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Iterative image reconstruction: a point of view

M. Bertero, H. Lantéri, and L. Zanni

ABSTRACT. Several iterative methods are available for solving the
ill-posed problem of image reconstruction. They are motivated by
different approaches and may derive from methods used for the so-
lution of linear equations or the minimization of suitable functionals.
In this paper we adopt the approach flowing from maximum likeli-
hood to Bayesian formulation of image reconstruction and providing
a generalization of the classical regularization theory. This approach
leads to the minimization of functionals derived from properties of
the noise and, possibly, from additional information on the solution.
We investigate a class of scaled gradient methods, based on a suitable
decomposition of the gradient, and we show that this class contains
some of the methods used for the solution of maximum likelihood
problems in image reconstruction. We also obtain very simple regu-
larized versions of these methods. Constraints of non-negativity and
flux conservation are taken into account by considering scaled gradi-
ent projection (SGP) methods, derived from the previous approach,
and for them a convergence proof can be given. Numerical experi-
ence on a particular problem shows that SGP can provide a consid-
erable increase in efficiency with respect to the standard algorithm
used for that problem. Work is in progress in order to understand
whether a similar gain can be achieved in other cases.

Introduction

Image reconstruction is an important problem in several domains of
applied science such as Medical Imaging, Microscopy and Astronomy.
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In many instances it can be formulated as a linear inverse and ill-posed
problem. In general, it is a large scale problem, since nowadays it is
quite common to process images of the order of several mega-pixels (or
mega-voxels in the 3D case). Therefore efficient numerical methods are
required and the use of iterative methods, except a few special cases, is
an almost compelling choice. A plethora of these methods is available, in
general derived from different approaches, ranging from iterative meth-
ods for the solution of linear equations to methods for solving specific
variational problems. For these reasons we think that it is important to
clearly define the framework where iterative methods are introduced. In
this paper we choose a specific one that we motivate with a brief survey
of some important achievements in the theory of inverse and ill-posed
problems.

It is well known that the main difficulty in the treatment of ill-posed
problems is the lack of continuous dependence of the solution on the
data. After the basic work of Jacques Hadamard [22, 23], only well-posed
problems are investigated for a long period. However, around the fifties,
it is shown that, in the case of ill-posed problems for partial differential
equations, it is possible to restore continuous dependence by restricting
attention to approximate solutions satisfying a prescribed bound [38, 27];
it is also demonstrated that these problems may be of interest in several
applications. Similar results are obtained for analytic continuation [11]
and a general formulation of these approaches is given in terms of least-
squares problems with prescribed bounds [34].

Another research line is opened by a paper of Tikhonov [44] where
the continuity of the inverse mapping is proved by assuming that the di-
rect mapping is restricted to a compact set. In that paper only exact data
are considered but, in the case of inexact data, least-squares solutions re-
stricted to a compact set are investigated and their continuous dependence
on the data is proved in [26], where the case of weak compactness is also
considered.

In both approaches the relevance of additional information on the
solution is evident. In the first one, it consists of prescribed bounds on
the solution while in the second one it is expressed as the requirement
of searching for a solution in a compact set. The role of additional in-
formation is less evident in regularization theory, that, proposed in 1963
[45, 46], has dominated (and is still dominating) the scene of inverse
problems. In this approach the focus is on the approximation of an ill-
posed problem by a family of well-posed ones.
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However, the relevance of additional information reappears, in a sta-
tistical form, in a number of papers devoted to the application of Wiener-
Kolmogorov filtering to the solution of first-kind Fredholm integral equa-
tions [17, 43]. A more general and abstract formulation of this approach
is given in [18]. Moreover, a statistical regularization derived from Bayes
formula is investigated in [47]. Even if these approaches provide a new
insight in the problem, the main limitation is due to the fact that the anal-
ysis is restricted to the case of linear estimation or, equivalently, to the
case of Gaussian random variables. In particular, additive Gaussian noise
is assumed, so that the problem is reduced again to the minimization of a
penalized least-squares functional.

Therefore new perspectives are open by the paper of Shepp and Vardi
[41] on positron emission tomography (PET) where a different noise
model is considered, the so-called Poisson noise due to photon count-
ing. A further step is done in a paper by Snyder et al. [42], where a more
complex noise model is introduced. All these contributions enlarge the
field of applicability of statistical methods and, in this framework, regu-
larization theory appears as a particular case (although extremely rich of
mathematical results) of a more general theory based on Bayes formula.
For this reason we adopt this approach in this paper.

In Section 1 we analyze the properties of the data of an imaging sys-
tem, showing that it is quite natural to look for a statistical formulation
of an image reconstruction problem. In Section 2 we introduce the two
approaches known as maximum likelihood estimate and maximum a pos-
teriori estimate and we consider, as particular examples, the three noise
models indicated above and denoted, respectively, as Gauss, Poisson and
Gauss+Poisson noise. In all cases we have to minimize specific function-
als with the additional constraint of non-negativity of the solution.

In Section 3 we introduce a scaled gradient method that has been re-
cently proposed [30, 31] for solving these constrained minimization prob-
lems. In the case of maximum likelihood estimation we re-obtain, for the
three noise models above, three well-known iterative methods. Moreover
the approach is able to provide very simple regularized versions of these
algorithms.

Finally, in Section 4, we introduce an additional constraint on the 1-
norm of the solution and we use the scaling of the gradient discussed in
the previous Section for introducing a scaled gradient projection (SGP)
method. Its convergence can be proved but, in this paper, we only give
algorithmic details and we discuss a specific application. Indeed, the
method has been implemented for the deconvolution of images corrupted
by Poisson noise. We discuss the numerical results we have obtained and
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we show that SGP provides a considerable computational gain with re-
spect to the standard expectation maximization (EM) method [41]. This
suggests to apply the method also to regularized versions of this algo-
rithm and possibly also of other ones. Work is in progress in this direc-
tion.

1. Mathematical modeling of data acquisition

Since image reconstruction is an example of ill-posed problem an
accurate mathematical modeling is a necessary prerequisite for obtaining
a correct formulation of the problem.

An imaging system consists, in general, of two parts.� The first is an apparatus (formed by physical components such
as sources, collimators, mirrors, lenses etc.) able to transform
the radiation (microwaves, photons, X-rays, � -rays, ultrasound
etc.) emitted or transmitted by the sample to be imaged (in the
following called the object) into a detectable radiation contain-
ing useful information about the spatial properties of the object.� The second is a detector providing measured values of the in-
coming radiation; this is the part of the system introducing sam-
pling and noise.

Therefore general features of the data are the following.� Data are discrete and the discretization is not decided by the
mathematician but by the physicist or engineer who designed
the imaging system; in general, sampling theorems are taken
into account in the design and, very often, data are oversampled.
In any case they consist of a set of numbers characterized by a
multi-index (a pair of integers in 2D imaging and a triple in 3D
imaging). However, as usual, we assume that these numbers are
ordered to form a vector with � components ( � is the number
of data) and denoted by �����	��

�	�
�������� � .� Data are realizations of random variables, as a consequence
of the noise introduced by the detection system. Therefore, a
component � 
 of the data vector is the realization of a random
variable ��
 . We will denote by ��������
�� �
���� the vector valued
random variable corresponding to the data.

The modeling of the apparatus implies the use of the equations that de-
scribe the propagation of the radiation used in the imaging process. The
goal is to get a mapping that transforms the spatial distribution of the ob-
ject into the radiation incoming on the detector. In this paper we only
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consider the case where, thanks to the use of suitable physical approxi-
mations, this mapping is linear.

Therefore, if we denote by � �"!$# a function of the space variables de-
scribing the properties of the object, we obtain a semi-discrete mapping
[5] transforming this function into sampled values of the radiation be-
fore detection (also called exact data values), that we denote by %�&
 . In
many instances one must also take into account the existence of some
background radiation, denoted by '(
 , so that we have%�)
*�+�-,.�/#0
213'4
5�6�-,7�813'(#0
*9 (1.1)

where , is the semi-discrete mapping and ':�;�<' 
 �	�
���� . In general, one
can assume that ' is a constant vector.

An approach based on the use of functional spaces for describing the
properties of the object can be very elegant but it can be unnecessarily
heavy if one is looking for probabilistic approaches [4]. For this reason
we prefer a completely discrete model, remarking that, now, the sampling
of the object is at disposal of the mathematician, if this degree of freedom
appears to be useful. Therefore, we assume that the object consists of
a set of numbers, also characterized by a multi-index, and again these
can be ordered to form a vector with = components ( = is the number
of unknowns of the problem) and denoted by �>�?�	�2@)�	A@4��� �B� A . In
general, one has =3C�D� .

The mapping describing the transformation from � to the exact data
values is now a matrix that will be denoted again by , . We assume that
it satisfies the following conditions,8
FE @HGJILK �M 
���� ,8
FE @HNJIO9QPSRLK AM@4��� ,�
TE @:NUIO9QP�VXW (1.2)

In other words we assume that each row or column contains at least one
non-zero element. We will use the following notation for the sum of the
entries of one column of this matrixY @ � �M 
���� , 
TE @ K*RL�[Z$9(W\W\W\9]=^9 (1.3)

and we will denote by
Y

the corresponding vector. Moreover, products
and quotients of vectors will be intended in the Hadamard sense, i. e.
component by component� Y �5# @ � Y @ � @ 9O_ � Ya` @ � �b@Y @ W (1.4)
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About the detection system, we already remarked that it introduces
sampling and noise, and that noise is a random process, so that the de-
tected values are realizations of random variables. Therefore a modeling
of this system requires a modeling of the noise, i. e. a model of its prob-
ability density (a function or a distribution). This density depends on the
object � and therefore we denote it as c5de�T��K]�/# . The following assump-
tions are, in general, accepted as reasonable ones.� The random variables ��
 and ��f associated to different elements

of the detector are statistically independent, so that we can writec�d��T��K]�/#g� �h
���� c�d	ij�T�)
�K]�/#gW (1.5)� The expected value of �/
 is just given by the exact value of the
incoming radiation so that we havek ���l�m�>no�ec d �T��K]�5#�pq�8�r,7�81s'tW (1.6)

EXAMPLE 1.1. The first example is provided by the so-called addi-
tive white Gaussian noise. In this example � is given by�6�r,7��13'u1 k

(1.7)

where
k

is a vector-valued random variable with statistically independent
components, all having the same Gaussian distribution, with expected
value 0 and variance vQw , so thatx�y �"z{#|�~} Z� �$� v w&� �.���b� }Q� Z� v w*�\� z �\� w � 9 (1.8)

where �\�<�b�\� denotes the usual 2-norm. Therefore the statistical model for
the detected data is given byc�de�T��K]�5#|� } Z� �$� v w&� � ���b� } � Z� v w*�\� ���U�-,7��13'(# �\� w � W (1.9)

EXAMPLE 1.2. The second example is the so-called Poisson noise,
describing, in general, the noise affecting counting processes (sometimes
it is also called “photon noise”). In such a case each �Q
 is a Poisson
random variable with expected value given by Eq. (1.1)�2
Q�D� �q���j�j�q�/���-,7�813'(#0
��m9 (1.10)

so that its probability density is a distribution with support the set of the
non-negative integers (each � 
 is a non-negative integer). We havec�de�T��K]�5#g� �h
���� �$�5�\�|���/��� i �-,.��13'(#0� i
� 
*� W (1.11)
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EXAMPLE 1.3. The third example is the so-called Gauss+Poisson
noise and is a more refined model of the noise affecting data detected by
a charged-coupled-device (CCD) camera, as described in [42]. It is given
by �[����1 k 9 (1.12)

where � is a Poisson process as in Example 1.2 while
k

is an additive
white Gaussian noise as in Example 1.1. In such a case the probability
density is given byc�de�T��K]�5#�� (1.13)� �h
����e� �5 M f �/¡ � �5�\�|���/��� i �-,7�81s'(# f
¢ � � �6£¤T¥ ¤ � � i � f � ¤� �$� v ¦ W

In conclusion, we have a complete model of the process of data for-
mation and acquisition when we know the imaging matrix , , the back-
ground ' and the probability density c*de�T��K]�5# .
2. Statistical formulations of the problem of image reconstruction

Let us assume that we have a complete model in the sense specified
above and that we have a detected image � (for simplicity, we do not in-
troduce some specific notation for the detected image), i. e. a realization
of the random variable � . The problem of image reconstruction is to find
an estimate %� of the unknown object corresponding to the image � . The
trivial approach should be to look for a solution of the linear equation,.��1U'§�>� , but, as we know, in general this approach is not successful
since the matrix , is ill-conditioned. The fact that the most frequently
used algorithm in tomography, namely the filtered back-projection, is just
coming from the solution of the linear equation is an exception to this
rule. Information about statistical properties of the data suggests to look
for statistical approaches to the problem.

2.1. Maximum likelihood formulation. Since we assume to know
the probability density c5de�T��K]�5# of the data and since, in this density, the
unknown object appears as a set of unknown parameters, at first glance
the problem of image reconstruction appears as a classic problem of pa-
rameter estimation. Then the standard approach is the so-called maxi-
mum likelihood (ML) estimation. In our specific application, for a given
detected image � , it consists in introducing the likelihood function defined
by ¨ d� �T�5#|�©c�d§�T��K]�5#uK (2.1)
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clearly this is only a function of � since � is given and is just the detected
image. Then the ML-estimate of the unknown object is any object � ª that
maximizes the likelihood function� ª � arg «­¬ ��$®	¯±° ¨ d� �T�/#|W (2.2)

It is obvious that this definition is meaningful if the likelihood function
has maximum points.

In our applications the likelihood function is the product of a very
large number of factors, so that it is convenient to take the logarithm
of this function; moreover, if we consider the negative logarithm (the
so-called neglog) the maximization problem is transformed into a mini-
mization one. Therefore we introduce the functional² ¡q�T��K]�&#|�+�e³3´�� ¨ d� �T�/#Q1sµ+9 (2.3)

where ³¶9jµ are suitable constants that can be introduced in order to sim-
plify the expression of the functional. Since the neglog function is strictly
convex, the problem of Eq. (2.2) is equivalent to the following one� ª � arg «8����$®�¯&° ² ¡q�T��K]�&#gW (2.4)

We reconsider now the three examples of the previous section.

EXAMPLE 2.1. In the case of additive white Gaussian noise, by a
suitable choice of the constants ³O9jµ , we obtain² ¡ �T�QK]�±#|� �\� ,.��13'·�^� �\� w 9 (2.5)

and therefore the ML approach coincides with the well-known least-
squares (LS) approach. It is also well-known that the functional of Eq.
(2.5) is convex, and strictly convex if and only if the equation ,.�s�oI
has only the solution �¸�BI . Moreover it has always global minima, i. e.
the LS-problem has always a solution; but this problem is ill-conditioned,
in the case of image reconstruction, since it is equivalent to the solution
of the Euler equation ,7¹Q,��º�r,7¹a�T�»�¼'(#u9 (2.6)

and the condition number of the matrix , can be very large. Indeed,
the continuous version of this problem is ill-posed (the matrix , comes
from the discretization of an integral operator, very often a compact one)
and this ill-posed problem is the starting point of the so-called Tikhonov
regularization theory (see, for instance, [46, 16]). Therefore, this theory
is based on the tacit assumption that the noise affecting the data is additive
and Gaussian.

We remark that, in the case of object reconstruction, since objects are
non-negative, we should consider the minimization of the functional of
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Eq. (2.5) on the non-negative orthant. With such a constraint the problem
is not treatable in the standard framework of regularization theory.

EXAMPLE 2.2. In the case of Poisson noise, if we introduce the so-
called Kullback-Leibler (KL) divergence of a vector ½ from a vector � ,
defined by ¾8¿ÁÀ �T��9j½b#g� �M 
����·Â �)
2´�� � 
½	
 13½	
5�^�)
jÃ;9 (2.7)

then, with a suitable choice of the constants ³¶9jµ , the functional
² ¡q�T�QK]�±#

is given by² ¡q�T��K]�&#Ä� ¾8¿ÁÀ �T��Kj,7�813'(#u� (2.8)� �M 
\��� Â � 
 ´�� �)
�-,.��13'(#0
 1B�-,.��13'(# 
 �^� 
 Ã�W
It is quite natural to take the non-negative orthant as the domain of this
functional. Moreover, it is well-known that it is convex, and strictly con-
vex if the equation ,.�;�ÅI has only the solution �Æ�ÇI [41], non-
negative and locally bounded. Therefore it has global minima.

The properties of the continuous version of this functional and its
minimization are investigated in [35]-[37]. In particular, in [37] an exam-
ple is given where the functional does not have a minimum in the classical
sense, hence proving the ill-posedness of this minimization problem. As
a consequence, we should expect that noise strongly affects the minima
of the discrete problem. Indeed this is the case and the specific effect of
the noise in this problem is known as checkerboard effect, since many
components of the minima are zero.

EXAMPLE 2.3. In the case of Gauss+Poisson noise, the functional² ¡ �T�/# is given by² ¡ �T��K]�&#|�+� �M 
\��� ´��LÈ 
 �T�QK]�±# (2.9)È¼
j�T�QK]�±#|� �5 M f �/¡ � �5�\�|���/��� i �-,.�»13'(# f
¢ � � � £¤T¥ ¤ � f � � i � ¤ W
For future use we also introduce the functionÉ 
Ê�T��K]�&#g� �5 M f �/¡ �$�5�\�|���/��� i �-,7�813'(# f
¢ � � � £¤T¥ ¤ � f � � � � i � ¤ W (2.10)
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It has been recently proved [3] that also this functional is convex (strictly
convex if the equation ,.�>�ËI has the unique solution �>�ËI ), non-
negative and locally bounded. Therefore it also has global minima on the
non-negative orthant. As far as we know, no result is available about the
ill-posedness of this minimization problem. However, numerical experi-
ence demonstrates that also in this case the minimum points are affected
by the checkerboard effect [3].

REMARK 2.4. The previous examples demonstrate that, in the case
of image reconstruction, ML problems are ill-posed or ill-conditioned.
That means that one is not interested in computing the minimum points� ª of the functionals corresponding to the different noise models because
they do not provide sensible estimates %� of the unknown object.

However, as it is known, the ML approach deserves an accurate anal-
ysis. The previous remark only implies that one must be very careful
in applying to these problems methods derived from optimization the-
ory. In particular, in our opinion, very efficient methods, such as second
order methods, pointing directly to a minimum can be dangerous. On
the other hand, numerical experience (and, in some cases, also theoreti-
cal results) demonstrates that first order methods can provide acceptable
(regularized) solutions by early stopping. In the framework of regulariza-
tion theory the study of iterative methods with such a property (we only
mention Landweber, steepest descent and conjugate gradient methods) is
a widely investigated topic.

Finally we point out that, since objects are non-negative, the non-
negativity constraint must always be introduced in the formulation of the
previous minimization problems.

2.2. Bayesian formulation. The previous remark is not surprising
in the framework of inverse problem theory. Indeed it is generally ac-
cepted that, if the formulation of the problem does not use some addi-
tional information on the object, then the resulting problem is ill-posed.
This is what happens in the maximum likelihood approach because we
only use information about the noise with, possibly, the addition of the
constraint of non-negativity.

The additional information may consist, for instance, in prescribed
bounds on the solution and/or its derivatives up to a certain order (in gen-
eral not greater than two). This prescribed bounds can be introduced in
the problem as additional constraints in the variational formulation pro-
vided by ML. However, in this paper, we adopt a completely probabilistic
approach, called Bayesian approach, where the additional information
is given in the form of statistical properties of the object.



ITERATIVE IMAGE RECONSTRUCTION: A POINT OF VIEW 11

In other words, one assumes that the unknown object � is also a real-
ization of a (vector valued) random variable Ì . Then, a different interpre-
tation of the probability density c5d§�T��K]�5# is introduced: this is considered
as the conditional probability density of � when the random variableÌ assumes the value � c d �T��K]�/#|��c d �T� � ÌË�D�5#uW (2.11)

For simplicity we will write c d �T� � �5# .Then additional information on the unknown object � is introduced
by providing the probability density of Ì , the so-called prior, that will
be denoted by c�Í»�T�/# . The most frequently used priors are of the Gibbs
type, i.e they have the following formc2Í»�T�/#|� Z� � �±Î{Ï/�Ð��� 9 (2.12)

where � is a normalization constant, Ñ is a positive parameter (a hyper-
parameter in the statistical language, a regularization parameter in the
language of regularization theory), while ÒH�T�5# is a functional, possibly
convex.

The previous assumptions imply that the joint probability density of
the random variables Ì79j� is given byc�Í·de�T��9]�&#a�©c�de�T� � �/#Óc2Í��T�/#|W (2.13)

If we introduce the marginal probability density of �c d �T�±#u� n c Í·d �T��9]�&#�pq��9 (2.14)

from Bayes formula we obtain the conditional probability density of Ì
for a given value � of �c Í �T� � �±#|� c�Í·d��T��9]�&#c�de�T�±# � c�de�T� � �/#Óc2Í��T�/#c�d��T�±# W (2.15)

If in this equation we insert the detected value � of the image, we obtain
the a posteriori probability density of Ìx Í� �T�/#|�©c�ÍL�T� � �±#|� ¨ d� �T�/# c Í �T�5#c�d��T�&# W (2.16)

Then, a maximum a posteriori (MAP) estimate of the unknown object
is defined as any object � ª that maximizes the a posteriori probability
density � ª � arg «8¬ ��$®	¯±° x Í� �T�/#gW (2.17)

As in the case of the likelihood it is convenient to consider the neglog
function of

x Í� �T�5# . If we assume a Gibbs prior as that given in Eq. (2.12)
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and we take into account the definition of Eq. (2.3), we can introduce the
following functional² �T�QK]�±#g�+�e³3´�� x Í� �T�/#*1sµ[�Ô³U´��L�Õ� (2.18)�e³U´��ec d �T�&#|� ² ¡ �T�QK]�±#*1�Ñ ²�Ö �T�/#|9
where

² Ö �T�5#L�×³ØÒH�T�5# . This notation is introduced because the func-
tional coming from the Gibbs prior is conceived as a regularization func-
tional.

Therefore the MAP estimates are also given by� ª � arg «­����$®�¯&° ² �T��K]�&# (2.19)

and again one must look for the minimum points satisfying the non-
negativity constraint.

We conclude by remarking that it is not obvious that a minimum
point � ª of

² ��K]�±# is a sensible estimate %� of the unknown object. In
fact, in this formulation we have a free parameter Ñ (that, for analogy
with regularization theory, we will call regularization parameter). In the
classical regularization theory, a wide literature exists on the problem of
the optimal choice of this parameter [16] but, as far as we know, this
problem has not yet been thoroughly investigated in the more general
framework provided by Bayesian regularization.

3. Scaled gradient methods based on a gradient decomposition

The formulations discussed in the previous section lead to the fol-
lowing general problem«8���±�Ó«8�\Ù � ² �T�QK]�±#|� ² ¡q�T��K]�&#*1sÑ ² Ö �T�5# (3.1)�jÚ&ÛSÜ �	Ý�ÞQÞ �Ø�ßGJIO9
where

² ¡q�T�QK]�±# is coming from the neglog-likelihood function while
² Ö �T�5#

is coming from the neglog-prior function. As follows from the examples
discussed above, we can assume that both are convex so that we have
a convex minimization problem. In the case Ñ>�àI this is just the ML
problem while in the case ÑJC�DI it is a MAP problem.

As already remarked, the ML problem can not be treated as a stan-
dard optimization problem because it is ill-posed and we do not want to
reach the minimum; on the other hand this is just what we want in the
case of the MAP problem. Therefore it seems that it is necessary to use
different methods in the two cases and, in fact, this is what people are usu-
ally doing. In this section we discuss an idea that can provide a unified
approach to both problems. For simplicity, our presentation is heuristic.
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Since
² �T�QK]�±# is convex all its minima are global. Then the Karush-

Kuhn-Tucker (KKT) conditions are necessary and sufficient conditions
for a point � ª to be a minimum of

² �T��K]�&#� ª�á ² �T� ª K]�±#|�rI¶9 (3.2)� ª GJIL9 á ² �T� ª K]�±#ÁGJI¶W
Let us consider now the following decomposition of the gradient [30, 31]� á ² �T��K]�&#u��â»�T�QK]�±#X�©ãä�T��K]�&#|Kgâ��T�QK]�±#ÁGJIL9|ã­�T��K]�&#ÁNUIOW (3.3)

It is obvious that such a decomposition always exists but is not unique.
Different choices of the vectors âa94ã can be used and this non-uniqueness
may be an advantage in some cases. However, the applicability of the
approach is based on the fact that in all models that have been introduced
for image reconstruction a natural decomposition of the gradient of this
kind can be found, with explicit expressions of âa94ã . This point will
become clear from the inspection of the examples that will be discussed
in the following.

By assuming that we have selected a decomposition of the gradient
in the previous form, then we can write the first KKT condition as a fixed
point equation � ª �Õå � �T� ª #|9 (3.4)

with å � �T�/#|�r� â��T�QK]�±#ãl�T�QK]�±# W (3.5)

The operator å � � � # is well defined, since ãä�T�QK]�±#�NæI . Moreover it is
continuous if the functional

² �T�QK]�±# is continuously differentiable, as it
is assumed, because, in such a case, it is possible to choose continuous
functions â·94ã .

By applying the method of successive approximations we get the fol-
lowing iterative algorithm� give � � ¡ � NJI� given � �èç�� compute� �éç(� � � �D� �éç(� â��T� �èç�� K]�&#ãl�T� �èç�� K]�&# W (3.6)

About the convergence of the algorithm nothing can be said at this stage
of the analysis since the operator å � � � # is not in general a contraction.
However we can remark some interesting features suggesting that it can
deserve further considerations.
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The first is that all the iterates are automatically non-negative. The
second is that the algorithm is a scaled-gradient method, with step-size 1,
since it can be written in the following form� �èç�� � � �D� �èç(� �©ê ç á ² �T� �èç�� K]�&# (3.7)

where ê ç �rë±��¬$ì¶í � �éç(�@ã�@��T� �éç(� K]�±#�î W (3.8)

REMARK 3.1. It is important to remark that, in [30, 31] the algorithm
is presented as a descent method with a step-size selection. Indeed, it is
written in the following form� �èç�� � � �D� �èç(� 1Jï ç � �éç(�ãl�T� �èç(� K]�±#�ð â»�T� �éç(� K]�±#X�¼ãä�T� �èç�� K]�&#�ñ (3.9)

and the step-size ï ç NòI is chosen in the following way. First an upper
bound ï � ¡ �ç is determined in order to ensure that � �éç(� � � GBI . This is ob-

tained by looking at the values of R such that � �éç(�@ NUI and ó á ² �T� �èç�� K]�&#
ôÐ@¶NI . If we denote by õ � the set of these index values, then it is easy to see
that ï � ¡ �ç �+«8���@ ®$ö
÷ í ã�@q�T� �éç(� K]�±#ã�@��T� �éç(� K]�±#X�sâ5@q�T� �èç(� K]�±# î G�Z�W (3.10)

Next, the step-size ï ç is optimized by a line search in the interval �-IS94ï � ¡ �ç ô
using, for instance, Armijo rule. In such a way convergence of the method
is ensured.

A third property of the algorithm of Eq. (3.6) is contained in the
following Proposition.

PROPOSITION 1. If the sequence of the iterates �	� �èç(� � is convergent
to � ª and if â»�T�QK]�±#ÁNJI for any �.NUI , then � ª solves (3.1).

PROOF. It is sufficient to prove that � ª satisfies the KKT conditions.
The first one is satisfied because, thanks to the continuity of å � � � # , ��ª is
a fixed point of å � � � # . Moreover, the assumption â��T�QK]�±#ºN�I for any�øNÕI implies that all the iterates � �éç(� are strictly positive if � � ¡ � NÕI , as
one can easily proves by induction. It follows that � ª GJI . Therefore we
have only to check that also the third KKT condition is satisfied.

It is certainly satisfied for all the values of the index such that � ª@ NUI ,
because it follows from the first condition. It is also satisfied if � ª@ �;I
and â5@��T�/ª<K]�&#|�BI because, in such a case, the corresponding component
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of the gradient is strictly positive. Then, let us assume that it is not satis-
fied for a value of the index such that �*ª@ �òIS9�â @ �T��ª{K]�±#§NDI , i. e. let us
assume that � ª@ �rI¶9 â5@q�T��ª{K]�±#ã�@q�T� ª K]�±# N>Z§W (3.11)

It follows that there exists ùb¡ such that, for any ù�GJù�¡ , we haveâ/@��T� �éç(� K]�&#ã�@q�T� �èç�� K]�&# N�Z�W (3.12)

Since all the iterates are strictly positive, we get � �éç(� � �@ N�� �èç(�@ , in con-

tradiction with the assumption that the limit of � �éç(�@ is zero. ú
3.1. Maximum likelihood estimates. In Table 3 we give possible

choices of the functions â|¡)�T�QK]�±#494ã±¡��T��K]�&# associated to the functionals² ¡)�T�QK]�±# for the three noise models discussed in Sect. 2. It is obvious that
it is possible to obtain other acceptable choices by adding, for instance, a
suitable constant to both functions.

TABLE 1. The functions âu¡$94ã2¡ for the three noise mod-
els. The functions È�9 É of the third line are defined
respectively in Eqs. (2.9) and (2.10), while

Y
is defined

in Eq. (1.3). â ¡)�T�QK]�±# ã2¡$�T��K]�&#ûØü�ý !{! � , ¹ � � �-, ¹ ,.��1s'(#xHþ V0!{! þ = , ¹ �,.�»1J' YûØü�ý !{!Á1 xHþ V0!<! þ = , ¹ É �T�QK]�±#Èo�T�QK]�±# Y
The interesting point is that, if we particularize the general algorithm

of Eq. (3.6) to the three noise models, we obtain three well-known algo-
rithms proposed for image reconstruction.

Indeed, in the case of Gaussian noise we obtain� �éç(� � � �D� �éç(� , ¹ �, ¹ ,.� �éç(� 1J' 9 (3.13)

and this is the image iterative space reconstruction algorithm (ISRA), in-
troduced in [14], whose asymptotic convergence is proved in [15]. More
precisely the original algorithm is with '­�ÿI , but the proof of conver-
gence can be easily extended to the case 'LC�rI .
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In the case of Poisson noise we obtain� �éç(� � � � � �éç(�Y~, ¹ �,.� �éç(� 1J' 9 (3.14)

and this is the expectation maximization (EM) algorithm proposed in [41]
and known as Richardson-Lucy (RL) algorithm in image deconvolution
[39, 33]. More precisely Eq. (3.14) is the modified version of the al-
gorithm introduced in [42] for taking into account background emission.
In the case '8�ÆI several convergence proofs of the algorithm to a ML
solution are available [48, 29, 36, 24, 25]; all these proofs utilize a nice
property of the iterates, that holds true also for the minimum points �Xª of
the functional. If the matrix , is normalized in such a way that

Y �ÿZ ,
then AM@4��� � ª@ � AM@ ��� � �èç��@ � �M 
���� �)
5W (3.15)

This property is also called flux conservation because it guarantees that
the total number of counts of the reconstructed object coincides with the
total number of counts of the detected image. It is not satisfied in the case'LC�rI and the convergence of the algorithm does not appear to be proved
in such a case.

Finally, in the case of Gauss+Poisson noise we obtain� �èç�� � � � � �èç(�Y , ¹ É �T� �éç(� K]�&#È;�T� �éç(� K]�±# 9 (3.16)

and this is the algorithm proposed in [42]. We recall that the functionsÈ�9 É are defined respectively in Eqs. (2.9) and (2.10). As far as we
know, also for this algorithm no convergence proof is available.

3.2. Maximum a posteriori estimates. In the case of a regularized
functional, the general algorithm of Eq. (3.6) takes the following form� �èç�� � � �Õ� �èç�� â ¡)�T� �èç(� K]�±#*1�ÑXâ Ö �T� �èç(� #ã ¡ �T� �èç(� K]�±#*1�Ñ�ã Ö �T� �éç(� # 9 (3.17)

where âX¡)�T��K]�&#494ã2¡��T�QK]�±# come from the likelihood while â Ö �T�/#494ã Ö �T�/#
come from the prior. We will give examples of these functions in the next
section, for different kinds of regularization functionals. Here we only
remark that this algorithm has a very simple structure (linear fractional
dependence of the iterates on the regularization parameter Ñ ) suggesting
an implementation based on an auxiliary function that can be called for
different kinds of noise and regularization. In this way one can have a
general algorithm working for all known kinds of likelihoods and priors.
Unfortunately a convergence analysis is lacking.
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4. Scaled gradient projection methods

If the reconstructed image has to be used for quantitative analysis
(this may be required in domains of application such as Nuclear Medicine,
Microscopy and Astronomy) it is important to guarantee flux conserva-
tion. In the case of zero background, this condition is given by Eq. (3.15)
and is automatically satisfied by the EM algorithm. However it is not
satisfied in all the other cases so that it is important to introduce this con-
dition as an additional constraint. We also remark that, in the case '»C�rI ,
Eq. (3.15) must be modified for taking into account the effect of the
background.

For simplicity we assume that the matrix , in normalized in such a
way that

Y �+Z , so that�M 
���� �� AM@ ��� ,�
TE @��b@���ÿ� AM@ ��� �b@mW (4.1)

Then, in the case '¶C�BI , condition (3.15) is replaced by the following oneAM@ ��� � @ � �M 
���� �	� 
 �Ô' 
 � W����9 (4.2)

that will be called the flux condition or flux constraint.
If we introduce this additional constraint, the problem (3.1) is modi-

fied as follows «8���±�Ó«8�\Ù � ² �T�QK]�±#|� ² ¡q�T��K]�&#*1sÑ ² Ö �T�5# (4.3)�jÚ&ÛSÜ �	Ý�ÞQÞ �Ø�ßGJIO9 AM@ ��� �S@�����W
Again, in the case Ñ.�BI we have ML problems, while in the case ÑUC�rI
we have MAP problems.

We denote by � the closed and convex set which is the intersection
of the non-negative orthant with the affine subspace defined by the flux
condition. We remark that � is compact so that any sequence contained
in � will contain convergent subsequences.

In order to solve problem (4.3), a Scaled Gradient Projection (SGP)
method is proposed in [10], which can be considered a generalization of
the scaled gradient method (3.9).

The following notations are useful to describe the method. For a
given vector � ��� A , we denote by 	j�
	�� the norm induced by the =�
­=
symmetric positive definite matrix

¾
, that is, 	j��	��J� � � ¹ ¾ � . Further-

more, for some given positive scalars �)� and � w , let � be the set of the
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�= symmetric positive definite matrices

¾
such that�<��	j�
	 w�� �±¹ ¾ � � � w 	j�
	 w 9 P§� �º� A W (4.4)

Finally, we denote by
x�� E �Ø�T�5# the projection of � �r� A over � in the

norm 	 � 	�� , that isx � E � �T�5#|� arg «­���� ® � 	 ½¶�ø�
	 � � arg «8���� ® � } Z� ½ ¹ ¾ ½H�Ô½ ¹ ¾ � � W (4.5)

The main steps of the SGP method are stated in Algorithm SGP.
Several reasons make this approach appealing for solving problem (4.3).
First of all, it is very simple: it belongs to the class of standard scaled gra-
dient methods [6] with variable step-length � ç and non-monotone line-
search strategy [8]. Secondly, due to the special constraints of the prob-
lem and to appropriate choices of

¾ ç , the projection operation in step
2 can be computationally non-expensive. Finally, the iterative scheme
can achieve good convergence rate by exploiting the effective step-length
selection rules recently proposed in literature.

Algorithm SGP: Scaled Gradient Projection Method

1. Initialization. Let � � 
 A 9�� ��� � ��� be such that I�� � � 
 A � � �!� � 9" 9Ê� � �-IS9	Z�# and let È be a positive integer.
Set � � ¡ � � �X9 ¾ ¡ � �ä9 ��¡ � ó#� � 
 A 9�� ��� � ô .

For ù­�rIS9	Z$9 � 9(W(W(W
2. Projection. Compute the descent directionp �èç(� � x � E ��$ £% �T� �éç(� �&� ç ¾ ç á ² �T� �éç(� K]�±#]#X�^� �éç(� W
3. Line-search. Set ï ç �[Z and %² � «8¬ �¡�'�@�' � 
 A)( ç E * � �,+ ² �T� �éç<� @ � K]�±#4W

While -/.1032547638:9 4�; 25476=<?>)@BADC-E8GFH9 4�I -J.10H254=6=<?>)@?K ; 25476ï ç � " ï ç
end.

Set � �éç(� � � �D� �éç(� 1Uï ç p �èç�� W
4. Update. Define

¾ ç(� � � � and � ç(� � � ó#� � 
 A 9�� �!� � ô�W
end

For the sake of completeness, we report some important details on
the SGP implementation evaluated in this work. The choice of the scal-
ing matrix

¾ ç must avoid to introduce significant computational costs



ITERATIVE IMAGE RECONSTRUCTION: A POINT OF VIEW 19

and, in particular, it must keep the projection
x � E ��$ £% � � # in step 2 com-

putationally non-expensive. This can be done for example by using a
diagonal scaling, so that the projection is obtained by solving a separa-
ble quadratic program for which efficient linear-time solvers can be used
[12, 28]. According to the considerations of the previous section, we
choose the following modification of the scaling matrix defined in (3.8)¾ ç � diag ía«­¬ � í!�<�	9 � �éç(�@ã�@��T� �éç(� K]�&#/îLî 9 (4.6)

where �<��NJI is a prefixed threshold. Therefore (4.4) is satisfied, ��� being
just this threshold and � w �L��MON , with � the flux constant and N�NÕI such
that N8�B«8���@ Â «8����$® � �{ã�@��T�QK]�±# �&Ã¸W (4.7)

The line-search step of the SGP consists in a non-monotone strategy
that uses successive reductions of ï ç to make

² �T� �èç(� � � K]�±# lower than the
maximum of the objective function on the last È iterations [8, 21]. Of
course, if È �[Z then the strategy reduces to the standard Armijo rule.

The updating rule for the step-length � ç is crucial for improving the
convergence rate of the scheme; we use special step-length selections
derived by the two Barzilai-Borwein (BB) rules [2], as usually done in
many effective gradient methods [12, 13, 19, 40, 49]. In case of scaled
gradient methods, by proceeding as for the derivation of the BB rules, we
can regard the matrix µ��P� ç #8� �P� ç ¾ ç # � � as an approximation of the
Hessian á w ² �T� �èç(� K]�±# and force a quasi-Newton property on µ��P� ç #� BB1ç � arg «8�Ó�Q ®	¯ 	 µ��P� #Ê! �éç<� � � �Ô½ �éç<� � � 	 (4.8)

or � BB2ç � arg «8�Ó�Q ®	¯ 	4! �éç<� � � �Ôµ��P�X# � � ½ �éç<� � � 		9 (4.9)

where ! �èç�� � � �LR"� �éç(� �:� �éç<� � �?S and ½ �èç<� � � �LR á ² �T� �éç(� #{� á ² �T� �éç<� � � # S ;
in this way, the following step-lengths are obtained� BB1ç � ! �èç<� � � ¹ ¾ � �ç ¾ � �ç ! �èç�� � �! �èç�� � � ¹ ¾ � �ç ½ �èç�� � � (4.10)

and � BB2ç � ! �éç<� � � ¹ ¾ ç ½ �èç<� � �½ �èç<� � � ¹ ¾ ç ¾ ç ½ �èç<� � � W (4.11)

The step-length selection rule implemented within SGP is the ABBmin1

strategy proposed in [19], that consists in an adaptive alternation between
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the values %� ç �r«8¬ � �T� � 
 A 9j«­�����T� �!� � 9�� BB1ç �)� (4.12)

and U� ç �B«8¬ � �T� � 
 A 9j«8�����T� ��� � 9�� BB2ç �)�qW (4.13)

A convergence analysis of the SGP method is carried out in [10] for
the general case of the minimization of differentiable functions on closed
convex sets. This analysis is based on several well-known technical re-
sults on gradient projection type methods [6, 8, 9] and it is not included in
the present discussion. Here, we simply recall that when algorithm SGP
is applied to problem (4.3), the following proposition may be derived
from [10].

PROPOSITION 2. Let �	� �èç�� � be the sequence generated by applying
algorithm SGP to problem (4.3). Every accumulation point � ª of �	� �èç(� �
is a constrained stationary point, that isá ² �T� ª K]�±#
¹·�T�ä�^� ª #·GJI P§� � �XW (4.14)

If
² �T��K]�&# is a convex function, then every accumulation point of �	� �èç(� �

is a solution of problem (4.3).

The SGP algorithm has been implemented in the case of the deconvo-
lution of 2D images corrupted by Poisson noise, without regularizing the
neglog of the likelihood. Therefore, we have Ñø�BI in (4.3) and

² ¡q�T�QK]�±#
is given in Eq. (2.8). Moreover , is a block circulant matrix with circu-
lant blocks so that both ,.� and , ¹ � can be computed by means of FFT.
We recall that ,.� is just the cyclic convolution of � with an array that
is usually called the point spread function (PSF). We considered images
obtained by convolving different objects with different PSFs, with the
addition of a background. Moreover we also considered different noise
levels (in the case of Poisson noise, this is obtained by changing the total
number of counts). Our sample consisted of about 18 images. Detailed
numerical results on this SGP implementation are reported in [10].

We evaluated the SGP behaviour on these test problems in compar-
ison with the basic algorithm EM (or RL), as defined in (3.14), and the
EM accelerated version proposed by Biggs and Andrews [7], that is im-
plemented in the MATLAB code deconvlucy of the Image Processing
toolbox (EM MATLAB). We point out that, as far as we know, no con-
vergence proof of the Biggs-Andrews algorithm is available. In all cases
we obtained very similar results as concerns the computational efficiency.
Therefore in Table 2 we only report results about a single image, sized��V�W 
 ��V�W , with three different noise levels.
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TABLE 2. Behaviour of SGP, EM MATLAB and EM.

SGP EM MATLAB EMX it opt err opt sec it opt err opt sec it opt err opt secY[Z Y�\H]B^7_�` \�\�a _[Zb^dcfehg�\[Z i \�c�c _�Zj^dcfekg�YTZ a \fe�_�_�lm_�Zb^7c�gkY�e�c[Z ai�Z _�no]B^7_�p ^7_�c _[Zb^dcfiqn�_[Z \ ^dY[^r_�Zj^dcfihn�\[Z _ \fe�_�_ l _�Zb^7cfisY�Yfi�Z YY[Z Y�\H]B^7_ft n�_ _[Zb^dafe YTZ _ Y�g _�Zj^dafe i�Z i Y[^dY _�Zb^7a�Y e�Y[Z e
In detail, in Table 2 we report the flux constant � controlling the dif-

ferent noise levels (we recall that, in the case of Poisson noise, the noise
level is increasing when the total flux/number of counts is decreasing),
the numbers of iterations required by the three methods (it opt), the cor-
responding computational times in seconds (sec) and the relative recon-
struction error (err opt), defined as 	j� �éç(� �ä�
	�M3	j��	 , � being the object to
be reconstructed. For each method, the results refer to the iteration where
the minimum of the reconstruction error has been obtained, except for
the cases marked with an asterisk in which the minimum is not reached
within the maximum number of iterations allowed by the code. In Figure
1 we also give the behaviour of the relative reconstruction error as a func-
tion of the number of iterations for the three methods and for one noise
level.

FIGURE 1. Relative reconstruction error for the case���vu&W#uxw�
¼Z(I)y .
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We remark that the computational time per iteration in SGP and
EM MATLAB is approximately 40% and 30% greater than in EM, re-
spectively. However, SGP and EM MATLAB exhibit a better conver-
gence rate in comparison with EM, and the time required to obtain a given
reconstruction error in these accelerated methods is significantly lower
than in EM. In these experiments SGP generally outperforms EM MATLAB
and in some cases it seems largely preferable.

It is also interesting to remark that, in the case of SGP, the reconstruc-
tion error drops to a value close to the minimum in very few iterations and
that it remains close to this value for a large number of iterations, so that
the choice of the optimal number of iterations does not seem to be critical
in the case of real images.

TABLE 3. The functions â Ö 94ã Ö for different examples
of regularization functionals. � is the flux constant of
Eq. (4.2), while c is a reference vector satisfying the
flux condition. In the second line

¾
is a matrix with non-

negative entries and this example includes regularization
in terms of the discrete Laplacian.² Ö �T�5# â Ö �T�5# ã Ö �T�5#�w �\� �l�ºc �\� ww c ��w �\� �-õ¶� ¾ #0� �\� ww � ¾ 1 ¾ ¹ #0� �-õ:1 ¾ ¹ ¾ #0�¾8¿ÁÀ �T��K-c/# z @ ® Ö ´Ó� c @� z @ ® Ö ´�� � @��\� � �\� � I Z

The previous results indicate that SGP can be very efficient; there-
fore it looks quite natural to implement the method not only in the case
of the algorithm ISRA, defined in (3.13), but also in the case of the reg-
ularized versions of ISRA and EM, as given in (3.17). To this purpose,
we give in Table 3 the functions â Ö 94ã Ö for some of the most frequently
used regularization functionals. Of course these functions provide a de-
composition of the gradient of

² Ö �T�/# in the sense explained in Sect. 3.
We remark that, in the case of the entropy functional (third line), the flux
constraint is essential for introducing a simple decomposition of the gra-
dient.

Simple expressions of the â Ö 94ã Ö functions can be obtained also for
other important regularization functionals such as total variation or Hu-
ber priors or functionals formed by the weighted sum of the squared first
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differences computed in each pixel. Non-convex regularization function-
als, such as that proposed in [20] and [1], could also be considered in this
approach. We also point out that, in the implementation of the SGP algo-
rithm, only the gradient and the function ã appear explicitly, as follows
from (4.6).

Work is in progress in this direction. In particular, we intend to com-
pare SGP with the very efficient second order methods such as quasi-
Newton and interior point methods. We recall that these methods must
be used with some care in the case of ML estimations because of the ill-
posedness of these problems. However, they can certainly be used in the
case of MAP estimations. If SGP can compete with these methods from
the point of view of numerical efficiency, then it could provide a very
useful and simple approach to iterative image reconstruction.
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22. J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique,
Bull. Univ. Princeton 13 (1902), 49–52

23. J. Hadamard, Lectures on Cauchy’s problem in Linear Partial Differential Equations
(1923), New Haven: Yale Univ. Press

24. A. N. Iusem, Convergence analysis for a multiplicatively relaxed EM algorithm,
Math. Methods Appl. Sci. 14 (1991), 573–593

25. A. N. Iusem, A short convergence proof of the EM algorithm for a specific Poisson
model, REBRAPE 6 (1992), 57–67

26. V. K. Ivanov, On linear problems which are not well-posed, Soviet Math. Dokl. 3
(1961), 981–983

27. F. John, Continuous dependence on data for solutions of partial differential equa-
tions with a prescribed bound, Comm. Pure Appl. Math. 13 (1960), 551–585

28. K. C. Kiwiel, Breakpoint searching algorithms for the continuous quadratic knap-
sack problem, Mathematical Programming (2007), to appear

29. K. Lange, and R. Carson, EM reconstruction algorithms for emission and transmis-
sion tomography, J. Computer Assisted Tomography 8 (1984), 306–316

30. H. Lantéri, M. Roche, O. Cuevas, and C. Aime, A general method to devise
maximum-likelihood signal restoration multiplicative algorithms with non-negativity
constraints, Signal Process. 81 (2001), 945–974

31. H. Lantéri, M. Roche, and C. Aime, Penalized maximum likelihood image restoration
with positivity constraints: multiplicative algorithms, Inverse Problems 18 (2002),
1397–1419

32. J. Llacer, and J. Nu }~ ez, Iterative maximum likelihood and bayesian algorithms for
image reconstruction in astronomy, in: The Restoration of HST Images and Spectra,
Eds. R. L. White, and R. J. Allen (1990), 62–69, Baltimore: The Space Telescope ]
Science Institute

33. L. B. Lucy, An iterative technique for the rectification of observed distributions,
Astron. J. 79 (1974), 745–754

34. K. Miller, Least squares methods for ill-posed problems with a prescribed bound,
SIAM J. Math. Anal. 1 (1970), 52–74



ITERATIVE IMAGE RECONSTRUCTION: A POINT OF VIEW 25

35. H. N. Mülthei, and B. Schorr, On an iterative method for a class of integral equations
of the first kind, Math. Methods Appl. Sci. 9 (1987), 137–168

36. H. N. Mülthei, and B. Schorr, On properties of the iterative maximum likelihood
reconstruction method, Math. Methods Appl. Sci. 11 (1989), 331–342

37. H. N. Mülthei, Iterative continuous maximum likelihood reconstruction methods,
Math. Methods Appl. Sci. 15 (1993), 275–286

38. C. Pucci, Sui problemi di Cauchy non “ben posti”, Atti Acc. Naz. Lincei Rend. Cl.
Sci. Fis. Mat. Natur. 18 (1955), 473-477

39. W. H. Richardson, Bayesian based iterative method of image reconstruction. J. Opt.
Soc. Am. 62 (1972), 55–59

40. T. Serafini, G. Zanghirati, and L. Zanni, Gradient projection methods for quadratic
programs and applications in training support vector machines, Optimization Meth-
ods and Software 20 (2005), 353–378

41. L. A. Shepp, and Y. Vardi, Maximum likelihood reconstruction for emission tomog-
raphy, IEEE Trans. Med. Imaging 1 (1982), 113–122

42. D. L. Snyder, A. M. Hammoud, and R. L. White, Image recovery from data acquired
with a charged-coupled-device camera, J. Opt. Soc. Am. A 10 (1993), 1014 –1023

43. O. N. Strand, and E. R. Westwater, Statistical estimation of the numerical solution of
a Fredholm integral equation of the first kind, J. Assoc. Comput. Mach. 15 (1968),
100–114

44. A. N. Tikhonov, On the stability of inverse problems, Dokl. Akad. Nauk. SSSR 39
(1943), 195–200

45. A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization
method, Soviet Math. Dokl. 4 (1963), 1035-1038

46. A. N. Tikhonov, and V. Y. Arsenin, Solutions of ill-posed problems, (1977), New
York: Wiley

47. V. F. Turchin, V. P. Kozlov, and M. S. Malkevich, The use of mathematical-statistics
methods in the solution of incorrectly posed problems, Soviet Phys. Uspekhi 13
(1971), 681–703

48. Y. Vardi, L. A. Shepp, and L. Kaufman, A statistical model for positron emission
tomography, J. Am. Stat. Ass. 80 (1985), 8–37

49. B. Zhou, L. Gao, and Y. H. Dai, Gradient methods with adaptive step-sizes, Compu-
tational Optimization and Applications 35 (2006), 69–86

DIPARTIMENTO DI INFORMATICA E SCIENZE DELL’INFORMAZIONE, UNIVER-
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ENA E REGGIO EMILIA, VIA G. CAMPI 213/B, I-41100 MODENA, ITALY

E-mail address: luca.zanni@unimore.it


