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Abstract In this paper we introduce a simple model based
on probabilistic finite state automata to describe an emotio-
nal interaction between a robot and a human user, or between
simulated agents. Based on the agent’s personality, attitude,
and nature, and on the emotional inputs it receives, the model
will determine the next emotional state displayed by the agent
itself. The probabilistic and time-varying nature of the model
yields rich and dynamic interactions, and an autonomous
adaptation to the interlocutor. In addition, a reinforcement
learning technique is applied to have one agent drive its part-
ner’s behavior toward desired states. The model may also be
used as a tool for behavior analysis, by extracting high pro-
bability patterns of interaction and by resorting to the ergodic
properties of Markov chains.

1 Introduction

Even though machines are increasingly spreading in every
sector of our society, becoming indispensable tools able to
solve everyday tasks, there are still many typical human abi-
lities which cannot be reproduced by electronic devices: on
the one hand human higher cognitive functions, such as lan-

An early stage part of this work was presented at the 11th
International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems (KES 2007).

I. Cattinelli · M. Goldwurm · N. A. Borghese (B)
Applied Intelligent Systems Laboratory (AIS-Lab),
Department of Computer Science, Università degli Studi di Milano,
Via Comelico 39/41, 20135 Milan, Italy
e-mail: borghese@dsi.unimi.it

I. Cattinelli
e-mail: cattinelli@dsi.unimi.it

M. Goldwurm
e-mail: goldwurm@dsi.unimi.it

guage production and understanding, and, on the other hand,
emotional functions: recognizing other people’s emotions,
reacting emotionally to situations, establishing relationships
with an emotional content and so forth. The introduction of
emotional components in computers can appear, at first, as
pointless: the machine must be intelligent, not be able to
feel emotions. But, if we aim to approach the ideal model
of human intelligence, the emotional component cannot be
ignored. Emotions are thought to be part of our decisio-
nal processes (Damasio 1994), drive our learning, help self-
preservation (fear for a dangerous phenomenon makes us
move away from it), and are at the basis of human relation-
ships. Emotional intelligence is an important part of all our
intellective faculties.

The recently arisen effort in designing emotional machines
which could understand, analyze, and synthesize emotions,
derives from the acknowledged importance of emotions in
human life. In the 1990s a new interdisciplinary research
field (collecting contributions from computer science, neu-
roscience, psychology, sociology, and so forth) was propo-
sed: affective Computing, defined as “computing that relates
to, arises from, or deliberately influences emotions” (Picard
1997). The research field is, therefore, wide, but we can point
out the following main themes:

– Implementation of modules for human emotion recogni-
tion, based on physiological parameters (heart-beat rate,
skin conductance, respiration, etc.) (Picard et al. 2001)
or on non-verbal communication (Argyle 1975) (facial
expressions (Anderson and McOwan 2006), posture (Silva
and Bianchi-Berthouze 2004), gestures (Silva et al. 2006),
voice tone (Ciota 2005)).

– Design of systems for simulating emotional states, which
could communicate emotions readable by the human user
(emotional avatars (Fabri et al. 1999; Lester et al. 2000)).
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– Attempts at modeling emotional dynamics, to explain in
formal terms how human emotional intelligence works and
to reproduce this faculty in machines (Doshi and Gmytra-
siewicz 2004).

Combining modules for emotion recognition and produc-
tion, emotional machines would be obtained, being able to
interact with users not only by a limited set of standard com-
mands, but also using emotion exchange as a more direct and
natural communication channel. As a consequence, human-
machine interaction would result easier and more effective,
because it would be based on similar mechanisms as human-
human relationships. Much work still remains to be done,
though, since results in human emotion recognition are still
quite unsatisfactory, due to the complexity of the task itself,
and more generally to the difficulty in defining precisely what
an emotion truly is. The same applies, of course, to emotion
modeling.

In fact, emotions are still largely “ununderstood”, and
different views have been proposed. According to (Sche-
rer 1984), for instance, emotions are complex processes of
which the external display is just one (and not necessarily
the most important) of the components. Indeed, emotional
expressions can be faked (this is the case for actors) or mas-
ked at some degree, so that they are not always valid cues for
inferring someone’s inner emotional state. However, exter-
nal expressions are generally the only information we have
on someone’s emotional state, when interacting with them:
blood pressure or skin conductance could be more faithful
predictors of the actual experienced emotion, but measuring
such data during the interaction would make it far less natu-
ral. Moreover, talking about emotions when referring to non-
living entities like robots can be misleading, since the phy-
siological changes naturally associated with the rise of an
emotion cannot be reproduced (and this is particularly true
for non-embodied agents); this is not of secondary impor-
tance, if we think that one traditional emotion theory (James
1884) even states that bodily changes cause emotions to
arise. Thus, in artificial intelligence or robotics emotional
states are considered to be basically abstract, properly labe-
led (e.g. happiness_state) structures, upon which a set of
behavioral responses is built (e.g. Kuhnlenz and Buss 2004).
Being our work focused on modeling emotional interaction
in a robotic context, rather than human emotions per se, in
what follows we will use the terms emotion and emotional
state without pretense to address the whole complexity of
these phenomena. Rather, we will focus on exterior emotional
expressions and on general emotional categories which can
be associated to them (in a very common-sense approach: “he
is smiling”—facial expression—“then he must be happy”—
inference about emotional state).

This work is, therefore, focused on analyzing and syn-
thesizing emotional behaviors, rather than human emotions

as complex psychological processes. In this sense, related
work can be traced in the wider field of behavior robotics.
The work by (Chernova and Arkin 2007) proposes a model
for behavior selection in a QRIO robot, based on the robot’s
internal state and external inputs. To this purpose an activa-
tion level (AL) is associated to each behavior, defined as a
weighted sum of four components. These describe, respec-
tively, the robot’s motivation and expected satisfaction, and
the baseline activation and self-excitation associated to that
behavior, plus a random noise parameter which adds variabi-
lity in behavior selection. The AL formulation includes also
a basis for robot’s personality by means of a pair of weights,
which can be set to facilitate self-centered or extroverted
behaviors. Furthermore, the past history of performed beha-
viors is considered as a basis for autonomously learning rou-
tine sequential tasks. In (Inamura et al. 2004) robots learn a
set of measurement-action pairs in an initially unknown envi-
ronment; for instance, in an obstacle avoidance task, an ade-
quate movement — right, left, forward — is found depending
on the distance value reported by sensors. The measurement-
action pairs are represented in a conditional probability table
(CPT), which is updated through the interaction with the
environment with the help of the information given by the
user.

These works are mainly focused on action selection tasks,
possibly helped by the interaction with users, rather than
on human-robot interaction as such. The problem of mode-
ling an emotional interaction which evolves through time
may be better addressed through the use of a finite state
automaton (FSA) (see, for instance, Hopcroft and Ullman
1979). This model consists of states (which represent emo-
tional states, such as happiness, or anger), inputs (events or
information coming from the outside that are able to modify
the emotional state) and a transition function, which des-
cribes the rules which transform the current state and the
current input into a next state. Moreover, a “personality” of
the agent could be defined and associated to the transition
function, making agents with different personalities respond
differently to the same stimulus. In fact, modeling emotional
interactions requires taking into account individual variabi-
lity, i.e. differences in characters and personalities which can
affect the outcome of an interaction. Each individual has cha-
racteristic traits that should somehow be modeled in order to
describe a likely interaction.

Since deterministic FSAs tend to produce stereotyped
behaviors, a stochastic version of FSA, termed probabilistic
finite state automaton, PFSA, has been recently introduced
in emotional interaction modeling. In a PFSA the transition
function is stochastic: that is, given the current state and the
current input, there are many possible next states, each ente-
red with a given probability (Rabin 1963; Paz 1971). Indeed,
the introduction of a stochastic component in an emotio-
nal interaction model leaves space for unexpected behavior
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(Chittaro and Serra 2004; Kopecek 2003; Kuhnlenz and Buss
2004; Nomura 1996): we do not expect that our interlocutor
will always react the same way to the same situation, even if
her personality remains unchanged.

In (Chittaro and Serra 2004) an agent has a goal which can
be accomplished by selecting different sequences of actions.
Which action to perform is decided based on the agent’s
personality that, in turn, determines the probability of each
action: this selection process is represented as a PFSA. In
(Kopecek 2003) a PFSA is used as a personality model to
describe the dynamics of a dialogue. Here, the entire auto-
maton (that is, the ensemble of its inputs, outputs, states,
and transition function) is referred to as the personality of
the agent. By analyzing the dialogues, the possible automa-
ton which generated them is searched. Both these models
are prevalently static: that is, transition probabilities do not
change according to the history of the interaction.

Another stochastic model, proposed as an emotional core
for a robot, is a hidden Markov model (HMM), equipped in
addition with input control (Kuhnlenz and Buss 2004). Here,
emotional states are the HMM’s hidden states, to which dif-
ferent observable expressions are associated with different
probabilities. Inner emotional dynamics is determined by a
matrix of transition probabilities (not depending upon exter-
nal stimuli), whose entries can be defined in order to design
different robot personalities. The impact of different inputs
on state transitions is coded into another matrix, which
models emotional response to external events (perceptive
information coming from sensors), as well as internal ones
(produced by cognitive processes). Moreover, a forgetting fil-
ter is introduced which keeps a progressively decaying trace
of past inputs, so that the probability for a state transition at a
given time step is dependent not only on the events occurring
at that time but also on past events, whose contributions are
weighted decreasingly with the passing of time.

An interesting model for producing inter-individual rela-
tionships through conversations between individuals endo-
wed with emotions and personality is proposed in (Nomura
1996). Here, each individual is represented as an automa-
ton, where inputs and outputs are actions (e.g. cooperation,
or disregard), states are emotional states and personality is a
parameter which determines the probability of each output
as a function of the current emotional state. An additional
parameter, the attitude, is also introduced, which modifies
the probability of each next state, depending on the cur-
rent input-output pair. So, both the transition and the output
functions are parameterized, by attitude and personality, res-
pectively. Attitude is a time-varying parameter: it is subject
to updates based on the emotional state and the personality of
the individual. While we share, as better explained in Sect. 2,
the same keywords of attitude and personality, their meaning
in (Nomura 1996) and in our work is quite different (for a
discussion, see Sect. 7).

In the following, we propose a novel, more complete
model for emotional interaction between a human and an
agent, or between two simulated agents, based on PFSAs:
for each agent, states are its own emotional states, inputs are
the emotions displayed by the interlocutor, while the transi-
tions among states depend upon inputs and the agent’s per-
sonality and attitude. Some transitions will be more probable
in a friendly personality than in a crusty one, for instance.
Moreover, transition probabilities are constantly updated
throughout the emotional interaction depending on the agent’s
nature. A basic version of this model has been implemented
in a real human-robot interaction. It is also shown that an ade-
quate attitude can be acquired by an agent, simply through
its emotional interaction with other entities. The probabilis-
tic features of the model, and especially the capability to
adapt to the interlocutor (through the basic update rule based
on the agent’s nature or by reinforcement learning) can help
improve interactions quality: the agent will change its atti-
tude toward the interlocutor, in a dynamic way, depending
on the input received, thus endowing the interaction with a
more lifelike appearance. Moreover, we introduce here Mar-
kov chains to derive quantitative measurements of the expec-
ted behavior of two agents; as far as we know, this is the first
attempt of a quantitative analysis of emotional interaction.

The paper is organized as follows: in Sect. 2 we introduce
the basic model that can be applied to a human-robot inter-
action context. Section 3 proposes a reinforcement learning
approach to obtain interactions aimed at particular goals. In
Sects. 4 and 5, we describe the implementation of the dis-
cussed ideas and the results obtained, and Sect. 6 develops a
set of tools for a quantitative analysis of the expected beha-
vior of the interacting agents. Lastly, Sects. 7 and 8 summa-
rize our work, further discussing the major features of the
model.

2 Interaction model

Our interaction model, describing the agent’s emotional dyn-
amics (for instance, let us consider a robot), is based on a
probabilistic finite state automaton whose transition proba-
bilities may change at each step. Formally, this is defined as
a four-tuple 〈S, U, P, s(0)〉, where:

– S = {s1, s2, . . . , sN } is the (finite) set of emotional states
(e.g. happy, sad, angry, etc.) for the robot.

– U = {u1, u2, . . . , uM } is the (finite) set of input, that is
the emotions of the user (again, e.g. happy, sad, angry,
etc.).

– P = {P0, P1, . . . } is the sequence of probabilistic tran-
sition functions:
Pt : S × U × S → [0, 1] for t = 0, 1, . . . ; and

– s(0) is the initial state.
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Fig. 1 The key elements driving an emotional interaction in our model
are shown. Here we consider two generic agents interacting: the same
schema can be applied both to human-robot interaction, and to interac-
tion between two synthetic agents. Arrows show dependences among
the different parts of the model. For each agent, the emotional input

coming from the other agent, together with its own current emotional
state and attitude, determine the next emotional state, which is then
output as an emotional input for the interacting partner. Attitude is ini-
tially coincident with personality, and successively modified during the
interaction according to the input history and the agent’s nature

We explicitly notice that
∑

s′∈S Pt (s, u, s′) = 1, for every
t and every (s, u) ∈ S × U . The sets of the robot and user’s
emotional states can be defined freely, and they can consist
of the same or of different elements. The only constraint is
that the robot is able to reliably detect the user’s emotional
states u j .

The robot reads the user’s emotional state (for instance,
by processing the video of her facial expressions), which
becomes the input for its PFSA. At time t , based on the
input, u j , and on the current emotional state of the robot,
the transition function Pt outputs the probability of entering
any possible next emotional state. P0 can be regarded as the
robot’s personality. We compiled several personality files,
containing the probability for each triple (s, u, s′) – where s
is the current state, u the user input and s′ the next state –
to occur: robots with different personalities will tend to react
differently to the same emotional stimulus.

The transition function changes as a function of time:
Pt , called the robot’s attitude, is updated depending on the
robot’s nature, which represents the “easiness” to reach cer-
tain subsets of emotional states. Nature is defined as fol-
lows. First, inputs are clustered in K different categories, ck :
nice, sad and bad inputs, for instance. For each category, a
set of one or more target states is defined: TS(ck) = {ts j }.
Moreover, each category is associated with an eligibility
trace, which summarizes the inputs history (Sutton and Barto
1998):

et (ck) =
⎧
⎨

⎩

αet−1(ck) + h(ck , u j ) if the current input is
clustered in category ck

αet−1(ck) otherwise
(1)

where α is the decay parameter and h(ck, u j ) represents the
affinity between the current input, u j , and the category, ck :
some inputs may be more representative of their category

than others, and thus they will give a higher contribution to
the relative eligibility trace.

When the trace associated with a category (say, ck) reaches
a predefined threshold value, the probability of entering all
the target states for that category is incremented by �. Thus,
for every target state ts ∈ TS(ck):

Pt+1(s, u, ts) = Pt (s, u, ts) + � (2)

The probability of entering the remaining states is decremen-
ted such that

∑
s′∈S P(s, u, s′) = 1 for every s ∈ S, u ∈ U ;

this means that:

Pt+1(s, u, s′) = Pt (s, u, s′) − � · NTS

N − NTS
,

∀s′ ∈ (S\TS(ck)) (3)

where NTS is the number of target states for category ck .
So, if a robot has an imitative nature, the transition func-
tion will be changed so that the robot’s behavior will tend
to conform to that of the user: for instance, if the user has
provided many positive inputs, the robot will more likely
enter positive states; on the contrary, if the robot assumes
a compensatory nature, its behavior will eventually diverge
from that of the user.

The resulting model is a complete formalism for determi-
ning the agent’s emotional response to the user’s emotions,
according to its key parameters of personality, attitude, and
nature. In Fig. 1 the main elements composing the model and
the existing relationships among them are illustrated: here a
more generic scenario is considered, where both interacting
partners are artificial agents (as better explained in Sect. 4).
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3 Learning attitudes: a reinforcement learning
approach

Let us now suppose that our agent has a goal, for instance to
make its user (frequently) happy: it needs to learn a behavior
that allows it to reach such goal. This problem can be refor-
mulated as a typical reinforcement learning problem (Sutton
and Barto 1998), where the agent learns a policy, that is a tran-
sition function that maximizes the long-term reward obtained
from the environment, represented here by the user. That is,
the agent’s behavior should lead the user most frequently into
the subset of the desired states.

At each time t , the environment assumes an observable
state st , which is, for our application, the user’s emotional
state. The agent chooses an action, at , among the possible
ones, to be exerted on the environment. The action is the
emotional state that the agent chooses to display to the user
and it is a function of the actual state of the environment,
st ; such a function represents the agent’s policy and it is
defined by the stochastic function π(s, a). Each action has a
different effect on the user, who, in turns, changes her own
emotional state to st+1 and gives an instantaneous reward,
rt+1, to the agent. This reward can be positive or negative,
according to whether st+1 is or it is not a useful state in
reaching the predefined goal; that is, the instantaneous reward
will be positive if st+1 belongs to the set of desired states (for
instance, joyful states if the goal is to make the interacting
partner happy).

The agent’s optimal policy is the one that maximizes
the long-term reward, Rt (expected discounted return,
Sutton and Barto 1998), that is

Rt =
T∑

k=0

γ krt+k+1 (4)

where γ is a discount rate and T is the final step of learning
(which goes to infinite in case of infinite horizon problems,
like in the present case).

One of the most effective techniques for learning the opti-
mal policy is Q-learning (Watkins 1989), where the agent
learns an action value function, Q(s, a), that gives the expec-
ted long-term return starting from state s, executing action
a and, from that on, following the given policy, π(s, a). For
every step of each learning episode, the function Q(s, a), is
updated according to

Q(s, a)= Q(s, a)+α[r +γ max
a′ Q(s′, a′)−Q(s, a)] (5)

This technique allows the agent to learn the optimal value
function and, at the same time, to learn the optimal policy
for the given goal.

4 Implementation

The described model was implemented in an emotional inter-
action between a human and a robot and between two agents.

In the first case, an emotional interaction between an
AIBO™ robot1 and its master has been developed. The set
of inputs, U , consists of the six universal emotions accor-
ding to (Ekman 1992): joy, sadness, surprise, anger, fear,
and disgust, plus the neutral emotion. S is restricted to four
states: neutral, joy, sadness, and anger, for sake of simpli-
city, and the neutral state is chosen as initial state, s(0).
The output of the robot, at each step of interaction, is a
predefined sequence of body movements, sounds and pat-
terns of lights that represent the current emotional state of
the robot.

The master’s emotions are detected through the analy-
sis of her facial expressions. This has been accomplished
processing the video stream transmitted by AIBO’s camera
to the on-board processor (MIPS R7000, 576 Mhz). Basic
image processing techniques, such as color segmentation,
border extraction and block matching, have been implemen-
ted in order to meet the real-time response requirement
(Campadelli and Lanzarotti 2002). The image processing
module identifies a set of expressive features (e.g. mouth cor-
ner or inner portion of the eyebrow), which are mapped onto
action units. These are the elementary facial movements defi-
ned by the facial action coding system (FACS (Ekman and
Friesen 1978), see also (Magnenat-Thalmann et al. 1988) for
a similar approach), and are then mapped to emotion expres-
sions, through a fuzzy-like system of recognition scores.
A four-step interaction with AIBO is shown in Fig. 2: in
the left panels, AIBO’s master displays her emotional state
to AIBO through an adequate and well-defined facial expres-
sion. This is input to the emotional interaction model of
AIBO, which, in turns, produces a new emotional state of
AIBO, displayed through an adequate behavior as shown in
the right panels.

In order to study more extensively the proposed interac-
tion model, we have applied it to the interaction between
two stochastic agents, where each interacting agent can be
represented by a PFSA. In this case the state of the first auto-
maton, A1, becomes the input for the second one, A2, and
vice versa. Thus, we have two agents A1 = 〈

S, U, P1, s(0)1
〉

and A2 = 〈
S, U, P2, s(0)2

〉
, where:

– The set of emotional states S is the same for both A1 and
A2.

– The set of possible inputs, U, is coincident with the pos-
sible states, S.

1 Web site: http://www.sony.net/Products/aibo.
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Fig. 2 Four phases of an
emotional interaction with
AIBO. In the left panels, the
emotional expression displayed
by the master. In the right
panels, the emotional response
of AIBO. In particular, the sad
expression is displayed by
AIBO lowering its head and
playing a sad melody; in the
angry expression AIBO moves
quickly forward in an aggressive
fashion and growls, while in the
happy expression the robot wags
its tail and barks happily. In the
neutral expression AIBO stands
still, looking around as if it is
uninterested in the user

– The probabilistic transition functions, P1
0 and P2

0 , are
different at start, that is the two agents have different
personalities.

– The initial states s(0)1 and s(0)2 are different.

We have extended the set of possible emotional states
for the two automata, S, by including, for each basic emo-
tion, three different levels of intensity. Thus, the emotion

of anger, for instance, is now represented by three different
states, corresponding to low, medium, and high anger inten-
sity: annoyed, angry, and furious, respectively. A total
of N = 19 states results, including the neutral emotional
state.

Emotional inputs are clustered into M categories. In the
following six categories are considered, each associated with
a different basic emotion (so we have, for instance, the joy
category, which is associated with all joyful inputs). Each
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level of an emotion contributes differently to the correspon-
ding category eligibility trace (h(ck, u j ) in Eq. 1), so that
probability update can be triggered by few intense inputs or
many consecutive low-level inputs.

We first used a simplified version of the above-described
model to study the interaction cycles with the aim to deter-
mine the most frequent behavioral patterns for the persona-
lity of the two agents. To the scope, we assumed that A2

can be described as a deterministic stationary automaton and
we analyzed the behavior of A1 under the hypothesis that its
transition probabilities, which define its personality, are not
modified during the emotional interaction, making the auto-
maton A1 stochastic but stationary. Under these assumptions,
we could adopt an algorithm based on depth-first search on
the computation tree (Cormen et al. 2001) to extract the pro-
bability of each interaction cycle, that is a sequence of emo-
tional states of A1 which starts and ends in the same state.

Afterwards, we used the full model to analyze if a suc-
cessful emotional relationship can be discovered by an agent,
without any a priori information. To this end, let us regard A1

as a probabilistic stationary environment for A2: the emotio-
nal states output by A1 are directly observable by the learning
agent, A2. A2 has to learn, through reinforcement, a policy
such that it obtains the maximum possible reward from A1;
that is, it has to learn a policy that outputs a set of actions,
which let A1 enter the predefined goal states most often (see
Sect. 5). We have chosen to give the same amount of reward
(namely, r = 1) whenever one of the goal states is reached;
therefore, if the goal is, for instance, to make A1 sad, each
time it enters any state in the goal set, i.e. {melancholic,
sad, in_despair}, the same reward r will be delivered to A2.
After learning has been completed, the final policy defines
a set of transition probabilities, which represent the atti-
tude of A2 after it has been adapted to the personality of
A1. Figure 3 summarizes the implemented reinforcement
learning scenario.

5 Results

In the case of interaction between two agents, we could
observe very different behavioral patterns, depending on their
personality and nature, and possibly on the goal set. Let us
start by briefly discussing how the key concepts of persona-
lity, attitude, and nature contribute to shaping an interaction.

In the simplest case, agents do not experiment any atti-
tude evolution over time; therefore, the interaction depends
only on the personality of the two agents. An evaluation of an
agent’s personality can be attained by analyzing its transition
matrix, that is the three-dimensional matrix consisting of the
transition function value for each possible triple (s, u, s′).
Personalities can be designed by stressing, by means of a
high probability value, the relevance of particular transitions

Environment
Agent
(A2)

A1’s Emotional State

Agent A1

Attitude = Policy

Emotional

StateAgent’s Action

Reward

Fig. 3 The reinforcement learning approach applied to our interaction
model. Here, one agent (namely, A2) acts as the learning agent, while
the other one (namely, A1) embodies the environment. Actions exerted
by A2, that is its own emotional states as externally displayed, cause A1

to enter a new emotional state. If this is a goal state, a positive reward is
delivered to the learning agent. The reinforcement learning algorithm
will then update the agent’s policy (which, in our terminology, is its
attitude), which in turn will provide a new action to be executed on the
environment

of interest. For instance, a friendly personality can be cha-
racterized by high probability of entering positive emotional
states (i.e., joyful), mixed with mirror behaviors (e.g. being
sad if the partner is sad) as a sign of emotional involvement.

When the agents’ attitude is allowed to evolve with time,
the history of past inputs drives their interaction in a direc-
tion that is determined by the agents’ nature. To illustrate this
point, let us consider an interaction setting where both agents
have a friendly personality (i.e., their transition matrices were
crafted to define a friendly personality). If both agents are
endowed with an imitative nature, their emotional relation-
ship quickly converges to a sequence of positive emotional
states, since the inputs that each agent is observing are most
of the time positive. On the contrary, by setting one of the two
agents’ nature to compensatory, negative emotional states do
occur as the emotional interaction goes on: upon receiving
mostly positive inputs, the compensatory agent will, in fact,
increase its probability of entering negative emotional states.

Having agents with quite different personalities interact
also helps in obtaining more dynamic interactions. For ins-
tance, in Fig. 4, we had agent A1, endowed with a friendly
personality, interact with A2, whose personality was obtai-
ned by linearly combining, with equal weights, the transi-
tion probability matrix for the friendly personality with one,
randomly generated, describing deterministic transitions. In
this case more complex interaction patterns tend to emerge,
with a variety of experienced emotional states. Therefore,
by carefully tuning personalities and natures, one can obtain
interactions with the desired characteristics.

Alternatively, the overall trend of an interaction can be
predetermined by giving a goal and letting the agent learn
by itself the most adequate policy to reach that goal, during
the interaction with another agent. Reinforcement learning
is used here to this scope. A few results are now presented.

Let us suppose that at a certain time, t , the goal of making
its friendly partner, A1, angry is assigned to agent A2. This
means setting the states annoyed, angry, and furious as
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Fig. 4 This state transition
graph shows 10 steps of an
interaction between a friendly
agent A1 and an agent A2,
whose personality is obtained
from the friendly one perturbing
it with random traits. Only A1

transitions are shown, while A2

transitions can be easily derived
from the arc labels. This
interaction is rather dynamic, as
it can be seen by the variety of
states entered by the two agents;
there is not a quick convergence
to positive emotional states as
we would expect if both agents
had the same personality
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Fig. 5 The interaction between a stochastic agent, A1, with a friendly
personality and a second stochastic learning agent, A2, is described in
this state transition graph. The attitude of A2 was modified with the goal
to make A1 angry most of the time. A total of 100 interaction steps are
reported after learning has been completed. The states visited by A1 are
written inside the graph nodes, while the arcs represent the transitions

to next states; each transition was induced by the action chosen by A2,
which is written besides the arc. Notice that, due to the stochastic nature
of A1, different next states can be reached from the same actual state
with the same action (e.g. sad/A2_disliking). The starting emotio-
nal state is neutral. The number of occurrence of the most frequent
transitions is reported in bold besides the corresponding arc

goal states. Through Q-learning (Watkins 1989) A2 does
learn a new policy (that is, it changes its attitude), to accom-
plish this goal, as shown in Fig. 5, where 100 steps of
emotional interaction between A1 and A2 are reported, after
learning has been completed. As it can be appreciated, 78%
of the states reached by A1 are goal states, showing that A2

did learn a policy effective for the goal. Few state transitions
occurred frequently during the interaction: in particular, the
cycle on the angry state was repeated 50 times over 100.

This experimental observation is confirmed by the theoretical
analysis of the cycle probability carried out on the 3D tran-
sition probability matrix: for instance, the four-step-length
cycle angry-angry-angry-angry has, alone, a high pro-
bability of occurring (0.58) in this particular setting.

The history of a 100-step interaction between the same
agents A1 and A2, when the goal for A2 was to make A1

surprised (the target states are now wondering, surpri-
sed, astonished) is reported in the graph of Fig. 6. In
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Fig. 6 The interaction between
the same friendly stochastic
agent, A1, of Fig. 5 and a second
stochastic agent, A2, with a
different goal, that is to make A1

surprised. A total of 100
interaction steps are reported
after learning has been
completed. The number of
occurrence of the most frequent
transitions is reported in bold
besides the corresponding arc
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this case, the rate of goal states entered by A1 was 95%,
with the most frequently occurred cycle on the surprised
state.

Even though, in the two examples shown, A1 has the
same personality (and therefore, identical transition proba-
bilities), the actions performed by A2 according to the two
different learned policies are effective in driving the emo-
tional interaction with A1 to very different groups of states
as prescribed by the different goals set, thus producing
very dissimilar interaction patterns. Given the same envi-
ronment, having different goals necessarily leads to different
policies.

On the other hand, given the same goal, but a different
environment to act in, different policies will be developed
by the learning agent. For instance, we considered a sce-
nario where A1’s personality was suddenly changed, while
A2 maintained the attitude that it had previously learned,
with the goal of making A1 angry. In this situation, A2’s
policy became less effective in reaching the goal set, since
that policy was learned based on a different environment
(i.e., a different A1). After A1’s personality was changed,
the interaction showed many different transitions, each of
which occurred infrequently (Fig. 7), rather than the few
transitions occurring rather frequently shown in Figs. 5 and
6.

Figure 8 shows the rate of goal states, pgoal, reached by
A1 over time, referred to blocks of 1,000 Q-learning itera-
tions. Initially, when A2 explores the state-action pairs, pgoal

oscillates. It starts to increase when the agent discovers an
effective policy, around the 40th block, to plateau at 70% at
the 100th block, when the policy of A2 does not receive any
meaningful update anymore. At this stage, the agent ceases
to explore, through random actions, the state-action space
and just follows the learned policy. Using this policy, A2 was
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Fig. 7 a Shows the histogram of the state transitions, that is of the
triples (s, u, s′), for the 100 emotional interaction steps, whose state
transition graph in shown in Fig. 5. The cycle on the angry state alone
occurred 50 times and it is not shown in the histogram; as it can be
seen all the other state transitions occurred rather infrequently. b Shows
the histogram of the state transitions for 100 steps occurred just after
the personality of A1 was changed, by introducing some random traits
in the friendly personality. The policy of A2 remained that previously
learned with the goal to make A1, with the previous personality, angry. In
this case, excluding one state transition (permanence in state disliking
on input annoyed) which occurred 28 times (also not shown in the
histogram), all the other transitions occurred a low number of times
(mainly, only once)

able to obtain consistently the desired behavior from A1, as
shown by the high rate of goal states reached.

At the time corresponding to the 110th block, the perso-
nality of A1 was changed. A random component was added
to the state transition matrix, to obtain a different persona-
lity of A1. The new personality was obtained by linearly
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Fig. 8 Rate of goal states entered by A1 during learning, computed
over blocks of 1,000 interaction steps. At the beginning of block 110th
A1’s personality is changed, which produces a sharp decrease in the
goal rate, until a new effective policy is discovered

combining P1
0 with a random transition matrix, with blen-

ding coefficient equal to 0.5. As a result the personality of
the agent remained basically friendly. Nevertheless, the suc-
cess rate abruptly decreased to around 20% and the agent A2

had to learn again to cope with the new A1. At this point,

Q-learning was called to operate. As we can see in Fig. 8,
after a set of 10 blocks, the goal rate starts increasing to
plateau around the 220th block at a success rate of about
51%, which is lower than with the previous A1’s personality.
A sequence of 100 interaction steps under these conditions
(A1 has a new personality, A2 learned a new policy for it)
is shown in Fig. 9. The state transition graph shows seve-
ral frequent transitions which involve non-goal states. Com-
paring these results with the goal rates obtained for A1’s
previous personality, the agent A2 was less able to interact
successfully with the agent A1, when endowed with this new
personality.

As a closing remark, we observe that the actual interaction
resulting from the learning process can assume very different
shapes: these depend not only on which goal has to be accom-
plished, but also on the dynamics of the learning process
itself. In particular, the end result is influenced by the starting
policy (A2’s personality) and by the stochastic nature of the
environment. Together, these two aspects determine which
regions of the state-action space are explored. In fact, A2’s
starting policy determine which actions and how often they
will be tried during learning. This means that some actions,
though in principle useful in reaching the goal, will produce
little or no reward at all, simply because they will hardly
be experimented. We can think of someone who, although
his goal would probably be accomplished by acting a certain

Fig. 9 An instance of
interaction between a stochastic
agent A1, whose personality,
initially friendly, was changed
during interaction, and a second
stochastic agent, A2. A2 had to
learn a new policy to adapt to
the change in personality of A1,
while maintaining the same
goal, namely to make A1 mostly
angry. A total of 100 interaction
steps are shown
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way, still is unwilling to carry out these actions because of his
personality. Moreover, since A1’s responses to A2’s actions
are not deterministic, different reinforcement learning runs
will result in different policies, depending on which state-
action pairs will be observed. For instance, in the interaction
instance shown in Fig. 6 A2_surprised would be effective in
keeping A1 in the surprised state (thus, a goal state); howe-
ver, it is never performed since the reinforcement learning
process was unable to highlight that particular state-action
pair, preferring A1_surprised-A2_wondering instead.

In summary, we showed how an emotional interaction can
be driven towards predefined directions by using two alter-
native ways. The first way involves the tuning of interacting
personalities and natures, in order to obtain the desired inter-
action: this could be, for instance, characterized by mostly
positive states, or on the contrary by a wider variety of states.
Alternatively, reinforcement learning can be applied to have
one agent autonomously learn how to get the desired beha-
vior from the interacting partner.

6 Quantitative behavior analysis

In a probabilistic framework like the one described here, each
different run of the application will produce a different inter-
action pattern. Therefore, apparently there is no easy way
to predict the outcome of an interaction. However, we show
here that, if we take a picture of the two agents’ attitude at
some point in time (for instance after the adaptation/learning
process is concluded), their asymptotic behavior can be des-
cribed by resorting to Markov chains theory. To this purpose,
we first summarize some well-known properties of (homo-
geneous finite) Markov chains that we are going to apply
in our context (see for instance Iosifescu 1980; Häggström
2002).

6.1 Markov chains theory

Given a finite set S and a stochastic matrix P = [Pi j ]i, j∈S ,
i.e. a matrix satisfying conditions Pi j ≥ 0 and

∑
l∈S Pil = 1

for all i, j ∈ S, let {Xn}n≥0 be a Markov chain taking values
on the set of states S with transition matrix P . Moreover, for
every n ∈ N, let µ(n) be the probability distribution of Xn ,
which we consider here as a column array with index in S.
Then, the values of µ(n) and the n-steps transition probabili-
ties between states can be computed from the powers of the
matrix P: for each n and every i, j ∈ S, we have

Pr(Xn = j | X0 = i) = (Pn)i j (6)

µ
(n)
j = Pr(Xn = j) = (µ(0)′ Pn) j (7)

The properties of {Xn}n≥0 are of particular interest in the
case when the matrix P is primitive, that is Pk > 0 for some
k ∈ N (i.e., (Pk)i j > 0 for all i, j ∈ S). This is equivalent
to require that P is irreducible (meaning that the correspon-
ding graph of transitions with non-null probability is strongly
connected) and aperiodic (i.e., the greatest common divisor
of the lengths of cycles is 1). If P is primitive then the fol-
lowing properties hold, which either are classical results or
can be easily derived from standard issues:

1. There exists a unique probability distribution π over S
such that

π ′ P = π ′ (8)

which is called stationary distribution of the chain. Note
that π ′ is a left eigenvector of P corresponding to the
eigenvalue 1. This means that, if π is the probability dis-
tribution of X0, then µ(n) = π for all n.

2. For every i, j ∈ S

lim
n→+∞(Pn)i j = lim

n→+∞ Pr(Xn = j) = π j (9)

that is, for large n, the probability that Xn equals
j approximates π j independently of the value of X0, that
is the initial state of the chain.

3. The values of π are related to the average waiting time
for the first entrance in the states on the chain. More
precisely, for every i ∈ S, let τ j be the random variable
defined by τ j = min{n > 0 | Xn = j}. Thus, for all
i, j ∈ S, the value Ei (τ j ) = E(τ j | X0 = i) is the mean
waiting time for the first entrance in j starting from the
state i . Then, it turns out that

E j (τ j ) = 1/π j for each j ∈ S (10)

4. For i 	= j , the values Ei (τ j ) can be computed as follows.
Let G(z) be the matrix of polynomials in the variable
z given by G(z) = I − Pz and denote by ri j (z) the
entry of indexes i, j of the adjunct of G(z), i.e. ri j (z) =
(−1)i+ j det(G ji (z)) where G ji (z) is the matrix obtained
from G(z) by deleting the j-th row and the i-th column.
Then, through the computation of some derivatives, one
can prove that

Ei (τ j ) = r ′
i j r j j − ri j r ′

j j

r2
j j

(11)

where ri j = ri j (1), r j j = r j j (1), r ′
i j = r ′

i j (1) and r ′
j j =

r ′
j j (1) (which are all well defined in this case).

5. One can also evaluate the error in the approximation of
µ(n) towards π . To this end, let us recall that the total
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variation distance between two probability distributions
µ, ν defined on the same finite set S, is given by

dTV(µ, ν) = 1

2

∑

i∈S

|µi − νi | (12)

For such a distance the following relation is satisfied:
dTV(µ, ν) = max{|µ(A) − ν(A)| | A ⊆ S} ≤ 1, and
hence it yields a complete evaluation of the difference
between two (finite) probability measures. Moreover, for
every stochastic matrix T on S, we define the coefficient

m(T ) = 1

2
max
i, j∈S

{
∑

l∈S

|Til − Tjl |
}

(13)

which is the maximum (total variation) distance between
pairs of rows of T . Then (still assuming P primitive) for
every ε > 0 we have

dTV(µ(n), π) ≤ ε (14)

for all n ∈ N such that

n ≥ t

(

1 + log2 k − log2 ε − 1

− log2 m(Pt )

)

(15)

where k is the cardinality of S and t is the smallest integer
such that Pt > 0.

6.2 Markov chains for interaction analysis

Let us now go back to our interaction model and explicitly
notice that two interacting agents can be regarded as a single
closed system, as transition probabilities do not depend upon
external input; here, states are pairs of emotional states (one
for each agent). Such a system can be, therefore, described
by a single matrix, M , collecting transition probabilities over
its states: if S is the set of emotional states for both A1 and
A2, the set of states over which M is defined will be S × S. In
other words, M(i, j) represents the probability for the system
to go, in one step, from state i = (a, b) to state j = (a′, b′),
where a, a′ are emotional states for agent A1, and b, b′ are
emotional states for agent A2. Matrix M can be easily derived
from the two agents’ personalities: entry M(i, j) is obtained
by multiplying P1(a, b, a′) and P2(b, a′, b′).

In our context it often turns out that M is not an irreducible
matrix; hence we cannot immediately apply the results pre-
sented in Sect. 6.1. M usually consists of more than one stron-
gly connected component, but among these we can focus on
essential components: these are defined as strongly connec-
ted subgraphs that cannot be left once entered. Therefore, at
some point in the interaction the system enters one of these

components, and afterwards only its states are visited. On the
other hand, nonessential components are transient, and with
probability 1 they will at some point be abandoned and never
visited again; this is the reason why they can be excluded
from our analysis.

In all the examples we considered, we found only one
essential (strongly connected) component of M , which tur-
ned out to be aperiodic, too. Let us call Mred the transition
matrix for such essential component. Its stationary distribu-
tion π can be computed as shown in Eq. 8. In our framework,
πi will thus provide the probability for the system of being
in a state i , which represents a pair of emotional states, one
for each agent. The corresponding probability for each agent
separately can then be derived, by summing the probabilities
over the states for the other agent:

π1(a) =
∑

b∈S

π(a,b) π2(b) =
∑

a∈S

π(a,b) (16)

We observe that, by using standard methods (Iosifescu
1980; Chap. 3), one can compute the average waiting time
required by the system to be absorbed into the essential com-
ponent (also called time to absorption). In all our experi-
ments, the average time to absorption is smaller than 3. This
justifies our choice to study a restriction of M to the set of
essential states.

The stationary distribution provides a description of our
(reduced) system yielding the limit probability of visiting
each state i . By comparing the stationary distribution for
two different systems, i.e. two systems consisting of dif-
ferent interacting agents, we can quantify how their beha-
vior differs: in particular, different interaction scenarios will
be characterized by different states having maximum pro-
bability to be visited. A special case occurs when the two
systems being compared are the system at the beginning of
the interaction (before any adaptation occurs) and the system
resulting from the adaptation process at the end of that inter-
action. In this particular case, by comparing the stationary
distributions found for the two systems we can quantify the
results produced by the interaction itself; here we are inter-
ested in identifying the most probable states, before and after
the evolution of the two agents’ attitude.

Let us start with a simplified example, where the set of
emotional states includes just the six basic emotions plus the
neutral state. In this setting, a random agent A1 was desi-
gned, for which every transition (s, u, s′) has the same pro-
bability. The transition matrix M can be computed assuming
A1 interacts with a friendly agent A2 without adaptation.
Twelve strongly connected components were found, among
which only one was identified as an essential component of 38
states (over a total number of 49 states). For this component,
we computed the stationary distribution, and we found that
the most probable states of the system are (joyful, joyful)
(p = 0.1144) and (sad, sad) (p = 0.1118). Focusing on
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A2’s states only (A1 has equal probability of entering each
state, by definition), we found this stationary distribution:
π2(sad) = 0.3573, π2(joyful) = 0.1906, π2(neutral) =
0.1857, π2(fearful) = 0.1435, π2(angry) = 0.0660,
π2(surprised) = 0.0548, π2(disgusted) = 0.0022.

We then had A1 adapt to A2, setting for it an imitative
nature. As a result, we expected that the stationary distribution
over A1’s states would somehow approximate that found
for A2 at the beginning of the interaction. This was confir-
med by our experimental analysis: after 200 steps of interac-
tion, we found that A1’s stationary distribution was: π1(sad)
= 0.3413, π1(joyful) = 0.1547, π1(fearful) = 0.1430,
π1(angry) = 0.1080, π1(surprised) = 0.0847, π1

(disgusted) = 0.0847, π1(neutral) = 0.0837. In parti-
cular, we can see that the most probable state is sad, as it
was for A2 at the beginning of the interaction. This happens
because, when an imitative nature is set, the adapting agent
increases its probability of entering those states which have
been observed more often in the other agent.

Similarly, we studied the asymptotic behavior of the sys-
tems depicted in Figs. 5, 6, and 9. For clarity purposes, we
will refer to these systems as System 1, System 2, and System
3, respectively. In these examples, the total number of states
of the system is 192 = 361.

Figure 5 shows an instance of interaction between a
friendly agent and a second agent having learned how to
make A1 angry most of the time. The corresponding matrix M
contains only one essential component of 15 states; therefore
we could study the reduced matrix Mred, of size 15×15. The
computation of the stationary distribution for this component
showed that the most probable state is (angry, annoyed),
with p = 0.5148, followed by (annoyed, furious), with
p = 0.1548, and (sad, disliking), with p = 0.0973. This
is mirrored by the actual behavior of the system as shown in
Fig. 5: for instance, we can see that, over 100 steps, the state
pair (angry, annoyed) occurred 60 times, thus rather close
to the theoretically predicted frequency.

Similarly, when we considered System 2, consisting of a
friendly agent interacting with an agent trained for making
the partner surprised (see Fig. 6), we identified an essential
component of 10 states. According to the associated statio-
nary distribution, the most probable states are (surprised,
wondering) (p = 0.6286), (wondering, astonished)
(p = 0.2292), and (astonished, disliking) (p = 0.0917).
As in the previous case, observed frequencies are close to
those provided by the stationary distribution.

Similar remarks can be made about System 3, for which an
instance of interaction is shown in Fig. 9. The only essential
component in this system consists of 19 states, and its statio-
nary distribution identifies, as most probable states, (angry,
angry), with p = 0.2930, (worried, annoyed), with p =
0.1725, and (annoyed, disliking), with p = 0.1250. Taken
altogether, these data confirm that the learning process was

successful in having A2 acquire an effective policy, since the
goal states defined for A1 are among the most probable states
of the system, in each of the considered examples.

A natural question now is to establish how precisely these
stationary distributions describe the actual behavior of the
systems. To this purpose, we used property 5 in Sect. 6.1 to
compute the minimum number of steps required to approxi-
mate the stationary distribution with an arbitrary small error ε.
For ε = 0.001, we computed this value for the three examples
considered above, and found, respectively, n1 = 38.12, n2 =
26.62, and n3 = 42.04. This means that the stationary dis-
tribution is a suitable descriptor of the actual behavior of the
above systems even after a limited amount of steps. This also
explains why the probability values of the stationary distri-
butions are rather close to the frequencies observed in the
experiments.

Properties 3 and 4 of Sect. 6.1 can be used to compute
mean entrance times into a given state of interest j starting
from another state of interest i , for any i , j . To this purpose,
one can define a set of starting states, SS, and a set of end
states, ES, and compute the minimum, maximum, and ave-
rage waiting time to go from SS to ES. More formally, let us
call Sred ⊆ S × S the set of states in the essential component
we are studying, and let us define SS ⊆ Sred, ES ⊆ Sred.
Then we can build a matrix of mean entrance times:

METSS,ES = {E(a,b)(τ(c,d)) | (a, b) ∈ SS, (c, d)

∈ ES} (17)

Depending on how we define SS and ES, we can study the
mean waiting time for the system to go, for instance, from
(joyful, sad) to (sad, joyful). Alternatively, we can focus
on a single agent’s states, to check, for instance, how many
steps are required, on average, for A1 to go from the joyful
state to the sad one; the same holds for agent A2.

At first, we applied the analysis of mean entrance times to
the simplified interaction scenario we introduced earlier in
this section, where a random agent interacts with a friendly
partner and no adaptation occurs. We set SS = {(a, b) |
b = {angry}, a ∈ S}, and ES = {(a, b) | b = {joyful},
a ∈ S}. In other words, we were interested in studying how
many steps are required for the friendly agent A2 to go from
the angry state to the joyful one, regardless of A1’s state.
We computed METSS, ES, and found a minimum value of
9.27 and a maximum value of 374.43 (mean 191.53). The-
refore, whereas in the best case the joyful state is reached
quite quickly, in the worst case scenario reverting the emo-
tional state of A2, from a negative to a positive one, can take
very long. This is due both to the random nature of agent
A1 and to the absence of a strategy in A1’s attitude aimed at
making A2 joyful.

When considering a reinforcement learning scenario,
where A2 interacts with A1 by adopting the policy it learned
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for driving A1 towards some given goal states, it is natural
to ask how many interaction steps, on average, will be requi-
red for leading A1 to a goal state, regardless of A2’s states:
ES = {(a, b) | a is a goal state, b ∈ S}. The computation
of mean entrance times, in this case, provides a measure of
effectiveness of the learning process, in terms of how quickly
a goal is reached. Since, by default, all our interactions were
started from the initial state (neutral, neutral), a natural
choice for SS would be SS = {(neutral, b) | b ∈ S}.

We, therefore, analyzed mean entrance times for the three
systems previously considered, starting with System 1. Since,
in this example, A2 learned a policy for making A1 angry
most of the time, the set of ending states was defined as
ES = {(a, b) | a = {annoyed, angry, furious}, b ∈ S}.
Note that in this example no state of the form (neutral, b)

belongs to the essential component, and hence we could not
use it as starting state. A natural choice of starting state in this
case is (melancholic, contemptuous), which seems to be
rather far away from the states in ES. Under these assump-
tions, we computed METSS,ES and found a minimum of 5.91
and a maximum of 213.10 steps, on average, for going from
states in SS to states in ES (mean 77.98).

In System 2, A2’s aim was to make A1 surprised. There-
fore we defined ES = {(a, b) | a = {wondering, surpri-
sed, astonished}, b ∈ S}. Since the (neutral, angry)
state belongs to the essential component, we could choose it
as the unique starting state. The computation of METSS, ES

yielded a minimum of 3.86 and a maximum of 12.43 steps
(mean 7.07).

Lastly, we applied the same analysis to System 3, where
goal states are the same as System 1, and therefore: ES =
{(a, b) | a = {annoyed, angry, furious}, b ∈ S}, SS =
{(neutral, b) | b ∈ S}. Given METSS, ES, the minimum
and the maximum values are 6.58 and 18.14, respectively
(mean 11.02).

Therefore, we can conclude that, in the last two examples,
goal states are reached very quickly after interaction starts
(within 15–20 steps, approximately), which confirms that
the learned policies are effective in driving A1’s behavior to
the given goals. On the contrary, in order to reach the goal
states System 1 seems to require rather a long time (about
78 steps, on average) with respect to the size of the essen-
tial component (15, in this case). However, we observe that
this is mainly due to two particular end states ((furious,
furious) and (furious, neutral)) that in general have very
low entrance probabilities; we note that the other three goal
states in this example can be reached within 30 steps, confir-
ming in any case a good performance of the system.

To summarize our results, we used classical properties in
Markov chains theory to extract some statistical information
about given interaction scenarios. Through the computation
of the stationary distribution of the essential component of the
system, we extracted the most probable states. These largely

correspond to goal states as defined in the reinforcement
learning framework. The accuracy of the approximation of
the actual distribution on the system to the stationary distribu-
tion was computed, too, and found to be rather good since the
earliest interaction steps. Mean waiting times for going from
state i to state j were used to establish the number of steps
required, on average, for the system to reach a set of states
of interest. This analysis showed that goal states, as defined
in the reinforcement learning framework, are reached rather
quickly after interaction starts, confirming that the learned
policies are effective.

7 Discussion

The model is characterized by three key elements: persona-
lity, attitude and nature. These terms were chosen to fit the
corresponding psychological elements. Personality (Ryck-
man 2003) is related to the psychological structure of an
individual; it is believed to be mostly stable and independent
from external events. In our model, the agent’s personality
is represented as the transition probabilities matrix given at
time zero, P0. Personality defines therefore the initial inter-
action behavior of the agent (which emotional states will be
assumed, and how frequently) and acts as a basis upon which
the agent’s attitude can develop. Attitude (Zanna and Rem-
pel 1988) is more related to specific situations and targets
(other agents, for instance), shaping the individual’s beha-
vior in response to external stimuli. In the presented model,
starting from an initial behavior, exclusively defined by the
agent’s personality, the agent gradually has its behavior chan-
ged according to the interaction history, so that the current
emotional interaction behavior results from a combination
of personality and a sequence of attitude changes. The cur-
rent attitude towards the interlocutor is therefore defined as
the transition probabilities matrix at time t , Pt . Lastly, we
defined nature as a driving force used for updating attitude
according to the past interaction sequence, to favor a subset of
the emotional states, which will be entered more frequently in
subsequent interaction steps. We considered, for instance, an
imitative and a compensatory nature, driving attitude updates
towards two opposite directions.

The resulting model allows carrying out implicitly what is
called “affective reasoning” (e.g. André et al. 1999), in which
“on the basis of the domain knowledge [. . .] the appropriate
emotional reaction is determined” (Schroeder 2004). In clas-
sical approaches this is achieved by giving to the agent an
explicit knowledge of the behavior of the other agent (Ortony
et al. 1988). Here, instead, it is the agent itself that discovers
the best emotional reactions to the interlocutor, without buil-
ding any explicit knowledge of it.

In fact, using reinforcement learning it is possible to gene-
rate policies for eliciting specific behaviors: the interacting
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agent will frequently be happy, angry or sad, depending on the
goals we have set for the learning phase. Thus, the learning
agent will then display ad hoc emotional states for causing
its partner to enter desired states. Of course, assuming an
emotional state is generally not a matter of decision: it is a
spontaneous, often uncontrollable event. Emotional expres-
sion, though, can generally be controlled at some level and
used to influence the interlocutor. In this sense we believe that
reinforcement learning can be applied to emotional interac-
tions in order to define strategies for driving them to desired
results. By appropriately setting the interacting personalities,
natures and goals, the interaction can be directed toward a
general trend, without losing the unpredictable traits of a real
emotional interaction.

Emotional states change with continuity and can be vie-
wed as points in a multi-dimensional continuous space
(Schlosberg 1954), which is organized along affective dimen-
sions (such as positive/negative). Emotion gradations can be
well captured, as any level of emotion can be represented by
a point in this space. In our case, instead, emotional states are
discretized into a finite number, and for each state a few dis-
crete levels are considered. For instance, the surprise emotion
is represented by three different states (wondering, surpri-
sed, and astonished) corresponding to increasing levels of
this emotion. Thus, the model cannot entirely account for all
different emotion gradations. However, the interaction fra-
mework does not require to model a full range of gradations,
since even during human-human interaction the displayed
emotional states are not perceived at the highest precision,
but rather clustered to wider categories (e.g. slight as opposed
to intense surprise). While this applies to emotional interac-
tion modeling, fuzzy approaches would probably help when
considering more complex processes involving a fine repre-
sentation of emotional gradations.

It is often postulated (Scherer 1984) that emotional states
are subject to continuous changes as cognitive appraisal of
external stimuli is carried out by the organism. In our model
this process has been discretized so that a single emotional
state is entered following the evaluation of the interlocutor’s
emotion and maintained until the next interaction step, when
a new emotional input is fed into the model. We can regard
this single emotional state, for each interaction step, as being
the only one observable by the other agent as the final result
of a continuous emotional process, consisting of interme-
diate steps that, however, are concealed. Since we are not
focusing on reproducing the whole process of emotion pro-
duction, but rather on modeling emotional interaction, we
believe that this discretized approach may be suitable for our
aims.

The probabilistic model presented here can be considered
as an evolution of previously proposed models. In (Chittaro
and Serra 2004), the term personality has a similar meaning
to ours; however, emotional states are not taken into account

and no updating of the transition probabilities is included.
The model in (Kopecek 2003) includes inputs and outputs
(not just external communications of the emotional state) and
no updates. Principally, while our model has a strong time-
varying imprint, those frameworks are mainly static. The
dependence of transition probabilities on past inputs is consi-
dered in (Kuhnlenz and Buss 2004) through the implemen-
tation of a digital (forgetting) filter. However, modifications
induced by inputs are not permanent: the impact of a stimulus
is effective only during the time interval corresponding to the
length of the filter response. Therefore this mechanism does
not allow for long-term adaptation of the transition function.
In the present work, instead, the transition function for an
agent does change in order to adapt to the interaction part-
ner. This reflects an interaction scenario where emotional
input from the partner has a strong impact on the agent’s
attitude, actually shaping it. In order to filter out input varia-
bility, time filtering is introduced through the trace mecha-
nism in Eq. 1. Our model differs also from that in (Kuhnlenz
and Buss 2004) for other architectural details: our concepts
of personality and attitude can be seen as unifying the two
matrices of the HMM in a simpler structure; moreover, in our
model emotional states are not hidden but directly output to
the outside.

In (Nomura 1996) two of our keywords, attitude and per-
sonality, are used, but in different roles. In our model, per-
sonality (at the start) and attitude select the next emotional
state according to the current state and to the input, while
in (Nomura 1996) personality determines the probability of
some output given the current state and attitude provides the
probability of each next state given current input and output.
In our model, this information is merged into one transition
probabilities matrix, Pt , representing the current attitude of
the agent built over time, starting from the basis defined by
its personality. In both models we have attitude updates, but
while in (Nomura 1996) these updates are based on the emo-
tional state and the personality of the individual, in our model
attitude is changed according to the interaction history and
the agent’s nature. Moreover, in our work inputs and outputs
are not actions as in (Nomura 1996), but bodily expressions
of the current emotional state. Lastly, the intended aims are
quite different. In (Nomura 1996) the goal is to study the
dynamics of the relationships within a group, registering atti-
tude changes over time: that is, to analyse group dynamics. In
our work, instead, the aim is to synthesize and to predict emo-
tional behavior in the context of interaction between a human
and a robot (or between two generic agents); our model can
also be employed to explore likely interactions between two
individuals.

In contrast to the previously discussed works, which lack
a robotic implementation, the basic interaction model was
implemented on an AIBO robot and therefore experimen-
ted also in a real human-robot scenario, thus showing its
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effectiveness in supporting an emotion-based interaction.
Nevertheless, to be applied in more complex human-robot
interactions, an accurate detection of human expressions has
to be carried out. This is still far beyond reach to actual com-
puter systems as facial movements are small and very fast.
In order to have a successful emotional interaction, facial
expressions have still to be somehow exaggerated as shown
in Fig. 2.

8 Conclusion

The proposed model allows, thanks to its probabilistic and
dynamic nature, to model a wide variety of behaviors occur-
ring during emotional interactions. By adopting the reinfor-
cement learning framework, the model is also able to auto-
matically discover behavioral patterns which adapt to the
interlocutor, in order to successfully interact with another
agent, without needing any a priori knowledge of it.

The described interaction model has a basic structure that
can easily be extended and personalized, by adding or modi-
fying emotional states, inputs, personalities and natures. The
model can be used as a basis for emotional agents (e.g. in
video games) or robots, in an effort to have technology adapt
to its user’s characteristics. We can imagine a video game
where the user’s avatar has to interact with different synthe-
tic agents in order to walk successfully through the game.
Such an interaction may be based also on emotional cues,
with synthetic agents reacting differently to different emo-
tional inputs, and thus leading to different outcomes for the
game itself. In social robotic applications, the robot’s perso-
nality might be carefully designed to best meet the needs,
or simply the preferences, of the user; similarly, starting
from a basic personality, user-robot interactions would auto-
nomously shape the robot’s attitude according to the user’s
wishes. The capability of the model of adapting to the input
trend—where adaptation can be meant in an imitative, or
opposite direction, or in learning how to drive the interlocu-
tor’s behavior toward desired goals, or also defined anew by
the user—improves the interaction quality, providing lifelike
features to its dynamics.

On the other hand, the model allows for behavioral dyna-
mics analyses: high probability cycles can be identified as
characteristic patterns for the considered emotional context.
Moreover, Markov chains theory can be applied to specific
instances of interaction for extracting statistical information
about the expected overall behavior of the system, for ins-
tance for predicting how frequently, or after how many inter-
action steps, an emotional state will be entered. Our study is
here based on the properties of homogeneous Markov chains,
where transition matrices do not change with time. It would
be interesting to develop a similar analysis by using nonho-

mogeneous chains, where transition probabilities change as
time goes by.
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