2010 negativo: 100 + 1 = 101 = -3011 3 100 -4 -3 101 -2 110 111 -1

$$(x_{31} \times -2^{31}) + (x_{30} \times 2^{30}) + (x_{29} \times 2^{29}) + \dots + (x_1 \times 2^1) + (x_0 \times 2^0)$$

NB La prima cifra è il bit di segno.

http:\\borghese.di.unimi.it\

Perché complemento a 2?

La rappresentazione in complemento a due deve il suo nome alla proprietà in base alla quale la somma senza segno di un numero di n bit e del suo complemento è pari a 2^n (peso del bit n+1)

$$7 + (-7) =$$

$$0111 + 1001 = 10000$$

$$2^{4}$$

$$5 + (-5) =$$

$$0101 + 1011 = 10000$$

$$2^{4}$$

e quindi il complemento (o negazione) di un numero x in complemento a due è pari a $2^n - x$, ovvero il suo complemento a 2.

$$2^4 - 7 = 1001$$

$$2^4 - 5 = 1011$$

.A. 2019-2020

http:\\borghese.di.unimi.it\

Doppia negazione

I numeri negativi sono complementari ai numeri positivi: a + (-a) = 0

Segue che -(-a) = +a

Codifica in complemento a 2: il numero negativo si ottiene cambiando 0 con 1 e viceversa, e sommando 1.

$$10 + 1 = 11$$

Esempio:

$$-(-2)_{10} = +2_{10}$$

-(10) $_2$ => Complemento a 1 => 01 => Sommo 1 (complemento a 2) => 10_2 = 2_{10} c.v.d.

A A 2019-2020

38/57

http:\\borghese.di.unimi.it\

Sottrazione

Sommo i seguenti 2 numeri 11 + (-13):

$$01011_2 = 11_{10} 10011_{10} = -13_{10}$$

E' equivalente ad effettuare la differenza: 11 - 13.

 $00110 \\ 01011 + \\ 10011 = \\ \hline 11110 \rightarrow -2_{10}$

.A. 2019-2020

Sommario

http:\\borghese.di.unimi.it\

Sistema di numerazione binario

Rappresentazione binaria dell'Informazione

Conversione in e da un numero binario

Operazioni elementari su numeri binari: somma, sottrazione.

I numeri decimali

Codifica IEEE754 dei numeri reali anche in forma denormalizzata.

Numeri decimali rappresentazione in fixed point

Numeri reali per il computer non sono i numeri reali per la matematica!! E' meglio chiamarli float (numeri decimali), sono in numero finito.

Dato un certo numero di bit (stringa) per codificare il numero float, esistono due tipi di codifiche possibili:

Rappresentazione in fixed point.

La virgola è in posizione fissa all'interno della stringa.

Supponiamo di avere una stringa di 8 cifre, con virgola in 3a posizione:

$$27,35 = + \mid 27,35000$$

$$-18,7 = -|18,70000|$$

$$0.001456 = + | 00.00145(6)$$

A.A. 2019-2020 41/57 http:\\borghese.di.unimi.it\

Numeri decimali rappresentazione floating point

Rappresentazione come mantissa + esponente. $E = \sum_{k=-M}^{N} c_k b_k = \sum_{k=-M}^{N} c_k B^k$

Esempio di rappresentazioni equivalenti:

$$627,35 = 62,735 \times 10^{1} = 6,2735 \times 10^{2} = 0,62735 \times 10^{3} = 10^{1} \times (6\times10^{0} + 2\times10^{-1} + 7\times10^{-2} + 3\times10^{-3} + 5\times10^{-4}) = 10^{2} \times 1,2735$$

In grassetto viene evidenziata la rappresentazione normalizzata.

Vengono rappresentati numeri molto grandi e molto piccoli.

Supponiamo di avere una stringa di 8 cifre. 5 per la mantissa, 2 per l'esponente: 0.001456 = + |1456| - |03|

E' in virgola mobile, perchè la prima cifra prima della virgola ha un peso diverso a seconda dell'esponente.

A.A. 2019-2020 42/57 http://borghese.di.unimi.it/

Conversione base 10 -> base n: algoritmo

Un numero x.y in base 10 si trasforma in base n usando il seguente procedimento.

Per la parte intera, *x*, si applica l'algoritmo visto in precedenza:

- Dividere il numero x per n
- Il resto della divisione è la cifra di posto 0 in base n
- Il quoziente della divisione è a sua volta diviso per n
- Il resto ottenuto a questo passo è la cifra di posto 1 in base n
- Si prosegue con le divisioni dei quozienti ottenuti al passo precedente fino a che l'ultimo quoziente è 0.
- l'ultimo resto è la cifra più significativa in base n

http:\\borghese.di.unimi.it\

«Estrazione» delle cifre decimali contenute dopo la virgola

Vogliamo estrarre le cifre di 0,3672_{dieci}. Porto le cifre alla **sinistra** della virgola:

0,3672 * 10 = 3,67

 \rightarrow esamino 0,672 \rightarrow 3 decimi

0,672 * 10 = 6,7

 \rightarrow esamino 0,72 \rightarrow 6 centesimi

0,72 * 10 = 7,2

 \rightarrow esamino 0,2 → 7 millesimi

0.2 * 10 = 2.0

→ termina

→ 2 decimillesimi

Conversione base 10 -> base 2

"estrazione" delle cifre binarie dopo la virgola

Vogliamo rappresentare 0,625_{dieci} in binario: **0,101**_{due}

$$1*2^{-1} + 0*2^{-2} + 1*2^{-3} = \frac{1}{2} + \frac{1}{8} = 0.5 + 0.125 = 0.625$$

A.A. 2019-2020

45/57

ttn:\\borghese di unimi it

Conversione base 10 -> base n: algoritmo per la parte frazionaria

Un numero x, y in base 10 si trasforma in base n usando il seguente procedimento.

Per la parte frazionaria, y:

- Moltiplicare il numero y per *n*
- La prima cifra del risultato coincide con la cifra di posto 1 dopo la virgola.
- Si elimina la parte intera ottenuta e si considera la nuova parte frazionaria
- La parte frazionaria ottenuta viene moltiplicata per la base n.
- La prima cifra del risultato coincide con la cifra di posto 2 dopo la virgola.
- Si prosegue con le moltiplicazioni della parte frazionaria fino a quando non diventa 0 o non si esaurisce la capacità di

, rappresentazione.

.unimi.it

Conversione base 10 -> base n: algoritmo per la parte frazionaria

Un numero x,y in base 10 si trasforma in base n usando il seguente procedimento.

Per la parte frazionaria, y:

- Moltiplicare il numero y per *n*
- La prima cifra del risultato coincide con la cifra di posto 1 dopo la virgola.
- Si elimina la parte intera ottenuta e si considera la nuova parte frazionaria.
- La parte frazionaria ottenuta viene moltiplicata per la base *n*.
- La prima cifra del risultato coincide con la cifra di posto 2 dopo la virgola.
- Si prosegue con le moltiplicazioni della parte frazionaria fino a quando non diventa 0 o non si esaurisce la capacità di

x rappresentazione.

Errori di approssimazione

Esempio: $10,75_{10} = 1010,11_2$ Esempio: $10,76_{10} = 1010,1100001..._2$

$$\begin{array}{c} 10:2 \Rightarrow 0 \\ 5:2 \Rightarrow 1 \\ 2:2 \Rightarrow 0 \\ 1:2 \Rightarrow 1 \\ \#\#\#\#\# 1010, \end{array} \begin{array}{c} 0.75 *2 \Rightarrow 1 \\ (1).50 *2 \Rightarrow 1 \\ (1).50 *2 \Rightarrow 1 \\ (1).52 *2 \Rightarrow 1x2^{-2} \\ (1).04 *2 \Rightarrow 0x2^{-3} \\ (0).08 *2 \Rightarrow 0x2^{-3} \\ (0).16 *2 \Rightarrow 0x2^{-5} \\ (0).32 *2 \Rightarrow 0x2^{-6} \\ (0).64 *2 \Rightarrow 1x2^{-7} (2^{-7} = 0.0078125) \\ \end{array}$$

Errori di approssimazione: arrotondamento e troncamento.

Con 7 bit di parte fraz, rappresento: 0,5+0,25+0,0078125 = 0,7578125 Errore = 0,0011875

211010 0,0011075

A 2019-2020 48/57

http:\\borghese.di.unimi.it\

Sommario

Sistema di numerazione binario

Rappresentazione binaria dell'Informazione

Conversione in e da un numero binario

Operazioni elementari su numeri binari: somma, sottrazione.

I numeri decimali

Codifica IEEE754 dei numeri reali anche in forma denormalizzata

A.A. 2019-2020 49/57 http:\\borghese.di.unimi.it\

Standard IEEE 754 (1980)

http://stevehollasch.com/cgindex/coding/ieeefloat.html

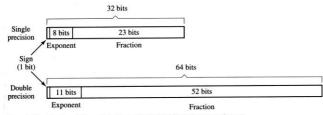


Figure 2-10 Single-precision and double-precision IEEE 754 floating point formats

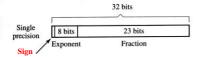
Rappresentazione polarizzata dell'esponente:

Polarizzazione pari a 127 per singola precisione => 1 viene codificato come 1000 0000.

Polarizzazione pari a 1023 in doppia precisione. 1 viene codificato come 1000 0000 000.

A.A. 2019-2020 50/57 http://borghese.di.unimi.it/

Codifica mediante lo standard IEEE 754



Esempio:
$$N = -10,75_{10} = -1010,11_2$$

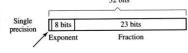
- 1) Normalizzazione: ±1,xxxxxx Esempio: -1,01011 x 2³
- 2) Codifica del segno 1 = 0 = +
- 3) Calcolo dell'esponente, exp.

s Exp+127 Parte Frazionaria

.A. 2019-2020 51/57

Calcolo dell'esponente in notazione polarizzata

http:\\borghese.di.unimi.it\



Polarizzazione:

Esempio:
$$N = -10.75_{10} = -1010.11_2$$

= $-1.01011_2 \times 2^3$

Calcolo dell'esponente, e, in rappresentazione polarizzata (si considerano solo 254 esponenti sui 256 possibili, compreso tra -126 e +127):

 Codifica
 Exp effettivo del numero

 1111 1111 = 255 \Rightarrow Codifica riservata

 1111 1110 = 254 \Rightarrow +127

 1000 0010 = 130
 +3

 1000 0001 = 129 \Rightarrow +2

 $1000\ 0000 = 128 \rightarrow +1$ $0111\ 1111 = 127 \rightarrow 0$ $0111\ 1110 = 126 \rightarrow -1$

 $0000\ 0001 = 1 \rightarrow -126$ $0000\ 0000 = 0 \rightarrow Codifica\ riservata$

 $_{\rm A.A.\ 2019-2}\ N=1\ |\ 1000\ 0010\ |\ 0101\ 1000\ 0000\ 0000\ 0000\ 0000\ 000$ http://borghese.di.unimi.ir/

Configurazioni notevoli nello Standard IEEE 754

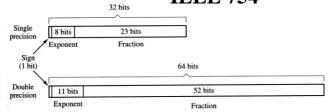


Figure 2-10 Single-precision and double-precision IEEE 754 floating point format

Configurazioni notevoli:

 $\begin{array}{cccc} 0 & Mantissa: 0 & Esponente: 00000000 \\ +\infty & Mantissa: 0 & Esponente: 11111111. \\ NaN & Mantissa: \neq 0. & Esponente: 11111111. \end{array}$

Range degli esponenti (8 bit): $1-254 \Rightarrow -126 \le \exp \le +127$.

Numeri float: $1.0 \times 2^{-126} = 1.175494351 \times 10^{-38} \div 3.402823466 \times 10^{38} = 1.1...11 \times 2^{127}$

A.A. 2019-2020 53/57 http:\\borghese.di.unimi.it\

Capacità dello Standard IEEE 754



Range degli esponenti (8 bit): $1-254 = -126 \le \exp \le +127$.

Minimo float (in valore assoluto!): 1.0×2^{-126}

Massimo float: 1.1111 1111 1111 1111 1111 1111 x 2^{+127}

Capacità float:

Minimo: 1.175494350822288 x 10⁻³⁸ (1.175494350822288e-038) Massimo: 3.402823466385289e+038 x 10³⁸ (3.402823466385289e+038)

Discontinuità tra Minimo_float e 0 il delta è 1.175494350822288 x 10-38

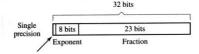
Si può fare di meglio?

Numero denormalizzato Mantissa: ≠0 Esponente: 00000000

A.A. 2019-2020 54/57 http:\\borghese.di.unimi.it\

Denormalizzazione nello Standard IEEE 754

Esempio di numero denormalizzato: 0,000001 x 2⁻¹²⁶



Range degli esponenti (8 bit): $1-254 = -126 \le \exp \le +127$.

Minimo float (in valore assoluto!): $1.0 \times 2^{-126} = 1.175494350822288 \times 10^{-38}$

Tuttavia abbiamo anche la mantissa a disposizione. Se troviamo una codifica per cui possiamo scrivere $0,0000\,0000\,0000\,0000\,0000\,001$, otteniamo un numero più piccolo (in valore

assoluto!) pari a : $2^{(-23-126)} = 1.401298464324817 \times 10^{-45}$.

Discontinuità tra Minimo_float e 0 diventa $2^{-149} = 1.401298464324817 \times 10^{-45}$

Configurazioni notevoli:

0 Mantissa: 0 Esponente: 00000000 +∞ Mantissa: 0 Esponente: 11111111. NaN Mantissa: \neq 0. Esponente: 11111111. Numero denormalizzato Mantissa: \neq 0 Esponente: 000000000

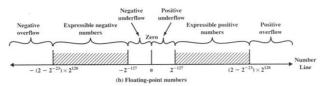
A.A. 2019-2020 55/57 http://borghese.di.unimi.it/

Risoluzione della codifica dei reali

.unimi.it\

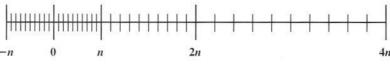
Distanza tra due numeri vicini

Fixed point: Risoluzione fissa, pari al peso del bit meno significativo. Esempio su 8 bit: +1111,101 la risoluzione per tutti i numeri sarà: $1 \times 2^{-3} = 0,125$



Floating point: Risoluzione *relativa* fissa, pari al peso del bit meno significativo. Il bit meno significativo è in 23a posizione in singola precisione => 2⁻²³, ne consegue che la risoluzione sarà 2⁻²³ volte il numero descritto. Esempi:

100,..... = 1,000 x
$$2^2 =>$$
 La risoluzione sarà 2^{-23} x $2^2 = 2^{-21}$
1.0 x $2^{-126} =>$ La risoluzione sarà 2^{-23} x $2^{-126} = 2^{-149}$



A.A. 2019

Sommario

Sistema di numerazione binario

Rappresentazione binaria dell'Informazione

Conversione in e da un numero binario

Operazioni elementari su numeri binari: somma, sottrazione

I numeri decimali

Codifica IEEE754 dei numeri reali anche in forma denormalizzata.

A.A. 2019-2020 57/57 http:\\borghese.di.unimi.it\