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Abstract. Since the pioneer observations of Alan Turing, emotional and aes-
thetical capabilities have been considered as one of the fundamental element of 
a genuinely intelligent machine. Among the proposed approaches, genetic algo-
rithms try to combine intuitively a generative impulse with a critical capacity 
that steers the production towards a valuable goal. The approach here presented 
is based on Karl Sim’s approach in which a set of possible primitives is defined 
and it represent the genotype of the system. Such expressions are combined us-
ing genetic algorithms rules to obtain more complex functions that describe 
new images. At each step, images are evaluated by the user and this implicitly 
drives the evolution process. Results can be impressive, however a clear under-
standing of the determinants of our aesthetic evaluation is presently beyond 
reach.  

1 Introduction 

When Alan Turing in the forties of last century proposed the reasons for which a 
machine could never become intelligent, the lack of creativity and of aesthetic sense 
was one of the main arguments [1]. The introduction of genetic art in the eighties 
sounds like a counter-example of this, but, although results have been impressive the 
understanding of underlying mechanisms is still far beyond reach.  

Genetic (or evolutionary) art is a type of digital art in which the artwork is created 
by a genetic algorithm [2, 3]. Goal is to achieve an aesthetically valuable digital art-
work. The final result is usually mathematically described by an ensemble of func-
tions, but the process of its creation involves the human judgment and taste. 

We review here the pipeline of creating artistic images through genetic algorithms 
and highlight some critical points. 

2 Algorithm Description 

The algorithm starts from a set of images usually randomly generated from the en-
semble of available functions. These images constitute what are named parents of the 
first generation [4, 5]. A new set of images, called son images, are generated from 
each parent image by transforming each pixel of each image through a function ob-
tained combining simple functions with genetic operators.  



The resulting images are judged by a human user who implicitly assigns a fitness 
value to each of them that represents the personal degree of preference according to 
the image aesthetic value or interest. Images are ordered with respect to their fitness 
and the best images are chosen as parents for the next generation.  

The functions that define the child-images are composed starting from the func-
tions that created the parent image: they inherit all of the sub-functions and the opera-
tors of the parent-image, except for one of them (a function or operator), extracted 
randomly, which is replaced from a new one (function or operator) also randomly 
extracted from the database. In such way, an evolution of the images can be envis-
aged. The process can be iterated ad libitum, evolving the images from one generation 
to the other, until a satisfactory image is reached or the user decides to interrupt the 
evolutionary process. Some examples of this evolutionary process are provided in the 
Results section. 

2.1 Images definition 

Each image is digitized into a N x N pixels. If color images are considered, the 
value of each pixel will be its RGB value, where each channel is coded over 8 bits for 
a total of 24 bits per pixel. If gray level images are considered, the value will be the 
pixel gray value discretized over 8 bits: from 0 to 255. The considered images are N x 
N, with N = 300 pixels. Each image is described by a 2-dimensional mathematical 
function, which is sampled in the center of the pixels of the image.  

2.2 Sampling modalities 

Several functions and sampling strategies can be used. In general, the selected 
functions are those trigonometric combined with power functions (cf. Table 1). For 
sake of simplicity, trigonometric functions are defined with unitary frequency. Here 
we show three different sampling approaches, each of them having different aesthetic 
features. A first approach consists in choosing a unitary sampling step, s = 1. In this 
case, the trigonometric components will have a period of 2  and this approach leads 
to images characterized by a high-frequency texture, as shown in Figure 1. 

 

Fig. 1. An example of a set of four images generated with functions with sampling step size s = 
1:  a) sin(x*y)*cos(x*y)/cos(y)+sin(y)+cos(x)+sin(x); b) tan(cos(sqrt(x*y*x*y))); c) 
sin(x*y*x)+cos(y*x*y)/sin(x*x)/sin(y/x); d) sin(x*x)*cos(y*y).  



A lower frequency content can be obtained if the functions are sampled with a less 
dense granularity. We take a sampling step, s = 1 / N. This approach leads to much 
more smoothed images, sometimes just gradients, aesthetically very different from the 
ones produced with the former approach (see Figure 2).  

 
Fig. 2. An example of a set of four images generated sampling the same functions of Fig. 1, 
with a step size of 1 / N: a) cos(sqrt(x+y))*y+sqrt(cos(y)*sin(x))*sin(y/x)+y-sin(x); b) 
sin(x*y*x)+cos(y*x*y)*cos(x/y); c) sin(x*y*x)+cos(y*x*y)-sqrt(abs(x)+abs(y))/abs(x); d) 
abs(x*3). 

In a half-way approach we evaluate the function with a period of the trigonometric 
component approximately equal to the image width, i.e. s = 2  / N. We have chosen 
this step size because of its more pleasant aesthetic results. In this paper, all the fol-
lowing images are generated sampling the functions with a step size s = 0.02, that 
approximates this condition (Figure 3 shows an example of this). 

 
Fig. 3. An example of a set of four images generated evaluating the same functions of Fig. 1 
with a sampling step, s =  0.02:             
a) sin(abs(cos(x+y))+abs(cos(y*x*y)))+tan(cos(sqrt(x*y*x*y))); b) cos(x/y); c) 
sin(x)*cos(y)/sin(x*y*x)+cos(y*x*y)/abs(x);  d)  ((x+y)*y*x*sin(x)*cos(y)). 

2.3 Intensity adaptation 

The computed pixel values have to be adapted to the image range. No constraint is 
made about the values assumed by the generating functions: trigonometric functions 
can assume both positive and negative values and polynomial and absolute value 
functions can have a maximum value that may either not span the entire range of 255 
values or exceed this range. 

Moreover, at each iteration, only one function is selected to produce each image. 
Different scaling values, that we will name “color weight”, will be applied to the R, G 



and B channels separately to obtain a color image. When the color weight is equal on 
the three channels, the image will appear in gray levels (Fig. 4), otherwise a color 
image is produced, whose tone changes at each generation (Fig. 5). To obtain this, the 
color weight of each channel is randomly generated inside the interval between 0 and 
255. The value of that channel for all the pixels is multiplied by the color weight of 
that channel. Values that exceed 255 are clipped to 255 and values below zero are 
clipped to 0. Different images will have different triplets of color values.  

Besides creating color images, color weights have also the aim of spreading the 
function value in the useful range of each color channel.  

 
Fig. 4. A set of gray-scale images generated weighting the three color channels equally. 

 
Fig. 5. A set of images generated with the same color-weights: the red and blue weights are set 
to 255, while the green one is set to 100.  

2.4 Function generation and the genetic operators 

The function applied to the pixels of the parent images is obtained as a combina-
tion of a variable number of sub-functions (from a minimum of one to a maximum of 
five sub-functions), chosen among those defined in Table 1. Such functions are main-
ly trigonometric and polynomial functions of x and y and were defined experimental-
ly by trial and error [6].  

sin(x*x + y*y) 
sin(x*x)*cos(y*y) 
sin(x/y)*cos(x/y) 
cos(x/y) 
sin(y/x) 
abs(y)-x 
x+abs(y) 

 
cos(x*x/y)+sin(y*y/x) 
sin(x)+sin(x)+cos(y)+cos(y) 
cos(x)+cos(x)+sin(y)+sin(y) 
sin(x)+cos(x)+sin(y)+cos(y) 
cos(y)+sin(y)+cos(x)+sin(x) 
tan(cos(sqrt(x*y*x*y))) 



Table 1. The sub-functions used to create the function applied to the pixels of a parent image at 
each generation. 

Once the sub-functions are extracted, these are combined through a set of simple 
operators, restricted here to the basic four operations: multiplication, ‘*’, division, ‘/’, 
sum, ‘+’ and subtraction, ‘-‘, also extracted randomly. Therefore, the final function 
that is applied to each parent image is created joining the chosen sub-functions with 
the chosen operators.  

A simple example of the obtained functions is shown in Fig. 7. Here the sub-
functions randomly extracted are: sin(x/y), cos(x/y) and abs(y*3) and 
the extracted operators are ‘*’ and ‘-‘. Therefore the final composed function is the 
following: sin(x/y)*cos(x/y)-abs(y*3).  

 
Fig. 6. Some examples of obtained functions. From left to right: a)  
sin(x)+sin(x)+cos(y)+cos(y)/sin(cos(x)*abs(y)*abs(y)) with the color weights [25, 218, 238]. b) 
cos(x)+cos(x)+sin(y)+sin(y)+cos(x/y)/cos(x*x/y)+sin(y*y/x) with the color weights [47, 252, 
110]. c)  y-sin(x)/cos(y)+sin(y)+cos(x)+sin(x)/cos(x)+cos(x)+sin(y)+sin(y) with the color 
weights [123, 144, 105]. d) cos(y*y*y)+cos(x*x*x) with the color weights [200, 151, 21]. 

abs(x) 
abs(y) 
abs(x)*abs(y) 
sin(x)*cos(y) 
sin(x*y)*cos(x*y) 
sin(x*x-y*y) 
sin(x*x) 
y-abs(x) 
y-sin(x) 
x-cos(y) 
abs(x)+y 
sin(x*x*x-y*y*y) 
sin(y*y*y)+sin(x*x*x) 
cos(y*y*y+x*x*x) 
cos(y*y*y)+cos(x*x*x) 
abs(y*3) 
abs(x*3) 
sin(x*x/y-y*y/x) 
 

sqrt(abs(x)+abs(y)) 
sin(x*y*x)+cos(y*x*y) 
sin(sqrt(abs(x)))-cos(sqrt(abs(y))) 
sqrt(cos(x)+sqrt(x)*sin(y)+sqrt(y)) 
cos(x)*sin(x*y) 
cos(y)*sin(x*y) 
sin(x+y*x*y+x*x) 
sin(y+x*y*x+y*y) 
abs(x*y+x*x+y*y) 
((x+y)*y*x*sin(x)*cos(y)) 
((x+y*x)+sin(x*y)+cos(y/x)) 
sin(x*y+x)+cos(y*x+y) 
cos(x+y)*sin(x+y)/2 
cos(sqrt(x+y))*y+sqrt(cos(y)*sin(x)) 
sin(sqrt(y+x))*x+sqrt(sin(x)*cos(y)) 
cos(x)*sin(x)+cos(y)*sin(y) 
sin(abs(cos(x+y))+abs(cos(y*x*y))) 
sin(cos(x)*abs(y)*abs(y)) 
cos(x)*sin(y)*cos(x*y) 



3 Results 

In nature there is no aesthetic rule that binds somatic aspect between parents and 
their children. Even if some basic characteristics are expected, children can be either 
extremely similar to their parents, or very different. 

This phenomenon is reproduced with our genetic art algorithm: since any operator 
and any function can be replaced during the evolutionary process between a parent-
image and a child-image, there is no control over the amount of aesthetic change. The 
amount of change can be sometimes even non-noticeable (Fig. 7), while in other situ-
ations the child-image can be aesthetically totally different from the parent one (Fig. 
8).   

         
Fig. 7. An example of high-similarity between a parent image (left) and a child-image (right). 
In this case the function is exactly the same (y-abs(x)-sin(x*x + y*y)), while 
the color weight is different ([204, 82, 131] in the first image, [70, 222, 252] in the second). 

         
Fig. 8. An example of low-similarity between a parent image (left) and a child image (right), 
where just an operator is changed. In this case the parent function is: 
sin(x)+sin(x)+cos(y)+cos(y)+cos(x+y)*sin(x+y)/2 (color weight [104, 66, 104]), while the 
child one is: sin(x)+sin(x)+cos(y)+cos(y)/cos(x+y)*sin(x+y)/2 (color weight [4, 16, 163]) y-
abs(x)/sin(x)+cos(x)+sin(y)+cos(y)+cos(y)*sin(x*y). 

As it can be seen, some of the images present some saturated areas in the white and 
black region. In fact there is no explicit control on saturation when applying the trans-
forming function to the pixels of an image. For instance, we have analyzed the 
amount of saturated pixels over a set of 40 images and found out that 1/3 of the imag-
es has at least 90% of saturated pixels, 1/3 has less than 10% and 1/3 has a percentage 
between 10% and 90%. 

An additional example of the evolution over four generations is shown in the fol-
lowing lines. In this case, only one parent is considered at each generation as the son 



with the best fitness value. Each parent generates four children images that are evalu-
ated and ranked. The initial random functions extracted for the four images, a-d in the 
first generation, are the followings: 

1a. tan(cos(sqrt(x*y*x*y)))+sin(x*x) 
1b. y-abs(x) 
1c. abs(x*3)-sin(x*x*x-y*y*y)-sin(y+x*y*x+y*y) 
1d. y-abs(x)+sin(x)+cos(x)+sin(y)+cos(y)+cos(y)*sin(x*y) 

The image with the highest fitness was the fourth one (1d) in Fig. 9, which be-
comes the parent-image for the new generation. The three following sets of functions 
represent the three generations descending from the former parent (cf. Fig. 9): 

2a. y-abs(x)/sin(x)+cos(x)+sin(y)+cos(y)+cos(y)*sin(x*y) 
2b. y-abs(x)+sin(x)+cos(x)+sin(y)+cos(y)+cos(y)*sin(x*y) 
2c. y-abs(x)*sin(x)+cos(x)+sin(y)+cos(y)+cos(y)*sin(x*y) 
2d. y-abs(x)*cos(x)*sin(x)+cos(y)*sin(y)+cos(y)*sin(x*y) 
 
3a. y-abs(x)*tan(cos(sqrt(x*y*x*y)))+cos(y)*sin(x*y) 
3b. y-abs(x)-tan(cos(sqrt(x*y*x*y)))+cos(y)*sin(x*y) 
3c. y-abs(x)-cos(y*y*y)+cos(x*x*x)+cos(y)*sin(x*y) 
3d. y-abs(x)-cos(y)+sin(y)+cos(x)+sin(x)+cos(y)*sin(x*y) 
 
4a. y-abs(x)/cos(y)+sin(y)+cos(x)+sin(x)+cos(y)*sin(x*y) 
4b. y-abs(x)/sin(x*y*x)+cos(y*x*y)+cos(y)*sin(x*y) 
4c. y-abs(x)/sin(x)+cos(x)+sin(y)+cos(y)+cos(y)*sin(x*y) 
4d. y-abs(x)/x+abs(y)+cos(y)*sin(x*y) 

4 Discussion and Conclusion 

Overall, the generated images exhibit a high variability and richness also within the 
same generation: a simple change in one of the function components that realize the 
transformation function may produce a very similar or different result, depending on 
the overall function shape and on the component. Such property, observed experimen-
tally, can be object of further investigation to determine which can be the determinant 
characteristics that make an image more attractive than another. The correlation be-
tween the fitness value of an image and its aesthetic value can be a tool that may al-
low investigating the processes underlying our aesthetic evaluation [7, 8].  

This analysis could also allow improving the genetic algorithm introducing some 
elitist mutation rule for which, as far as the generations progress, some of the sub-
components, those with the most impact, are kept fixed and only the other sub-
components are mutated [5, 9]. 

From first experimental observations, the heavy use of trigonometric functions has 
been introduced as these produce gentle oscillating variations that are often interpret-
ed as “motion” and add aesthetic value to the images. The frequency of the oscilla-



tions introduced is also important as these should be related to the amplitude of the 
image: too high or too small frequencies tend to produce less pleasant images. 

 
Fig. 9. The images of four different generations. The correspondent functions are presented 
above. The selected sub-image in each image is highlighted by a black frame. Notice how some 
parent-child relations are aesthetically very clear, while some others are not.  

Genetic algorithms turn out to be a particularly effective tool to generate images 
with aesthetic value that do not contain structured scenes. The fitness value cannot be 
easily captured by analytical functions as usually done in the computer science field. 
This opens the challenge to identify the models, the features and the determinants for 
our aesthetic evaluation. Besides a comprehension of the mechanisms of aesthetic 



evaluation, this can add value in all the manufacts in which the external shape can be 
designed or colored arbitrarily.  
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