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What’s CUDA?

CUDA = Compute Unified Device Architecture

I GPGPU technology
1. Hardware technology
2. Software technology
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CUDA: the hardware side

I GeForce / Quadro (8-series) graphics card
I Desktops, notebooks

I Tesla (C/D/S-870) high performance computing (HPC) solution
I Workstations, servers, clusters
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CUDA: the software side

I CUDA software stack
1. Hardware layer
2. Application Programming Interface (API)

I C language extension
3. Higher level mathematical/programming libraries

I CUBLAS, CUFTT, CUDPP, . . .
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CPU vs GPU Performance

1. Why GPUs are so fast?
2. Why can’t we replace CPUs with GPUs?

I When can we use the GPU instead of the CPU?
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Real-time rendering

I Graphics hardware enables real-time rendering

I Main goal
I Transform a collection of 3D primitives (triangles, lines, points) . . .
I . . . into an array of pixels
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Logical graphics pipeline

I Very close to the graphics libraries (OpenGL, DirectX) pipeline
I Vertex transformation ≈ perspective projection
I Fragment operations ≈ shaders evaluation
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Semi-fixed graphics pipeline

I Two programmable units
1. Vertex processor
2. Fragment processor

I The raster unit is fixed
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CPU vs GPU architecture

I GPUs are specialized for highly parallel, compute-intensive computation
1. Same computation = lower requirement for flow control
2. Arithmetic intensity (memory access latency hiding) vs big data caches

CPU GPU

SIMD (Single Instruction Multiple Data) architecture
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Computer organization

I The graphics card can be used as a coprocessor
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CPU-GPU cooperation

I CPU-GPU communication via PCI Express bus
I CPU and GPU each have their own memory spaces

CPU System memory

GPU GPU memory

PCI Express bus

I CPU is the host, GPU is the device
1. CPU sends data to the GPU
2. GPU processes data
3. CPU copies data back from the GPU
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GeForce 6-series architecture

I Specialized units (SIMD architecture)
1. Vertex processors
2. Fragment processors

I GPU memory interface up to 35 GB/s
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Legacy GPGPU approach

I General purpose applications must be mapped on the graphical pipeline
1. GPGPU algorithms = multi-pass rendering
2. Algorithms written using shading languages (GLSL, CG, . . . )
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The unified architecture

I Specialized units vs general purpose processors

Buffer Buffer Buffer

Buffer Buffer Buffer

Shader A

Shader B

Shader C

Discrete design Unified design

Shader Core

I Unified design
I Better workload balancing
I (More) independent of the logical pipeline
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GeForce 8-series architecture

I General purpose multiprocessors (SIMD architecture)
I No Vertex / Fragment specialization

I GPU memory interface up to 90 GB/s
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Multiprocessors

I Up to 16 multiprocessors per card
I Each multiprocessor can execute a

warp of threads
I Lightweight threads
I Warp = 32 threads

I SIMD thread execution
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Memory architecture

I One set of local 32-bit registers
per-processor

I A shared memory, shared by all the
processors

I A read-only constant cache, to
speeds-up reads from the constant
memory space

I A read-only texture cache,to
speeds-up reads from the constant
memory space
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Blocks and grids

I Block = one-, two- or three-
dimensional array of threads

I Grid = one-, two- or three-
dimensional array of blocks
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Threads batching

I A block is processed by only one
multiprocessor

I Each block is split into warps
(consecutive IDs)

I Several blocks can be processed by
the same multiprocessor
concurrently

I Registers and shared memory

I No-synchronization mechanism
between blocks
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Programming model
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Gather and scatter

Gather

Scatter
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PTX Code

C / C++ 

CUDA Application

NVCC

PTX code

PTX to Target

Compiler

PTX code

G80 GPU

1. CUDA Applications written in
(extended) C language

2. NVCC: NVIDIA CUDA compiler
based on Open64

3. PTX = Parallel Thread eXecution
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Extended C language

I Explicit GPU memory allocation (only from CPU!)
I cudaMalloc(. . . )
I cudaFree()

I Memory copy between host and device
I cudaMemcpy(. . . )
I cudaMemcpy2D(. . . )

I Function execution on GPU
I __global__ void myKernelFunction(. . . );

I Explicit shared memory allocation
I __shared__ int mySharedVariable;

I Kernel launch (CPU → GPU)
I myKernelFunc < < < gridSize, blockSize, sharedMem > > >
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