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Combined Evolution Strategies for Dynamic Calibration of Video-Based
Measurement Systems

P. Cerveri, A. Pedotti, and N. A. Borghese

Abstract—Calibration is a crucial step to obtaining three-dimen-
sional (3-D) measurement using video camera-based stereo sys-
tems. Approaches based on epipolar geometry are particularly ap-
pealing as there is no need to know the 3-D position of the control
points a priori and because the solution is found by solving a set of
linear equations through matrix manipulation. Indeed, all the pa-
rameters can be determined except for the pair of principal points,
which poses a considerable drawback. Whereas in low-accuracy
systems (two-dimensional measurement error 0.2 pixels) such
points can be assumed to lie at the image center without degrading
the overall 3-D accuracy, in high-accuracy systems their true posi-
tion must be computed accurately. In this case, all the calibration
parameters (including the principal points) can still be estimated
through epipolar geometry, but it is necessary to minimize a highly
nonlinear cost function. It is shown here that by combining two evo-
lutionary optimization strategies this minimization can be carried
out, both efficiently (in quasi-real time) and reliably (avoiding local
minima). The resulting strategy, which we call enhanced evolu-
tionary search (EES), allows the full calibration of a stereo system
using only a rigid bar; this simplicity is a definite step forward
in stereo-camera calibration. Moreover, EES can be applied to a
wide range of applications where the cost function contains com-
plex nonlinear relationships among the optimization variables.

Index Terms—Covariance matrix, epipolar geometry, evolution
strategies, optimization, stereo camera calibration.

I. INTRODUCTION

Video camera-based stereo systems are used widely in many
different fields, including close-range photogrammetry, robotic
vision, computer-aided design, biomechanics, and virtual re-
ality. Two major applications are the measurement of the three-
dimensional (3-D) shape of objects (3-D scanners [1]) and the
3-D reconstruction of motion (trackers or motion capture [2]).
The input for most systems is a set of matched features from
each of the two camera image streams. Tailored low-level hard-
ware [3] or software processing [4] detects these features and
returns their accurate 3-D measurement. To transform a pair of
two-dimensional (2-D) features into a feature positioned within
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the 3-D space correctly, the video camera-based stereo system
must be calibrated, i.e., the parameters that determine its ge-
ometry must be determined. Such parameters are the orienta-
tion and location of one camera with respect to the other (ex-
ternal parameters), and the focal length and the principal point
of each camera (internal parameters) [see Fig. 1(a)]. The prin-
cipal points, defined as the intersection of the optical axis with
the image plane, are of particular importance as they are the pa-
rameters involved in the optimization.

In the classical calibration approach, the parameters are
computed from a set of 3-D control points positioned precisely in
an external 3-D reference frame [5], [6]. Reliable parameters are
obtained by distributing the points throughout the entire working
volume, which requires large support structures. These struc-
tures must be constructed accurately to achieve high accuracy in
estimating the parameters; thus, this approach is very expensive.
Moreover, these large structures must be moved and positioned
accurately within the working volume, making calibration
both laborious and complex. To avoid this, self-calibration
algorithms have been developed, mainly in photogrammetry
with bundle adjustment [7], [8] and in computer vision with
the structure-from-motion (SfM) approach [9]–[11]. The most
general approach is that of bundle adjustment, both the 3-D
position of the control points and the calibration parameters
being estimated. This formulation leads to a nonlinear least
squares estimate, which is susceptible to local minima unless
initialized carefully. A more appealing solution is that offered by
SfM1 ; in this case, calibration is reduced to the estimation of the
nine entries of a 33 matrix, called the fundamental matrix [13],
(3). The result is a linear homogeneous system that does not need
any initialization and can be solved by matrix manipulation.
However, SfM is limited in that it cannot estimate more than
eight calibration parameters [14], (1), which are the relative
location and orientation of one camera with respect to the other
and the two focal lengths [11], [15], [16]. The principal points
must be determined apart. As a first approximation, they can be
assumed to lie at the image center; only when the measurement
error is high is this approximation considered adequate [17].
In reality, the principal points can be offset with respect to the
image center by several pixels due to imperfect assembling of
the optical system (Table IV). This leads to relevant error in

1SfM deals with the estimate of the internal parameters of one camera, its
motion parameters, and the 3-D position of a set of control points. This has been
linked to calibration of a stereo system in [12], where it is shown that a scene
surveyed by a single camera in two positions is equivalent to surveying it with
two cameras.

1089–778X/01$10.00 © 2001 IEEE
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(a)

(b)

Fig. 1. (a) Geometrical setup and the calibration parameters: relative locationTTT (X ; Y ; Z ), relative orientationRRR(!; �; �), focal lengthf andf , and
principal pointsccc (u ; v ) andccc (u ; v ).CCC andCCC are the intersections of the optical axis with the image plane;r andr are the optical rays for the
pointQQQ. (b) Dots represent the bar extremes in successive frames of the calibration sequence.

estimating the other calibration parameters and, in turn, to poor
3-D reconstruction accuracy when 2-D measurement error0.2
pixels root-mean-square error (rms). In this case, the position
of the principal points must be determined precisely. To do this,

we reframed calibration into an optimization problem, where
an adequate cost function [see (4)] is minimized with respect
to all the calibration parameters [15]. However, gradient-based
algorithms fail to compute the global minimum unless initialized
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carefully (Section V-A and Table III) and global search algo-
rithms (that have to work in a 12-fold parameter space) are too
slow for such an application.

This prompted us to derive a cost function where only the two
principal points are the optimization parameters, all the other
calibration parameters being determined by SfM [see (5)]. This
reduces the optimization space to four dimensions. The price to
be paid is that the resulting cost function is hard to optimize
through gradient-descent algorithms, as SfM involves matrix
operations like singular value decomposition and sign checks.
We show here that combining two different evolutionary opti-
mization algorithms generates a reliable and global optimiza-
tion procedure that efficiently solves the calibration problem.
The procedure requires only pairs of matched points and one
3-D metric information. Thus, the calibration tool we are now
proposing is a simple rigid bar carrying markers at its ends.
Moving the bar within the working volume [see Fig. 1(b)] col-
lects the required calibration points and 3-D metric information
easily [14].

The paper is arranged as follows: Section II briefly describes
the stereo-camera calibration problem, Section III introduces
the cost function and the optimization problem, Section IV de-
scribes the enhanced evolutionary search (EES) optimization,
and Section V reports and discusses the results on simulated and
real data in terms of computational load, reliability, and 3-D ac-
curacy. The conclusions are drawn in Section VI and a full tax-
onomy is summarized in Appendix A.

II. CALIBRATION OF A STEREO–CAMERA SYSTEM

The image of a 3-D point on the
target of a video-camera can be described as
a perspective projection of on [see Fig. 1(a)] through the
center , expressed in homogenous notation in a single matrix
equation [10]

(1)

The matrix defines a linear projective mapping model that
is adequate if distortions are sufficiently weak or corrected in ad-
vance [5], [19]. Equation (1) contains the following calibration
parameters: is the location of the camera,

is the orientation (function of the three inde-
pendent orientation angles ), is the focal length, and

is the principal point of the camera.
When the 3-D coordinate system is located in the perspective

center of one camera with two axes parallel to those of the image
plane, for that camera, (1) can be rewritten as

for the first camera (2a)

for the second camera. (2b)

Let us now consider the three vectors , ,
(Fig. 1). These lie in a single plane; taking into account Eq. (2a)
and (2b), Eq. (1) can be written as the following homogeneous
linear system [11]

(3)

where is the fundamental matrix and contains all the calibra-
tion parameters. The nine entries ofcan be obtained through
linear least squares estimation when at least eight 2-D matched
points are available from the two cameras. From, we can
compute the focal lengths, the relative orientation, and the rel-
ative location vector (with unit norm ) through
matrix manipulation that includes singular value decomposition
and sign checking [11], [14]. The true relative location vector
( ) can be recovered, taking into account that the 3-D
scale factor is the ratio of the true 3-D distance between two
calibration points to the distance between the 3-D position of
the same points reconstructed with the estimated parameters
[14], [18]. When the rigid bar is used as the calibration ob-
ject, a large number of distances (those between the bar ends)
can be collected easily; this facilitates the reliable estimation
of the 3-D scale factor by averaging its value over all the col-
lected bars. Fig. 2(a) shows the flow chart of SfM calibration
[10], [14]; the only parameters left at this stage are the principal
points.

III. CALIBRATION THROUGH OPTIMIZATION

The key observation is that any bias in the calibration parame-
ters is reflected in the accuracy of the reconstruction of the 3-D
position of the bar ends [, in Fig. 1(a)], and their mutual
distance [ in (B7)]. Another geometrical quantity affected by
the calibration error is the distance between the two optical rays
belonging to the same 3-D point [ in (B6) and ,and in
Fig. 1(a)]. These two geometrical quantities form our cost func-
tion

(4)
where

number of surveyed bars;
true distance between the bar endsand ;
bar length reconstructed at time.

The variables and are the intersection error for the
two bar ends at time (Appendix B) and and are weight
factors. When , their values have been shown not to be
critical for convergence [14]. In our experiments,and were
set equal to 1 and 0.1, respectively.

A search for the calibration parameters that minimize (4)
implies searching a 12-fold parameter space that is incom-
patible with the time requirements of real video systems.
The solution was to partition the parameters into a first set
S ( , , , , and ), determined in closed form through
SfM from a pair of principal points and matched pairs of
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Fig. 2. Flowchart of the EES optimization algorithm. (a) Closed-form solution for the calibration parameters. (b) (1+1)-ES is adopted until the amplitude of the
search region goes underthershold (h = h =2). (c) Solution is then refined with (1; �)-ES with covariance matrix adaptation until (16) is satisfied. At this
stage, the best offspring give the position of the principal points. Other parametersf , f , k, RRR, TTT are those computed with these principal points through SfM
solution.

2-D points S and a second set
consisting only of the two principal points S( ), which
have to be determined through evolutionary optimization. In
this framework, the cost function can be rewritten as

, , which is a function of
only the parameters in S. Such parameters can be determined
by minimizing

(5)

Gradient-based techniques are not easily applied to find the
minimum of (5), as the solution involves matrix manip-
ulations (Section II); we introduced evolution optimization to
accomplish the task.

IV. EES OPTIMIZATION

In the evolutionary framework, the principal points con-
stitute the elements of the population

and the cost function the fitness [see
(5)] of the element . The estimation of the principal points is
reframed as a search in a four-dimensional domain ( ) for

the best population element. EES, a novel algorithm in which
the optimization is carried out in two stages, is proposed here.
In the first stage, a ( )-ES strategy is used to locate the best
search region. In the second stage, the optimal solution is found
within this smaller search region through a multimembered
evolutionary search, or ( )-ES, with covariance matrix
adaptation.

A. Identification of the Search Region with ( )-ES.

( )-ES [20] is used to explore the solution space to es-
timate a subregion , where the optimum is located [see
Fig. 2(b)]. The algorithm is initialized by randomly generating
a set of parents inside the initial search region .
If no information is available, can be as large as the image
plane; if information is available, a smaller region can be de-
fined, as in Figs. 3(a) and 4(a). At each generation, a set of

parents is analyzed: SfM calibration is carried out
through the procedure outlined in Section II for each parent and
fitness is evaluated through (5). Then, through mutation, a set
of offspring , one for each parent, is generated inside

as

subjected to (6)



CERVERIet al.: COMBINED EVOLUTION STRATEGIES FOR DYNAMIC CALIBRATION OF VIDEO-BASED MEASUREMENT SYSTEMS 275

Fig. 3. Plots refer to the data of Table I. Search for the true principal points progresses in parallel on the two cameras. (a) It goes first through a (1 + 1)-ES
optimization that starts inside the region� (square with solid perimeter), 100 pixels wide (h = 50) centered in [512, 512, 512, 512] and ends in the region
h = h =2 centered in the element [585, 480, 604, 486]. (b) At the last step of the first stage, the best population elementwww = [579; 482; 597; 482]
(marked with a cross) is extracted inside this region (cf.Fig. 2); this constitutes the first parent of the (1; �)-ES. (c) Evolution path. It is the line connecting the
winning offspring of each step of (1; �)-ES. Global minumum is reached at the individualwww[596:73; 497:17; 605:27; 479:94] . (d) Error on both bar length
and ray intersection is reported as evolution progresses.
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Fig. 4. (a) Evolution path pertaining to the second stage of the EES along with (b) its associated cost for real data. Region where the EES founded a localminimum
is marked with a circle in panel (a). Note the corresponding transients in the cost function in panel (b).

where is obtained from the Gaussian distribution
. The fitness of the offspring is evalu-

ated through (5) as for the parents by computingfor each
of them. determines the actual amplitude of the mutation
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[see (6)] and is updated according to the Rechenberg 1/5 rule
[20] as

(7)

where is the ratio between the number of winning offspring
and winning parents. Setting gives a heuristic
value resulting in linear order convergence rates [20]. The off-
spring are then placed in competition with the corresponding
parent: the one that exhibits higher fitness (lower value of)
survives and becomes the parent in the next generation

(8)

At each step, the resolution of the search is increased by re-
ducing the search region amplitude according to the following
schedule [see Figs. 3(a) and (b) and 4(a) and (b)]

(9)

The logarithmic function allows a faster reduction in the first
generations. The reduction is complemented with a translation
of the search region , which at each generation, is centered
at the fittest element of the previous generation. However, as no
information on the topology of the solution space is considered,
the convergence is slow. We arbitrarily stop this first stage when

( ). The best population element at the last
step of this stage becomes the parent for the ( )-ES
algorithm [see Figs. 2(b), 3(b), and 4(b)].

B. Local Search Through ( )-ES

The key element here is the runtime adaptation of the best
search path in the -dimensional solution space; this is done
through an analysis of the population elements and the fitness
history. For this task, two strategic variables are defined: the co-
variance matrix and the global step size .
learns the local topology of the objective function and deter-
mines the actual shape of the search region. It is a-dimen-
sional ellipsoid oriented in the solution space through that
contains the eigenvectors of

(10)

contains the square root of the eigenvalues of and
sets the elongation of the ellipsoid in the principal di-
rections determined by .

The value modulates the amplitude of the ellipsoid; its
role is to widen the search region rapidly when better fitness is
found repeatedly in a certain direction and to restrict it when fit-
ness variability increases around a certain element, performing
a local search at higher resolution. and are used in the
mutation process as in [21]

(11)

where is the number of offspring. As in ( )-ES, is
extracted from the Gaussian distribution . After
mutation, the fittest of the offspring is picked as the parent
of the next generation and the strategic variables and
are updated using theevolutionary path [22], [23]. Such a
path is achieved through a discounted sum of the displacements
of the winning offspring (derandomization[21]) in the previous
evolutionary steps

(12)

The weights and balance the effects of past history and
innovation, smoothing out random deviations that could other-
wise greatly disturb adaptation. The weights are chosen so that
the variance of , is normalized [see also
(13)]: . By choosing (see later),

. In the same way, is computed
as the discounted sum of the actual covariance matrix of the evo-
lution path, and the covariance matrix computed in the
previous step

(13)

Equations (12) and (13) are very similar to the discounted re-
ward adopted by reinforcement learning paradigms in machine
learning [24]. Such paradigms ensure that only mutation steps
moving in the same direction and chosen repeatedly will be re-
inforced over time: the mutation distribution and the evo-
lutionary path will be elongated in this direction.

The role of global variance is to detect discontinuity in the
direction of the evolution path. When there are repeated changes
in path direction, updating follows the principal: “reasonable
adaptation has to reduce the difference between the distribution
of the actual evolution path and an evolution path under random
selection” [22]. At each step, is updated as

(14)

where is the normalized path containing pure directional
information [cf. (12) and (15)]

(15)

and is the second-order approxi-
mation of the expectation value of the length distribution of vec-
tors extracted from . From (14), it can be seen that
is decreased when the evolution path direction changes often.
When the same direction is chosen repeatedly, the mutation step
is made larger.

At this stage, the parameters , , and have to be set
properly. As the updating of is regulated by , which
depends on parameters, could be a possible set-
ting choice. However, as the role of is to detect when the
evolutionary process finds regions where the best direction has
changed or a minimum found, it is safer to give it an even shorter
time span by choosing . To avoid an uncontrolled
increase in global step size,should be larger than zero and
smaller than . We chose . As far as is concerned,
as it is defined by ( ) free parameters, the time scale
of adaptation is in the order and a suitable choice of
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TABLE I
CALIBRATION RESULTS WITH SIMULATED DATA (ZOOM LENSES)

in (13) is . This guarantees that high-frequency vari-
ability in the mutation direction disturbs the adaptation of
minimally. As a result of these choices, is smaller than ,
reflecting the different time span on which the two strategic vari-
ables and operate.

Fig. 2 summarizes the overall combined evolution strategy.
The algorithm stops when the residual normalized increment in
the parameters goes below the threshold

(16)

where is the th calibration parameter ( ); in our
case, .

V. EXPERIMENTAL RESULTS

The algorithm has been tested on simulated and real data.

A. Simulations

Simulations were carried out to assess the accuracy and relia-
bility of the method. Two different camera setups were adopted
and algorithm performance is reported in Tables I and II. In the
first setup (Table I, Fig. 3), zoom lenses surveyed a working
volume of , in the second (Table II), wide-
angle lenses covered a working volume of .
The working volume is defined here as the largest parallelepiped
volume within the common field of view of the two cameras. In
both simulations, the position and orientation of a set of 200

bars (length m for the first experiment, m
for the second) were generated randomly inside the working
volume to emulate the sampling of the bar in motion. The ends
of the bars were then projected onto the image planes of the two
cameras using the calibration parameters reported in Table s I
and II (true parameters). The 2-D measurement error was sim-
ulated by adding a quantity, extracted from the Gaussian dis-
tribution , to each coordinate of the projected
points. Starting from the measured control points and the
bar length , the calibration parameters are estimated through
EES. Different experiments have shown that the initial value
of the parents, chosen at the beginning of the first stage, does
not affect the convergence. The algorithm was implemented in
C and its running time was measured on a personal computer,
MMX-200 MHz Pentium II central processing unit. The accu-
racy indices are considered to be the statistical distribution of the
error in the reconstruction of the bar length [BL, see (B7)] and
for each point of the mean distance between the optical rays [RI,
(B6)]. These practical measurements are easily carried out in the
field. To evaluate EES with respect to ground truth (GT), the
displacement of the reconstructed bar ends with respect to their
nominal 3-D position is calculated and reported as GT error (see
Tables I–IV). The and directions are parallel to the axes of
the image plane of the first camera and thedirection is perpen-
dicular to both. For the sake of comparison, we have included
the results of when the cost function in (5) is minimized
with respect to all the calibration parameters without resorting
to SfM for determining some of them. Gradient descent is ini-
tialized by setting the principal points in the image center, de-
termining the other initial parameters through SfM machinery.
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TABLE II
CALIBRATION RESULTS WITH SIMULATED DATA (WIDE ANGLE LENSES)

TABLE III
SAME EXPERIMENT AS TABLE II WITH A DIFFERENTPAIR OF PRINCIPAL POINTS

As seen from Tables I–IV, EES converges to parameter values
and accuracy indices equal to or even better than the gradient
descent approach. The GT data show that there is no bias in the
reconstruction of the bar ends and that the standard deviation
is very close to that obtained when reconstructing the bar ends
with the true parameters. Moreover, although gradient descent is
a little faster, the main drawback is that there is no convergence
for some geometrical camera arrangements. For example, if the
principal points in the first experiment (Table I) are moved to
the location [600, 450, 635, 510], which is even closer to the
image center, gradient descent cannot converge while EES op-
timization does.

Fig. 3 shows a typical search for the pair of optimal prin-
cipal points. The data correspond to the experiment with setup
#1 (Table I). Comparing Fig. 3(a) and (b), it can be seen that
the reduced search region in the first stage leads to a denser
sampling of the population space. At the end of the first stage,
EES switches to ( )-ES. This switch is highlighted by a tran-
sient increase in the cost function due to the time required
to learn the local topology of [see Fig. 3(d)]. It should
be noted that EES “evolves” within particular regions before
heading toward the optimum position. Such regions possibly
have shallow cost functions, local minima, or abrupt changes
in the decreasing direction of the cost function. This is evident
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TABLE IV
CALIBRATION RESULTS WITH REAL DATA (ZOOM LENSES)

in the plot of the evolution path [see Fig. 3(c)] that is the line
connecting the winning offspring at each evolution step.

B. Real Data Experiments

We applied EES optimization widely to calibrate motion cap-
ture systems [2] and 3-D scanners [1] equipped with a wide
range of setups and lenses. The bar length used was approxi-
mately 1/20th to 1/10th of the working volume diagonal and the
bar was moved to cover the entire working volume. During mo-
tion, the bar is oriented in the depth direction, although never
perfectly horizontal so as to avoid problems in classifying the
ends. This allows the internal parameters to be determined with
better confidence [10], [19]. An automatic classification of the
bar ends can be achieved through the fundamental matrix con-
straint [25], the same algorithm allowing the bar, during motion,
to slip from the field of view of the cameras. Table IV and Fig. 4
show some typical results on real data. In these experiments, a
bar that carries two markers 86 mm apart was moved within the
field of view of two cameras for a working volume of about

[see Fig. 1(b)]. The marker projection onto
the image plane of the two cameras was measured automatically
by the Elite system [3] with subpixel accuracy. A total of 1250
bars were collected in 12.5 s; from these, 400 were extracted
randomly for calibration. In this case, unlike in simulations, the
true 3-D position of the bar extremes is not available, so a dif-
ferent GT accuracy test was introduced. A rectangular grid car-
rying 30 equally spaced markers (five rows by six columns, with
adjacent marker spacing of 50 mm) is surveyed in four parallel
positions with 200-mm separation one from the other. The 3-D
marker position is reconstructed with the calibration parameters
and any error in distance between a marker and the grid center
is assumed as the horizontal error () if taken horizontally, as

vertical error ( ) if taken vertically, and as depth error () if
taken perpendicular to the planes. As can be seen from Table IV,
the obtained accuracy is equivalent to gradient descent (and it is
also comparable to that obtained when control points of known
location are used, i.e., when calibration structures are adopted
[5], [6], [17]). The error values confirm that the parameters esti-
mated through EES have no bias and accuracy equal to or better
than that achieved through gradient descent. It should be noted
that for these cameras and setups, the principal points are, for
the first camera, offset by more than 34 pixels horizontally and
22 vertically and, for the second, 24 pixels horizontally. A typ-
ical evolution path (second stage of optimization) for these data
is reported in Fig. 4. Note how when good direction is found,
the algorithm elongates the mutation function rapidly in that
direction optimizing the speed without being trapped in local
minima. Regions with local minima are small areas character-
ized by heavier sampling (denser population), where the algo-
rithm spends some iterations before finding the way out. For
example, a local minimum is found just before the 80th itera-
tion in the circled area [see Fig. 4(a)], where there is a transient
increase in the cost function [see Fig. 4(b)].

This indirect evolution path is typical and is obtained using
a wide range of setups and lenses. The tortuous path is due to
the high cost in the region between the image center and the
true position of the principal points that discourages any EES
there. A denser sampling of the image plane in the first stage
would provide the second stage with a starting parent closer to
the optimum. However, as the region around the optimum is a
very narrow valley, the search for a population element lying
at the bottom of the valley would take much longer. Thus, the
high cost in terms of computational time has discouraged this
approach.
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VI. SUMMARY

EES optimization was applied to calibrate motion capture sys-
tems [3] and 3-D scanners [1] that had a wide range of setups
and lenses. Cumbersome calibration grids [6] were substituted
by a simple bar that moves within the working volume; this new
powerful calibration technique has the same accuracy and relia-
bility as the grids, but expends much less time and effort. It can
be applied in many fields, allowing motion capture systems and
3-D scanner instruments to be calibrated easily in the most vari-
able working conditions. The combination of a stochastic search,
such as the one implemented in the ( )-ES and the covariance
matrix-based search in ( )-ES, led to a solution in quasi-real
time and, above all, to the avoidance of local minima, which can
originate from poor initialization. The EES technique is suitable
for all those optimization problems where the cost function con-
tains complex nonlinear relationships between the optimization
variables. Discovering when and where EES optimization is the
most, or the least, suitable technique remains for future work.

APPENDIX A
TAXONOMY

Scalar values are denoted in italics, vectors and matrices in
bold italics. The parameters are subdivided into calibration and
optimization and into parameters to be set by the user or auto-
matically set internal parameters.

A. Parameters to be Set by the User

True distance between the bar extremes (bar
length).
Target dimension.
Dimension of the search domain ( for
camera calibration).
Initial dimension of the search region
for ( )-ES algorithm (1st stage).

in our case.

B. Parameters Internal to EES

1) Calibration Parameters:
3-D point.
3-D coordinates of the point
perspective center of the th
camera.
2-D point on the image plane of the
th camera.

Fundamental matrix.
Matrix containing the internal pa-
rameters of theth camera.
Matrix containing the external pa-
rameters.
Relative location vector with uni-
tary norm.
3-D space scale factor ( ).
Distance between the bar extremes
(bar length) computed at frame.
through the estimated geometrical
parameters.
Intersection error for point com-
puted at frame .

2) Optimization Parameters:

Generation (iteration step).
Fitness

. Population element:
[ ].
Parents and offspring of the population.

( )-ES Optimization (First Stage)
Amplitude of the region of search region:

.
Amplitude of the search region when the first stage is
completed: .
Region of search.
Standard deviation of the mutation function:

.
Empirical value for updating [see (7)]:
[19].
Ratio between winning offspring and winning parents.

( )-ES Optimization (Second Stage)
Global step size: .
Covariance matrix of the mutation func-
tion: .
Matrix containing the square root of the
eigenvalues of .
Matrix containing the eigenvectors of

.
Evolution path at step.
Normalized evolution path at step.
Covariance matrix of the evolution path
at iteration step.
Determines the time of averaging the
distribution:
Determines the decay constant for the
evolution path: .
Normalizes the variance of by
solving . For

, .
Damping of the step size variation be-
tween successive generations: .

Approximates the expectation of the
distribution, which is the distribution
of the length of a distributed
random vector in .

C. Output Parameters (Calibration Parameters)

Principal point of the image plane of the
th camera.

Focal length of theth camera.
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Relative orientation (a function of three
independent rotations: ).

Relative location (base line).

APPENDIX B
3-D RECONSTRUCTION

When the stereo-camera parameters have been estimated the
3-D position of a point can be determined as the intersection
point of the two optical rays. These are the straight lines [
and in Fig. 1(a)] through the projection of , and onto
the image plane of the two cameras and the perspective centers

and . Due to noise on and , these two straight lines
generally do not intersect and the 3-D reconstruction oflies
in the midpoint of the minimal distance segment [6]. The two
straight lines have the following:

(B1)

where
equals zero;
equals ;
director cosines.

Minimizing the 3-D distance between and

(B2)

a linear system is obtained, where

(B3a)

(B3b)

The 3-D reconstruction of is obtained as

(B4)

where the s are a function of the calibration parameters

(B5)

where for the first camera and for the second
camera. [10]. The minimum distance be-
tween the two intersecting rays can be obtained from (B4)

(B6)

The distance between two 3-D pointsand is computed as

(B7)
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