
Introduction GPGPU GPU Architecture Programming model

CUDA architecture

Massimiliano Piscozzi

Università degli Studi di Milano

June 2008

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Outline

Introduction

GPGPU

GPU Architecture

Programming model

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Outline

Introduction

GPGPU

GPU Architecture

Programming model

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

What’s CUDA?

CUDA = Compute Unified Device Architecture

I GPGPU technology
1. Hardware technology
2. Software technology

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

CUDA: the hardware side

I GeForce / Quadro (8-series) graphics card
I Desktops, notebooks

I Tesla (C/D/S-870) high performance computing (HPC) solution
I Workstations, servers, clusters

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

CUDA: the software side

I CUDA software stack
1. Hardware layer
2. Application Programming Interface (API)

I C language extension
3. Higher level mathematical/programming libraries

I CUBLAS, CUFTT, CUDPP, . . .

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Outline

Introduction

GPGPU

GPU Architecture

Programming model

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

CPU vs GPU Performance

1. Why GPUs are so fast?
2. Why can’t we replace CPUs with GPUs?

I When can we use the GPU instead of the CPU?

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Real-time rendering

I Graphics hardware enables real-time rendering

I Main goal
I Transform a collection of 3D primitives (triangles, lines, points) . . .
I . . . into an array of pixels

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Logical graphics pipeline

I Very close to the graphics libraries (OpenGL, DirectX) pipeline
I Vertex transformation ≈ perspective projection
I Fragment operations ≈ shaders evaluation

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Semi-fixed graphics pipeline

I Two programmable units
1. Vertex processor
2. Fragment processor

I The raster unit is fixed

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

CPU vs GPU architecture

I GPUs are specialized for highly parallel, compute-intensive computation
1. Same computation = lower requirement for flow control
2. Arithmetic intensity (memory access latency hiding) vs big data caches

CPU GPU

SIMD (Single Instruction Multiple Data) architecture

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Outline

Introduction

GPGPU

GPU Architecture

Programming model

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Computer organization

I The graphics card can be used as a coprocessor

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

CPU-GPU cooperation

I CPU-GPU communication via PCI Express bus
I CPU and GPU each have their own memory spaces

CPU System memory

GPU GPU memory

PCI Express bus

I CPU is the host, GPU is the device
1. CPU sends data to the GPU
2. GPU processes data
3. CPU copies data back from the GPU

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

GeForce 6-series architecture

I Specialized units (SIMD architecture)
1. Vertex processors
2. Fragment processors

I GPU memory interface up to 35 GB/s

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Legacy GPGPU approach

I General purpose applications must be mapped on the graphical pipeline
1. GPGPU algorithms = multi-pass rendering
2. Algorithms written using shading languages (GLSL, CG, . . . )

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

The unified architecture

I Specialized units vs general purpose processors

Buffer Buffer Buffer

Buffer Buffer Buffer

Shader A

Shader B

Shader C

Discrete design Unified design

Shader Core

I Unified design
I Better workload balancing
I (More) independent of the logical pipeline

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

GeForce 8-series architecture

I General purpose multiprocessors (SIMD architecture)
I No Vertex / Fragment specialization

I GPU memory interface up to 90 GB/s

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Multiprocessors

I Up to 16 multiprocessors per card
I Each multiprocessor can execute a

warp of threads
I Lightweight threads
I Warp = 32 threads

I SIMD thread execution

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Memory architecture

I One set of local 32-bit registers
per-processor

I A shared memory, shared by all the
processors

I A read-only constant cache, to
speeds-up reads from the constant
memory space

I A read-only texture cache,to
speeds-up reads from the constant
memory space

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Outline

Introduction

GPGPU

GPU Architecture

Programming model

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Blocks and grids

I Block = one-, two- or three-
dimensional array of threads

I Grid = one-, two- or three-
dimensional array of blocks

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Threads batching

I A block is processed by only one
multiprocessor

I Each block is split into warps
(consecutive IDs)

I Several blocks can be processed by
the same multiprocessor
concurrently

I Registers and shared memory

I No-synchronization mechanism
between blocks

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Programming model

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Gather and scatter

Gather

Scatter

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

PTX Code

C / C++ 

CUDA Application

NVCC

PTX code

PTX to Target

Compiler

PTX code

G80 GPU

1. CUDA Applications written in
(extended) C language

2. NVCC: NVIDIA CUDA compiler
based on Open64

3. PTX = Parallel Thread eXecution

CUDA architecture Massimiliano Piscozzi



Introduction GPGPU GPU Architecture Programming model

Extended C language

I Explicit GPU memory allocation (only from CPU!)
I cudaMalloc(. . . )
I cudaFree()

I Memory copy between host and device
I cudaMemcpy(. . . )
I cudaMemcpy2D(. . . )

I Function execution on GPU
I __global__ void myKernelFunction(. . . );

I Explicit shared memory allocation
I __shared__ int mySharedVariable;

I Kernel launch (CPU → GPU)
I myKernelFunc < < < gridSize, blockSize, sharedMem > > >

CUDA architecture Massimiliano Piscozzi


	Introduction
	

	GPGPU
	

	GPU Architecture
	

	Programming model
	


