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Abstract a given motion may not always be simple; realism, grace, like—in—
Singing—in—-the—Rain—ness, or other high-level properties may be
In this paper, we present a technique fetargetting ~ motion: the desirable to preserve during adaptation. In practice, we are limited
problem of adapting an animated motion from one character to an- by our ability to define high-level qualities of the motion mathemat-
other. Our focus is on adapting the motion of one articulated fig- ically, by our ability to compute adaptations efficiently when the
ure to another figure with identical structure but different segment metrics become complex, and by the amount of effort we wish to
lengths, although we use this as a step when considering less simi-expend in identifying (or having the user identify) these properties.
lar characters. Our method creates adaptations that preserve desifFhese issues motivate a more pragmatic approach to retargetting.
able qualities of the original motion. We identify specific features This paper presents a method for finding the adaptations needed
of the motion as constraints that must be maintained. A spacetimeto retarget motions from one articulated figure to another. We ac-
constraints solver computes an adapted motion that re-establishegomplish this by requiring the basic features of the motion — for
these constraints while preserving the frequency characteristics ofexample that the feet touch the floor when walking — to be identi-
the original signal. We demonstrate our approach on motion cap- fied as constraints. If the constraints are violated when the motion

ture data. is applied to a different figure, we find an adaptation to the mo-
CR Categories and Subject Descriptorsi.3.7 [Computer Graphics]: Three Dimen-  tion that re-establishes the constraints in a manner that fits with
sional Graphics and Realism - Animation the motion. Our premise is that by maintaining the basic features
Additional Keywords: motion editing, motion signal-processing, spacetime con- and avoiding uncharacteristic (in a basic signal-processing sense)
straints, motion capture. changes, we find adaptations that generally preserve the desirable

characteristics of a motion, without explicitly modeling them.
The core of our retargetting method is a numerical solver that
1 Introduction computes an adaptation to the original motion. The adaptation re-
establishes the constraints while attempting to avoid adding any un-
In this paper, we present techniques fetargetting ~ motion: the desirable artifacts. Our solver is a spacetime constraints method
problem of adapting an animated motion from one character to an- that considers the entire motion simultaneously, computing whole
other. Our goal is to re-use motions created for one character onmotions, not just individual frames. To preserve the qualities of
other characters, independently of how that motion was created.the original motion, we minimize the magnitude of the changes and
We aim to preserve as many of the desirable properties of the orig- restrict their frequency content.
inal motion as possible. That is, if we begin with the motion of a After a review of previous work, we introduce our method in
tall adult person, we expect to end up with a motion of a small child Section 3, and summarize the technique in Section 4. Section 5 de-
walking like an adult, or a crocodile swing dancing as if it were an scribes how the method can be applied to creating motions when the
adult human. Admittedly, this faithfulness to the original motion character is changing (morphing). In section 6, we discuss issues
is not always artistically desirable. However, we prefer to relegate in solving the non-linear constraint problems. We provide a gallery
the difficult creative decisions (How do crocodiles dance?) to the of examples in Section 7 and consider the problem of retargetting a
user’s selection of an initial motion. motion to a character with different structure in Section 8.
Our focus is on applying motion created for one articulated fig-
ure to anpt_herfigure with identical structure (connectivﬁty of limbs, 1.1 An Example
types of joints, number of degrees of freedom) but different seg-
ment lengths. Even when two articulated figures share structure, We motivate our approach with an example: retargetting motion
the motion of one may not trivially apply to the other and therefore capture data of an actress walking up to, picking up, and carrying
require adaptation. Good adaptations preserve important aspects oaway a box. During pre-processing, we augment the motion data
the motion by altering less important ones: in a walking motion, by specifying constraints that are essential to the action: the hands
it is important that the feet touch the floor, not that the pelvis is 32 must grab the box in the middle frame, the hands must remain the
inches above the floor as in the original. The important properties of correct distance apart while carrying the box, and the feet must be
planted and not skid when they are on the ground.
*Autodesk VTC, 2465 Latham St, Mountain View, CA 94040. Without adaptation, our motion capture data does not apply to
gleicher@cs.cmu.edu http://www.gleicher.com/mike figures of different sizes or proportions than our actress: the result-
ing motions have the feet skating and the hands failing to reach the
object. Our method enables us to re-use this data on figures of vary-
ing proportions, as shown in Figure 1. The method computes an
adapted motion for each new character using the approach detailed
in Section 3. Because the technique looks at the entire motion, it
can make adjustments based on all the requirements. For example,
it adjusts the footplant positions so that the characters reach the box
using natural footstep sizes.
Our approach makes many sacrifices to achieve practicality. We
tell our solver little about the original motion or general motion
properties, and our choice of the mathematical problem is heavily
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Figure 1: Differently sized characters pick up an object. Their positions are determined by the position of the object. The left shows the original acteess: Jtmvs a figure
60% as large. The right shows a figure with extremely short legs and arms and an extremely long body. The yellow cones represent footplant positions.

influenced by what can be solved efficiently. We sometimes pay 2.1 Spacetime Constraints

for these sacrifices in the quality of the resulting motions. For ex- ) ) ) o

ample, because our system did not consider gravity or posture we The spacetime constraint approach, introduced by Witkin and Kass
get an unrealistically unbalanced result in the right frame of Figure [22], poses the motion synthesis problem as a constrained optimiza-
1. The payoff is that our approach provides a practical solution to tion: what is the best motion that meets a specified set of con-

the retargetting problem and a framework in which to employ more Straints? Cohen [3] extended this with a more complete system
sophisticated constraints, like balance, in the future. that allowed the user to focus the solution process. Recently, Rose

et al. [19] applied the approach to the problem of generating tran-
sitions between motion segments, and Gleicher and Litwinowicz
[7] showed how the methods can be used for adjusting motions so
that the characters have new goals. Gleicher [6] extends this work
by simplifying the spacetime problem to achieve interactive perfor-
mance for interactive editing.

What differentiates spacetime from other constraint methods is

Few techniques specifically address the retargetting problem. Gen-thatit poses a single large problem over a duration of motion, rather

erally, users are forced to adapt motions using the same tools thatthan on an individual frame. The original spacetime work, as well
are Used for motion creation: each frame or key must be manually & most that followed, used spacetime to derive physically valid mo-

tweaked. Some commercial systems, such as Kinetix's CharactertionS: constraints enforced Newton'’s laws, and the objective func-

Studio [11], are beginning to support retargetting. For example, tion minimized energy consumption. Previously, we [6] have sug-
Character Studio can adjust keyframes to maintain footplants and9€Sted removing the physical constraints to achieve better perfor-
balance when a motion is re-applied to a new character. mance and to apply the techniques to non-physical motions.

. . ) Although Ngo and Marks[15] re-used the term spacetime con-
Hodgins and Pollard [9] address a variant of the motion re-use straints to describe their work, their method belongs to a different
problem, adjusting parameters of a physical simulation to adapt a family of approaches that generates control systems that create mo-
controller for use with a new character or a character that is chang-tions, rather than generating the motions themselves. We prefer to

ing. In general, procedural- and simulation- based approaches toreserve the ternspacetime constraints for methods that compute
animation offer representations independent of the character andspecific motions.

therefore may be used generate new motions for new characters.

Many of the procedural and simulation controllers are able to ad-

just to different characters easily. Such methods do not address3 An Approach to Retargetting

the retargetting problem: they can generate new motions for new
characters but not reuse existing motions. Re-generation of motion
risks losing qualities in the original. Our goal is to create methods
that adapt existing motions obtained from a variety of sources, in-
cluding motion capture and keyframing as well as simulation and
procedural generation.

2 Previous Work

In this section, we motivate and describe our approach to retarget-
ting the motion between articulated figures with identical structure
but different segment lengths. We assume that the configuration of
an articulated figure is specified by a position for the root of the
hierarchy and the angles of its joints. We will denote these config-
Recently, there is an interest in tools that allow motion to be al- urations as a vector that concatenates all of these parameters, often
tered in ways that are independent of how it was created. At their denoted byg, or byy* to refer to its value at time A motion is
core, these tools treat animated motions as time-varying signals anda vector-valued function that provides a configuration given a time.
apply signal processing techniques to these signals. Litwinowicz's While we often represent the initial motion as a dense array of sam-
Inkwell system [12] first demonstrated the utility of applying sig- ples or as a set of key values that are interpolated, our methods
nal processing methods to animation data. Perlin [17] showed how are independent of how this motion is obtained. We refer to the
existing motions could be blended together, and how the addition retargetted motion ami(¢), and often use the concept of a motion
of noise to a motion could be used to transform it. Bruderlin and displacement which represents the difference between two motions,
Williams [2] showed that many signal processing techniques could e.9.m(t) = mo(t) + d(t).
be applied to motion. Simultaneously, other authors showed some Because the target character has the same parameters as the orig-
of these methods in greater detail. Unuma et al. [21] showed how inal, reusing the original motion data will cause the new character
band-pass filtering methods could adjust emotional content, andto move its limbs as the original, but not necessarily lead to a de-
Witkin and Popowt [23] introduced motion-warping, a variant of  sirable result as shown in the example of Figure 2. Because the
Bruderlin and Williams’ motion displacement mapping. length of the limbs are different, the parts of the new character do



3.2 Motion Frequency Response

The problem with the IK solution is that we have added high fre-
quencies to a primarily smooth motion. Extending the leg from bent
to straight inl /15th of a second might be acceptable if this were a
karate master’s kick, but, this discontinuity is inappropriate in our
walking motion. Generally, the high frequencies of a motion (or the
lack thereof) are important, and therefore must not be disturbed. An
adaptation that removed the snap from a karate kick might be just
as inappropriate as adding the snap to our slow walking motion.

The importance of preserving the high-frequency content of a
motion (or the lack thereof) is an explanation for the success of
motion-displacement mapping [2, 23] (also called motion-warping)
techniques. The key spacing of the displacement curves restricts
their frequency content such that the high frequencies of the motion
are not disturbed.

Changes should not necessarily be made at the lowest possible
frequency. Consider retargetting a motion where a smaller character
must grab an object in the middle frame, but there are no other
constraints on the arm. To meet the constraint, the character must
extend his arm in this one frame. This alteration can be made at any
frequency: the single frame can be adjusted (e.g. the arm shoots out
for the1/30th of a second), or the adjustment can be applied to the
whole motion (e.g. the arm is extended while the character walks
up to the object to pick it up). While the extreme high-frequencies
of the former are undesirable, so are the extreme low frequencies of
the latter (the added signal has only a DC component).

A simple approach to avoiding the addition of high frequencies
is to low-pass filter the displacement signal generated by the inverse
Figure 3: Adaptations are applied to the motion of Figure 2 to re-establish the con-  kinematics process. Unfortunately this change does not necessarily
straints. The figure shows five frames before and after a heel strike, with the frame im- maintain the constraints that IK was used to achieve as shown in
mediately before and after the heel strike darkened. A constraint on the heel’s position Figure 4.
applies on the frames after the strike. Left: inverse kinematics is applied to individ-
ual frames, causing a noticeable discontinuity. Right: our approach re-establishes the
constraints while maintaining the frequency characteristics of the original motion.

Figure 2. Left: Frames from a rotoscoped walking motion are shown. Right:
Applying this motion to a character that is 60% of the size of the original yields a
motion that skates along horizontally above the floor.

3.3 Motivating Spacetime

The failure of the per-frame approach to meet the needs of au-

tomatic retargetting suggests that we require a constraint-based
not end up in the same place as in the original. Therefore, they method that can take into consideration a span of the motion, e.g.
may fail to interact correctly with other objects in the world or may ~Spacetime constraints. The more global view of such a method al-
move differently. In the example these problems appear as the feetlows it to consider relationships among multiple frames. Spacetime
not touching the floor and “skating” horizontally when planted, as constraint's use of constrained optimization allows us to address
seen in Figure 2. The naive retargetting fails to preserve important both parts of the retargetting problem: establishing the constraints
properties of the initial motion. on the motion, while minimizing the changes our original motion.

The spacetime constraints approach poses the retargetting prob-

lem mathematically. We seek a motian(t)  that, subject to
3.1 Inverse Kinematics satisfying a set of constraints on the motibfm(¢)) = 0 and

f;(m(t)) > 0 (we divide the constraints as equality and inequal-
The principal problem with the naively retargetted motion is that ity constraints for notational convenience), minimizes an objective
it violates some of the constraints that we expect in a satisfactory function g(m). For retargetting, the objective compares the mo-
walking motion. For example, a walking motion requires charac- tion with the original motionmo (¢) . By encoding the retargetting
ter’s feet to touch the floor and to not skid during footplants. Retar- problem in this form, we can use numerical methods to solve the
getting must re-establish these constraints. constrained optimization problem for our desired result.

Inverse kinematics (IK) is a common technique for positioning Because the spacetime approach looks at the entire motion, it
end effectors of articulated figures in individual frames of an anima- can make choices based on other parts of the motion. For example,
tion. An IK solver could be used to adjust the configuration of the it can move footplants based on where the character needs to end
character to meet the constraints in each frame. Figure 3 shows thaup. Such look-ahead and -behind is not possible in approaches that
result of such a retargetting approach, re-establishing the plantedconsider each frame independently.
foot positions. Because the IK solver considers each frame inde-

endently, it makes different alterations to each frame. This lack . . .
gf consis¥ency adds many undesirable artifacts to the motion. For3'4 Spacetime in Practice

example, because frame does not know that a foot will be planted |deally, the constrained optimization problem would fully encode

in framei + 1, it cannot move towards this constraint, so that in our desires mathematically: there would be a single solution that
framei + 1, the foot will snap to its new location. Even withina was the desired motion. Realizing this ideal requires a rich set
footplant, there is a lack of consistency: on each frame the solver of constraints and objectives. For example, we could find con-

will use a different combination of straightening the leg and lower- straints that enforce the laws of physics, biomechanical limitations
ing the pelvis. These artifacts appear as high frequency “jerkiness,”

shown for the example in Figure 3. 1Albeit, one that is not emphasized in [2] but is a motivation for [23].
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Figure 4: Ten frames of a ladder-climbing motion are shown. In the last 5 frames (shown darker), the hand is constrained to be attached to the handholdhe/Ayisfoats t
motion capture data. (B) shows the motion adapted to a smaller character by applying Inverse kinematics (IK) to each frame, causing a noti¢€alslecsmafmw-pass filtering
of the results of the IK process. This removes the snaps at the expense of violating the constraints. (D) shows our approach applied to the example.

due to strength, and proper ballet form. We could define objective the tasks of creating the characters and motions, especially with
functions that measure visual properties such as “grace,” “Charlie— semi-automatic detection (for example finding footplants), graphi-
Chaplin—-ness,” and “like—Joe—did—it—yesterday—ness.” We would cal specification, and generic constraints (e.g. we use the same joint
aim to maintain the constraints that were satisfied in the original limits for most humanoid characters). Constraints are generally de-
motion while minimizing the amount of change in the important fined once for each motion, and this one set of constraints is used
properties. for any retargettings (or editing, using the techniques of [6]) done
There are central difficulties in realizing the spacetime ideal for with the motion. Even with these tools, augmenting our characters
retargetting: first, some properties are difficult to encode mathemat- and motions with constraints does require some additional work.
ically as constraints or objectives either because the forms of the However, we feel this incremental effort is worthwhile because of
equations are complex or because they elude a mathematical enthe potential for reuse afforded by augmentation.
coding; second, we may not know all the properties required, such  Mathematically, constraints are differentiable functions of the
as the mass distribution of an imaginary character or the physical parameters of the character. Although it is not required by the
laws of an imaginary world; third, we must decide which properties methods, our implementation always places constraints on config-
are important in a given setting; fourth, many of the properties and urations at particular instants of time. Variational constraints, that
constraints may be specific to a small set of examples, and thereforeis constraints that are to hold over a range of the motion curves,
not worth the effort to define. are approximated by sampling. Therefore, constraints are generally
Even if we encoded the desired animation completely in a con- written asf(q'') o ¢, wheres if<,>,=} and is a constant.
strained optimization, we still need to find the solution to these Some constraints consider two instants in time, and therefore have
problems. Generally, richer sets of constraints and objective func- the form f(q'i, q') o c.
tions are likely to lead to more difficult problems to solve. The In our system, the user never needs to see an equation: the sys-
challenges of solution lead us to take a pragmatic view in defining tem includes a variety of pre-defined constraints that can be applied
spacetime problems. An extreme case of this pragmatism is ourto a motion through a graphical user interface or via a scripting lan-
work on spacetime editing [6] where many sacrifices were made in guage. We have emphasized finding (and using) constraints that we
order to achieve interactive performance. believe are applicable over a wide range of motions. Some of these
Our approach to spacetime for retargetting is motivated by the include:
pragmatic issues of defining, specifying, and solving constraints
and objectives. We use constraints to define specific features of the 1. a parameter’s value is in a range (useful for joint limits);
motion that must be maintained and use the objective function to
limit certain generally unacceptable types of changes. Besides the 2. a point on the character (such as an end-effector) is in a spe-
constraints and objectives, we have two more pragmatic tools that cific location (useful for footplants or grabbing an object);
we can use to help define a spacetime problem with the desired so-
lution: the representation used for the motion and the starting point 3. a point on the character is in a certain region (for example,
for the constrained optimization. We will discuss these four in more above the floor);
detail in the following sections.
4. a point on the character is in the same place at two different
35 Sources of Constraints times (l_J_sefuI to prevent skidding), although this position is
unspecified so that it can be adjusted;
Constraints are the primary tool used to identify features of the orig-
inal motion that must be present in the retargetted result. In general, 5. a point on the character is following the path of another point;
our constraints will either come from restrictions on the character
(e.g. the elbows do not bend backwards), the environment (noth- 6. two points are a specified distance apart (useful for when a
ing should be below the floor), or the motion (the character must character is carrying an object of a fixed size);
pick up the box in frame 50). Specification of these constraints
typically involves only a small amount of work in comparison with 7. the vector between two points has a specified orientation.



The architecture of our system is designed to minimize the effort and uses the solver to find(¢) . The approach has a number of
required to add new types of constraints, although this does requireadvantages. First, it decouples the solution from the form of the
programming and must be done at compile-time. initial motion, providing generality. Secondly, it simplifies placing
In developing a new type of constraint, it is important to make constraints and objectives on the changes. Third, it allows a rep-
restrictions in ways that are invariant of other aspects of the motion. resentation ford(t) to be chosen that includes constraints on the
For example, if one defines a footplant by the positions of the heel changes so they do not need to be expressed as explicit functions.
and toe strikes, the constraint cannot be satisfied if the foot size  To constrain the displacement signal not to include high frequen-
is changed. Similarly, we often do not care where a footplant is, cies, we use a representation for it that cannot represent the high
providing that is is on the floor and that the foot does not skate frequencies: specifically, cubic B-splines [14] with control point
while planted. For the examples in this paper, we will distinguish spacing determined by the desired frequency limits. The control
between footplant constraints that maintain the position on the floor points of the displacement curve need not be uniformly spaced: we
and those that only restrict height and skating. When the solver can place controls closer together for portions of the motion where
is permitted to move footplants, the resulting motion may cover a higher frequencies are acceptable. Similarly, we do not need to use
different distance, e.g. if the footsteps of a walk are made smaller, the same key spacing for all parameters, for example, if a chef is
the character will travel a shorter distance since the system does nochopping, we might allow high frequencies in the motion of his
generate new footsteps. arm (to accommodate the abrupt motions of the knife), and only
permit smoother changes to the rest of his body.
The spacing of B-spline control points allows us to determine the
3.6 Objective Functions frequency response of our adaptations, although we do not have the
. . . . ) fine control afforded by carefully crafted filters placed in an objec-
Since there are typically many possible motions that satisfy the con- tjye function. We must determine how to place the control points
straints, we use an objective function to select the best choice. Foryg achieve the desired effect. For our experiments, we have limited
retargetting, a simple objective is “minimize the amount of notice- 4, chojces to using the uniformly spaced control points on all pa-
able change.” This does not necessarily lead to a simple, generic s meters of a motioh. For the examples in this paper, we further
manifestation: consider a ballet motion where a very slight bend yegtrict ourselves to control points spaced every 2, 4 or 8 frames. We
of the knee might be a very noticeable deviation from the other- n,ye developed a simple heuristic method for determining which of
wise perfect _form of the orlglr_lal with its straight I_e_g. However, inese to apply: we compute a bandpass decomposition of the orig-
our strategy is to use constraints to prevent specific changes that 5| motion (as described in [2]) and choose the key spacing that
are unwanted, and use the objective function to avoid undesirablegincides with the lowest, that is highest-frequency, level of the
frequeqcy content and unnecessary Iarge r?llteratlon.s, as dlscussegyramid whose energy contribution exceeds a threshold. While this
in Section 3.2. We avoid designing objective functions tuned to gjmple heuristic has resulted in the correct recommendation for al-
specific high-level goals. most all of our examples, the speed of our solver makes it practical

The most basic comparative objective function would be to com- g produce all three adaptations and to select the one that gives the
pare the values of the parameters, matching pose in parameteingst appealing result.

space. For example, With the constraints imposed by the restricted representation,
there may not be a solution to the constraints. In such cases, there

_ 0 — N2 = [ am)? 1 is a fitting problem: find the frequency-limited signal that comes
9(m) /t(m( )~ mo(t) /t )7 @ closest to satisfying the constraints (where the constraints are the

explicit equations from Section 3.5). In such a scheme, the nature
minimizes the magnitude of signal differences in the motions over of the mathematical problem is flipped: our constraint is the fre-
time. This objective is similar to performing per-frame inverse gquency response, and our optimization objective attempts to mini-
kinematics as it provides no coupling between constraints at differ- mize the residual of the constraints. We use a least-squares metric
ent times. The minimum magnitude solution effectively maximizes for the residual which enables simpler solution methods, as we will
high frequency content. Intuitively, it prefers not to “waste” change discuss in Section 6.
preparing to meet goals at other times. Other frequency criteria
can be implgmented with an objeqtive function that minimizes the 3.8 Starting Points
output of a filter that selects undesirable frequencies.

In practice, we find that pragmatic concerns outweigh most other Cohen [3] pointed out the importance of having good starting points
choices in the design of an objective function. For the experiments for spacetime problems. Seitz and Dyer [20] observed the utility
described in this paper, we use the objective function to minimize of a previously captured motion as a starting point for speeding
the magnitude of the changes, approximating Equation 1. Meth- their numerical solutions. With our retargetting approach, the ini-
ods described in the next section restrict high frequency content of tial estimate of the solution is even more critical because our simple
the changes. This tactic affords the use of more efficient solving objective function explicitly defines the result in terms of the initial
techniques (as we will describe in Section 6). estimate. To improve the quality of our results, we must apply some

simple transformations to the original motion so it better estimates
the desired result. The process described in this section is summa-
3.7 Representation rized in Figure 5.

. . . . Simply re-using the initial motion is possible because our figures
Another issue in a spacetime approach is how to represent the Mo-gp4re the same parameters. For articulated figures, most of the pa-
tions so that the optimization problems can be solved effectively. rmeters are angles and are independent of the scaling of the limbs:
Liu et al. [13] first made use of a carefully selected representation e angular value for a straight leg is the same, no matter how long
by using wavelets to speed computations. Gleicher and Litwinow- yhe thigh and calf are. However, the positional offset of the root of

icz [7] introduced the use of motion-displacement maps as a repre-yhe hierarchy is not scale-independent. The translation is a distance
sentation for spacetime problems where the objective function re-

lated two motions. This approach defines 2This was problematic only for the example of Figure 1 where the foot-
steps have different frequency content than the grabbing motion. The arti-
m(t) = mo(t) + d(t) facts of this problem are subtle.
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Figure 5: A: An abstracted aerial view of a character walking up to, picking up, and carrying away an object. B: When the motion is scaled about the originl¢five domer
of the frame), the character does not come close to the object. C: Because the position of the object is the only constraint that specifies alposttiarattet, the entire motion
can be translated.

(from the origin), and therefore should be scaled as the limbs were. scaled motion for the target character, interpolating these val-
Such scalings are difficult to create with the additive displacement ues, and smoothing.
maps, so we perform the scaling as a separate step. If the character ) . .
is scaled uniformly and does not interact with the world (or if the ~ 3- Choose a representation for the motion-displacement curve
world is scaled similarly), the scaling is sufficient for retargetting. based on the frequency decomposition of the original motion.
In cases where the character is scaled non-uniformly, we make an
estimate of the overall scaling to apply to the positions.

Multiplying the positional parameters scales the motion around
an arbitrary point, the center of the coordinate system. Typically,

there is a better center for the scaling. For example, we might scale 5. (optional) If the result of step 4 does not satisfy the constraints

4. Solve the non-linear constraint problem for a displacement
that when added to the result of step 2 provides a motion that
satisfies the constraints.

the heights around the floor, which may not be zero. We recenter sufficiently, solve using the result of the stap{(t) + d(t) )
the scaling of the positional parameters by adding a translational as the initial motion, and a denser set of control points for the
component to them. new displacement.

To find the translation, we note that a constant positional shift of
a motion is not noticeable, except in conjunction with constraints . .
that relate the character to the world. Therefore, if we could re- 5 Maotion for Morphing
establish the constraints by a simple shift of the motion, this would
be ideal. We find the shift of the motion that comes closest to re- The same methods that are used to adapt a character to new seg-
establishing the constraints by computing the average of the dis-ment lengths can be used when the target lengths are not constant,
placements. By displacement, we refer to the vector between thei.e. when the target character is morphing. A simple example of
point on the character and a position that it is attached to. Con- a motion generated for morphing is shown in Figure 6. A more
straints only have displacements for axes that they restrict with a complex example is shown in Figure 10.
fixed position, for example, a footplant constraint may only specify ~ The difference between motion for morphing and standard re-
the vertical direction if it only places non-skid restrictions on the targetting is that the segment lengths of the target character is not
other axes. constant over the motion. Therefore, it is better to use a differ-
Since the center of scaling might not be constant over the whole ent scaling amount on each frame in Step 2. As with the constant
motion, we compute a translational signal to add to the positions. case, we estimate the scale in the event that the limb scalings are
We perform the displacement averaging process on each frame in-non-uniform. To apply this time-varying scale to the character's
dividually. Adding the per-frame constraint displacements to the position, we scale the changes in translation between frames by the
motion may add undesirable high frequencies. Therefore, we inter- scale of the character in the frame, and add these changes together
polate the offsets to frames that do not have any displacements ando find the characters positions.
apply low-pass filtering to remove high frequencies.
The utility of interpolation can be seen in the example of Section . . .. .
1.1 where a figure walks up to, picks up, and carries away an object. 6 SoIvmg the Non-Linear Optlmlzatlon
In this example, the only constraint on the figure’s position on the ) . ) .
floor is provided by the constraint that the hands touch the object The key computation Qf the retargetting apprc_Jach is thg solut_|on of
on the middle frame of the motion. When the motion is scaled, the the spacetllme constralnt problem. In thl§ section, we briefly discuss
entire motion is moved far away from the goal point. Interpolating ©Ur Solver implementation. We emphasize that our approach casts
the displacement of this one constraint shifts the entire motion back rétargetting as a standard mathematical problem, constrained opti-
to the object, as shown in Figure 5. The desirability of constant mization, for which there is a rich literature of solution methods.

shifts is unique to position; for angles it can have the undesirable FOr @ more detailed discussion of solution methods, we suggest a
behavior described in Section 3.2. text on the subject such as Fletcher [4] or Gill et al. [5].

For simplicity of our discussion, we consider only equality con-
straints as we implement inequality constraints using an active set
4  The Motion Retargetting Method method [4] that creates inequality constraints by switching sets of
equality constraints on and off. The constrained optimization prob-
To summarize, our approach to retargetting motion to another artic- lem we solve is generically:

ulated figure with different limb lengths consists of the following L )
steps: minimize g(x) subject to f(x) = c. @)

1. Begin with an initial motion with identified constraints. ~The unknown in our spacetime problem is the motion-
displacement curve, or more precisely, the values for the B-Spline

2. Find an initial estimatens(¢) of the solution by scaling the control points of the displacement curve. The vector of parame-
translational parameters of the motion, and then adding a tersx is the concatenation of these points. We must express all of
translation to define the center of scaling. This translation the constraints and objectives in terms of these variables, and so-
is computed by finding the constraint displacements of the lution methods require us to compute the values and derivatives of



Figure 6: The retargetting process is used to adapt the motion of Figure 2 as the character morphs to 60% of its original size. Left: the footplant poséibits edHix same
as the original motion. Right: the solver repositions the footplants.

these functions. We approximate the objective of Equation 1 as awhich gives us a linearized version of the constraint equations,
weighted sum of squares of the controls
JA =f(x) —c.

1
9(x) = §XMX 3) This linear least-squares problem can be solved in a variety of ways.
We solve forA using a damped pseudo-inverse
whereM is a diagonal matrix. We usually compute the entries in
M to account for differing sensitivities in the variables as described ATI+en)A =IT(f(x) — ¢). (5)

in [6] and [7]. The importance of the choice® is reduced by the . . . N
large number of constraints, both explicit in equations and implicit Because Equation 5is a positive definite linear system, we can solve

in the representation, in the retargetting problems. it efficiently using either a Cholesky decomposition [18] or conju-

Since our constraints are always defined on instants of time, the 9at€ gradient solver[1]. We use the latter exclusively as it allows us
sampling of the continuous variational problem is implicit in their {0 €xploit the sparsity in the matrix to achieve good performance.
definition. While the expressions for individual constraints may !N both our constrained-optimization and least-squares solvers
grow complicated, we note that they are composed of smaller pieces'€ USe a line search [18] to determine how to use best the results
that are more manageable. For example, a constraint specifying®f the linear subproblem. That is, once we compte  we deter-
the height of a characters foot would combine the kinematic func- Mine a value of such that +- kA best satisfies the non-linear
tion that takes the character's parameters and returns the foot heighfonstraints.

f(q) composed with the function that computed the value of the In most cases, we find the Ieast_—square_s _solver to be faster than
parameters at the instant of time in questigh = mo (t;) +d(t:) either of the SQP style solvers while providing equivalent results.

which in turn must sample the B-splind$t;) = b(¢,x).  Through For the rest of the paper, we will refer to the solvers as SQP (for

the use of automatic differentiation [8, 10], we can construct these the solver similar to that described in [3]), LMULT (for our imple-
pieces independently. mentation of the method in [6]), and least squares (for the pseudo-

Most previous spacetime work has used constrained optimiza- invers_e based solver). The running times of the iter_ative methods
tion solvers that are variants of sequential quadratic programming US€d in our solvers depend on many factors, including number of
(SQP). This standard method is described in texts such as [4], agvariables, number of constraints, sparsity, and desired stopping toI-_
well as spacetime papers such as [22] and [3]. In [6], we provided €rance. S_mall changes, especially in tolerance, can cause dramatic
a variant of SQP that is more efficient for cases where the objective Changes in solver times.
function has the special form of Equation 3. Our system includes
solvers that operate both ways. 7 Examples

An alternative solution approach focuses on minimizing the con-
straint residual = 1/2(f(x) — c) - (f(x) — ¢) (because of the
implicit constraints of the representation, it is unreasonable to ex-
pect that there will be an exact solution to the explicit, equational
constraints). Because the constraints may not fully determine the
solution, for example on a walking motion the legs may be over de-
termined while there are no constraints on the arms, we add addi-
tional constraints that specify that each variable should have a zero
value. These constraints receive a smaller weighting. Such prob-
lems are called damped least-squares problems [5, 16], and can bg,aters using our experimental automated software.
solved by performing an unconstrained minimization on the resid- Because of the differences in processing technologies, we have
ual 1 some diversity in the parameters for the figures in different motions.

We have used the retargetting approach of this paper on a number
of examples. While there is nothing specific to motion capture data
in our approach, our examples are exclusively done on performance
data because of its availability. Other than the rotoscoped 2D walk-
ing motion of Figure 2, the motions in this paper were captured
with an optical motion capture system at a commercial studio. In
all examples, the 120 Hz motion capture data was downsampled to
30Hz. Marker positions were converted to articulated figure para-

1 . ..
r= §(f(x) —c)-(f(x) —¢c)+ XX (4) In all cases, we use Euler angle representations for the joints. We
. ) . i do not have positional information for the hands. Therefore, we
wheree is a small constant, or a diagonal matrix of weights. treat the end of the forearm as the “hand.” Similarly, some motion

Our non-linear least-squares solver iteratively improves on an gata is missing information for the feet, in which case the ankles
_estlmate of the solutlon. At each step! we constructalln_ear approx-are ysed as the end effectors. For many of the motions, we did
imation of the constraint problem using Taylor expansion around ¢ compute the head and neck parameters as they do not affect
the current estimate fot the computations. Joints generally have three degrees of freedom,

of except for the elbows, knees, and ankles which have one or two

f(x+A) =~ f(xi)+ &A, parameters.



Figure 7: A walk adapted to a figure 60% of the size of the original actor. The smaller character is forced to use the original footplant positions. Wheneheedidgs are
too distant, overfitting causes the wide swings shown in the alternate (yellow) foot traces. Proper key spacing (blue) results in a motion similgirtal ttpurple).

When given, timing information refers to our prototype system
running on an Apple Power Macintosh 8500/180 computer with a
180Mhz PowerPC 604e processor and enough physical memory to
complete the retargetting without paging. Timings are reported for
the task of solving the non-linear optimization as the other parts of
our retargetting approach take negligible amounts of computation.

7.1 Walking

The initial 2D walking motion of Figure 2 was created by rotoscop-
ing marker points and using a capture process like that described in
Section 8 to compute the parameters of the articulated figure. Our
character has 14 degrees of freedom (2 for position and 12 joint
angles), and the motion is 15Hz. On the 82 frame motion, foot-
plant constraints on the heels and toes give 146 scalar constraintsFigure 8: Forcing a character with short legs to walk in the footsteps of a
to which we add 328 inequality constraints to keep the feet above longer-legged character leads to an unnatural motion.

the floor in each frame, and 1968 joint limit constraints.

Our 3D walking example is similar. The character has 34 degrees N
of freedom, and does not have hands or feet. Because the “feet’ in /-2 Climbing a Ladder

The ladder example, shown in Figure 4, gives constraints on both
hands and feet. The figure has 35 degrees of freedom, no hands,
and no neck or head. We use fixed position constraints for the foot-
€plants and handplants on the ladder. The least-squares solver takes
approximately 9 seconds for keys spaced every other frame, and
7 seconds every fourth frame. The LMULT solver takes 6 and 4

We have adapted the walking motion to a number of differently seconds, although its answers do not satisfy the constraints as accu-
proportioned figures. An example is shown in Figure 7. With fixed rately. With the key spacing of 4, the LMULT solution has some
footplant positions to match the tall figure, the shorter legged fig- constraints being violated by over half an inch, while the least-
ures must take unnaturally long strides, seen in Figure 8. As pre- squares solution satisfies all constraints to within a quarter of an
dicted by the pyramid level heuristic of Section 3.7, a key spacing inch.
of 4 provides a better result to spacings of 8 or 2. With a key spac-  The fixed position of the hand and footplants on the ladder lead
ing of 8 there is considerable over-fitting that can be clearly seen in to slightly unnatural motions: the small figure must reach over its
the yellow foot path traces of Figure 7. A key spacing of 2 provides head to grasp the handholds and sometimes stands on its tip-toes to
a motion that is reasonable, however, the character seems to sloweach. We have implemented some less restrictive constraints: foot-
down with each step. While this is different from the original mo- plants that the solver can move along the ladder step (so the width
tion, the character is taking very large steps, so it seems natural forof the steps is not an issue) and hand-holds that can be positioned
it to regain its balance each time. Our system was able to generatealong the rail. These constraints are relatively special purpose: they
all 3 motions in under 10 seconds of solution time, so it is practical probably will be useful for ladder climbing motions. The motion
to create all 3 motions and choose the one we find visually most obtained from using these constraints more closely resembles the
desirable. original motion, although it is still unnatural as the ladder is very

motion, although during solving there are generally only 354 active
constraints.



Figure 11: A walking motion is adapted from a human to a soda can by first
adapting it to a human with the proportions of a can, then using this motion to drive
the motion of the can (shown transparently surrounding the humanoid).

Our initial attempts at “automatic anthropomorphism” allow the
user to make the creative choices, while having the system do the
more tedious aspects. The user identifies correspondences between
externally visible features of the characters, not the degrees of free-
dom that determine their positions. For example, we identify points
on the new character that will serve as its feet when it walks, even
if the foot is not at the end of a two-segment leg like the human.
These correspondences pose a constraint problem, almost identical
7.3 Swing Dancing to the problem of motion capture processing: we must compute a
motion that puts the character’s features in the right location in each
rame.

We can use the same spacetime constraints techniques that we
have used for retargetting for the anthropomorphic case. Our con-

plant constraints. If we change the size of the female figure without §traints connect eac_h featl_Jre on the new character to its correspond-
; ing feature on the original in each frame. If there are fewer degrees

changing the motion of the male figure, the smaller figure gets lifted of freedom on the character, the motions will not be able to match

by the hand-hold when spinning. If we adjust both motions simul- exactly, and we find the “best matching motion” in a least squares

taneously, the male’s part is adapted, and the female’s spin is less :
noticeably forced. In Figure 10, the female shrinks in size while sense. We have not yet developed a method for handling extra de-

spinning and the male part responds accordingly. grees of freedqm.

On the 276 frame motion, we use 1200 equality constraints for "0 the spatial correspondences to apply, the characters must be
the female character’s footplants (which are free to be repositioned approxmately the same size. We use t_he retargetting methods of
by the solver) and the connection between the characters hands. WIS Paper to adapt the initial human motion to a new figure that has
only allow the upper body of the male character to be altered. If we proportions more similar to the target character. We then use Fh's
adapt just the female motion, there are 33 parameters. Adaptingm.Ot'()n as the source of constraints to compute the target motion.
both motions gives 44 parameters per key. The least-squares solvet:Igure 11 shows an example in which we adapt a human motion

took approximately 14 seconds, while the LMULT solver ran for o arigid can (a cylinder with the same proportions as a soda can).
slightly over a minute, but with a solution that better satisfies the We correspond three points on the can o the human: the ends of

; g : : the legs are connected to points on the bottom of the can, and the
constraints (all to within an eighth of an inch). center of the hips is attached to the center of the can. Even with the
can’s extremely limited degrees of freedom (it is a rigid body), it
8 Differing Characters can convey a sense of the original human motion. In our tests, we

have made the can walk, skip, and run.

When the characters share structure there is a direct mapping be-

tween the parameters of one to the other. The more general retar- . .

getting problem is harder. When we apply a human motion to a 9 Discussion

figure with a different structure, there are creative choices in how

the motion applies. What will the character use for knees? How do In this paper we presented an approach to retargetting motions from
we choose a motion for the parts of the character that the humanone character to another by posing the problem of computing an
does not have? These creative choices correspond to mathematicaldaptation as a constrained optimization. To realize the approach
problems: there may be different types of degrees of freedom, andin a practical manner, we used geometric constraints and a simple
there may be different numbers of degrees of freedom. objective function. This pragmatic strategy dodges difficulties in

Figure 9: Two frames are shown of a swing dance motion adapted to a smaller
female character. Left: original motion. Center: only female motion adapted. Right:
both characters adapted.

large in comparison to the resized character.

When there are two characters in a scene, we may wish to adap
both together, even if only one changes size. For example, consider
the swing dance motion in Figure 9. In this motion, the hands of
the two characters must remain connected, in addition to the foot-



Figure 10: The female character morphs into a smaller character during her spin.

using spacetime constraints. We compute retargettings of complex [6]
motions despite: not having developed mathematical encodings of
concepts such as “grace” and “Charlie—Chaplin—ness” in motion;
not having presented too many choices of constraints and objectives [7]
to users; and not having solved optimization problems for which we
do not have efficient solution methods.

While our pragmatism pays off in the practicality of the method,
we sometimes pay a cost in the quality of the resulting motions.
Some of the problems we see are artifacts of the specific simple ob- [9]
jective we have chosen and our reliance on simple frequency lim-
its on the adaptations. For instance, in the example of Figure 1
the balance between reaching, bending, and positioning is choser{10]
by artifacts of the representation of the character’s configuration
and different spatial frequencies in reaching and walking make se-
lection of a single frequency limit for the adaptation problematic.
Other problems occur because we have no guarantees on the manit1]
properties we do not explicity model in our constraints and ob- [12]
jective. For instance, our lack of physics constraints can lead to
unrealistic situations like Figure 8 and the right image of Figure 1.
Richer sets of constraints and objective functions, combined with [13]
improved solvers for the resulting numerical problems and tech-
nigues to avoid the burden of specification, would cause our ap-
proach to provide better results for a wider range of motions.
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