
When selected, PCSpim for Windows will record the position of its windows when you exit, and restore
them to the same location the next time you run PCSpim.

• Bare machine

When selected, you can simulate a bare MIPS machine without pseudoinstructions or the additional
addressing modes provided by the assembler.

• Allow pseudo instructions

If this setting is selected, pseudoinstructions are allowed in your program; otherwise, if the setting is not
selected, they are not allowed.

• Load trap file

If this setting is selected, the standard exception handler and start-up code is loaded.  When an exception
occurs, SPIM jumps to location  80000080hex, which must contain code to service the exception. In
addition, the trap handler contains start-up code that invokes the routine main. Without the start-up rou-
tine, SPIM begins execution at the instruction labeled __start. The default trap file comes with PCSpim,
but you can choose another using Browse button.

• Mapped I/O

If this setting is selected, the memory-mapped I/O facility is enabled. Programs that use SPIM syscalls to
read from the terminal cannot also use memory-mapped I/O.

• Quiet

When this setting is enabled, PCSpim does not print a message at exceptions; otherwise, a message is
printed when an exception occurs.



PCSpim performs other functions that are occasionally useful. When you are more comfortable with
PCSpim, you should look at the description in the online help to see what they do and how they can save you
time and effort. You can view the online help available with the simulator by selectingHelp->Help_topics
from the menu bar.

Simulator Setting

PCSpim has a graphical interface to view the current setting of the simulator  (see FigureA.2). When
you start PCSpim, you do not have to enter with any command line parameters. However, you should check
your simulator settings either on PCSpim’s status bar or the simulator setting dialog box before you load
your program. To view or change PCSpim settings in the simulator setting dialog box, selectSimulator-
>Settings from the menu bar.

It is very important to set the simulator in the correct setting for your program. PCSpim determines how
to load and how your program executes from these settings, so an incorrect setting may cause errors when
you run your program. If the simulator setting is incorrect and the program is unable to load correctly,
PCSpim allows you to change the simulator settings and reload your program. If you want to change
PCSpim settings after you load your program, you should reload your program by selectingSimulator-
>Reload from the menu bar.

The following paragraphs describes the operation of each of the settings in the simulator setting dialog
box shown in Figure A.2. Most of the functions are similar to SPIM, its counterparts in the terminal interface
version without the graphical interface.

• Display

You can select to view the register contents in decimal or hexidecimal notation.  If the check boxes for
general registers or floating point registers are selected, a check mark will appear and the register con-
tents will be displayed in hexidecimal notation.

• Save window positions

Figure A.2. PCSpim simulator setting dialog box



[0x00400000]  0x8fa40000      lw  $4,  0 ($29);     89: lw $a0, 0($sp)

The first number on the line, in square brackets, is the hexadecimal memory address of the instruction.
The second number is the instruction’s numerical encoding, again displayed as a hexadecimal number. The
third item is the instruction’s mnemonic description. Everything following the semicolon is the actual line
from your assembly file that produced the instruction. The number 89 is the line number in that file. Some-
times nothing is on the line after the semicolon. This means that the instruction was produced by SPIM as
part of translating a pseudoinstruction.

To run your program, click on theGo button in the toolbar. Alternatively, you can select Simulator->Go
from the menu bar. Your program will begin execution. If you want to stop the execution of your program,
selectSimulator->Break from the menu bar. Alternatively, you can typeControl-C when PCSpim applica-
tion window is in focus. A dialog box will appear and ask if you want to continue execution. SelectNo to
break the execution. Before doing anything, you can look at memory and registers contents in the Register
display window to find out what your program was doing. When you understand what happened, you can
either continue the program by selectingSimulator->Continue or stop your program by selectingSimulator-
>Break from the menu bar.

If your program reads or writes from the terminal, PCSpim pops up another window called the console.
All characters that your program writes appear on the console, and everything that you type as input to your
program should be typed in this window.

Suppose your program does not do what you expect. What can you do? SPIM has two features that help
debug your program. The first, and perhaps the most useful, is single-stepping, which allows you to run your
program an instruction at a time. SelectSimulator->Single_Step to execute only one instruction. Alterna-
tively, you can press the F10 function key to single step. Each time you step through a program, PCSpim will
execute the next instruction in your program, updates the display, and returns control to you. You can also
choose the number of instructions in your program to step by selectingSimulator->Multiple_Step instead of
single stepping through your program. A dialog box will appear and ask you the number of instructions to
step.

What do you do if your program runs for a long time before the bug arises? You could single-step until
you get to the bug, but that can take a long time, and it is easy to get so bored and inattentive that you step
past the problem. A better alternative is to use a breakpoint, which tells PCSpim to stop your program imme-
diately before it executes a particular instruction. SelectSimulator->Breakpoints from the menu bar. The
PCSpim program pops up a dialog box window with two boxes. The top box is for you to enter breakpoint
address and the second box is a list of active breakpoints. Type in the first box the address of the instruction
at which you want to stop. Or, if the instruction has a global label, you can just type the name of the label.
Labeled breakpoints are a particularly convenient way to stop at the first instruction of a procedure. To actu-
ally set the breakpoint, and click on the button labeledAdd. When you are done adding breakpoints, click on
the button labeledClose. You can then run your program.

When the simulator is about to execute the breakpointed instruction, PCSpim pops up a dialog box with
the instruction’s address and asks if you want to continue the execution. TheYes button continues running
your program and theNo button stops your program. If you want to delete a breakpoint, you can selectSim-
ulator->Breakpoints from the menu bar, click on the address in the dialog box, and click on the button
labeledRemove.

Single-stepping and setting breakpoints will probably help you find a bug in your program quickly. How
do you fix it? Go back to the editor that you used to create your program and change your source file.  After
you have made the changes to your source file, simply reload it into PCSpim for Windows by choosingSim-
ulator->Reload<filename> from the menu bar. This causes PCSpim to clear its memory and registers and
return the processor to the state it was in when PCSpim first started. Once the simulator has reinitialized
itself, it will reload your recently modified file.



-asm Simulate the virtual MIPS machine provided by the assembler. This is the default.

-pseudo Allow the input assembly code to contain pseudoinstructions. This is the default.

-nopseudo Do not allow pseudoinstructions in the input assembly code.

-notrap Do not load the standard exception handler and start-up code. This exception handler
handles exceptions. When an exception occurs, SPIM jumps to location 80000080hex,
which must contain code to service the exception. In addition, this file contains start-
up code that invokes the routine main. Without the start-up routine, SPIM begins exe-
cution at the instruction labeled __start.

-trap Load the standard exception handler and start-up code. This is the default.

-noquiet Print a message when an exception occurs. This is the default.

-quiet Do not print a message at exceptions.

-nomapped_io Disable the memory-mapped I/O facility. This is the default.

-mapped_io Enable the memory-mapped I/O facility. Programs that use SPIM syscalls to read
from the terminal cannot also use memory-mapped I/O.

-file Load and execute the assembly code in the file.

-execute Load and execute the code in the MIPS executable filea.out. This command is only
available when SPIM runs on a system containing a MIPS processor.

-s <seg> size Sets the initial size of memory segmentseg to besize bytes. The memory segments
are named:text, data, stack, ktext, and kdata. The text segment contains instructions
from a program. The data segment holds the program’s data. The stack segment holds
its runtime stack. In addition to running a program, SPIM also executes system code
that handles interrupts and exceptions. This code resides in a separate part of the
address space called thekernel. The ktext segment holds this code’s instructions, and
kdata holds its data. There is no kstack segment since the system code uses the same
stack as the program. For example, the pair of arguments -sdata 2000000 starts the
user data segment at 2,000,000 bytes.

-l <seg> size Sets the limit on how large memory segmentseg can grow to besize bytes. The mem-
ory segments that can grow are data, stack, and kdata.

Loading and Running a Program

Let’s see how to load and run a program. The first thing to do is to select the open file icon from the
toolbar. Alternatively, you can select from the menu bar: File->Open. A file open dialog box will appear for
you to select the appropriate assembly file. Select the appropriate assembly file and click on the button
labeledOpen in the dialog box. If simulator settings are not correct for the file, and it fails to load, PCSpim
will provide you an opportunity to change simulator settings and automatically reload the file.

If you change your mind, click on the button labeledCancel, and PCSpim removes the dialog box.
When you load an assembly file, PCSpim removes dialog box, then loads your program and redraws the
screen to display its instructions and data. If you have not done so, change the view of the four display win-
dows to a tiled format by selecting from the menu bar:Windows->Tile. You should be able to see the pro-
gram in the Text segment window display.

Each instruction in the Text segment window display is shown on a line that looks like



• The Status bar section is at the bottom of the application window. The status bar provides information
and the current settings of the simulator.

SPIM Command-Line Options

The Windows version of SPIM accepts the following command-line options:

-bare Simulate a bare MIPS machine without pseudoinstructions or the additional address-
ing modes provided by the assembler. Implies quiet.

Figure A.1.  PCSpim’s window interface



Getting Started with SPIM

The rest of this appendix contains a complete and rather detailed description of SPIM. Many details
should never concern you; however, the sheer volume of information can obscure the fact that SPIM is a
simple, easy-to-use program. This section contains a quick tutorial on SPIM that should enable you to load,
debug, and run simple MIPS programs.

SPIM comes in multiple versions. One version, called spim, is a command-line-driven program and
requires only an alphanumeric terminal to display it. It operates like most programs of this type:you type a
line of text, hit the enter key, and spim executes your command.

A fancier version, called xspim, runs in the X-windows environment of the Unix system and therefore
requires a bit-mapped display to run it. xspim, however, is a much easier program to learn and use because
its commands are always visible on the screen and because it continually displays the machine’s registers.
Another version, PCSpim, is compatible with Windows 3.1, Windows 95, and Windows NT. The Unix, Win-
dows, and DOS versions of SPIM are available throughwww.mkp.com/cod2e.htm. This section of the docu-
ment describes PCSpim, the Windows version of SPIM under Windows 95.

Installation and Graphic Interface Description

To install the Windows version of SPIM, you can download the installation file,spimwin.exe, through
www.mkp.com/cod2e.htm. Execute the installation file and follow the installation procedure. In Windows 95,
you can simply activate the icon associated with the file just like any Windows program, or you can select
Start->Run and type in the directory path and filename. The installation program will execute and inform
you when the installation process is complete. When the installation is complete, a group folder with execut-
able file, help files, and uninstaller program is created.

To start PCSpim for Windows, you simply activate the icon labeledPCSpim for Windows like any other
Windows program. For example, in Windows 95, you can use selectStart->Programs->PCSpim for Win-
dows ->PCSpim for Windows from the Windows 95 task bar.  In Windows 3.1, you can select the application
from the File Manager.

When PCSpim starts up, it brings up a large window on your screen (see FigureA.1). The application
window is divided into four parts:

• The top section is the menu bar. The menu bar allows you to selectFile operations, setSimulator set-
tings, selectWindows views, and obtain onlineHelp information.

• The next section below the menu bar is the toolbar. The toolbar provides quick mouse access to many
tools used in PCSpim for Windows.

• The large section in the middle of the application window is the window display section. There are
four display windows: Registers, Text Segment, Data Segment, and Messages. To change the view of
these four windows, you can select a tiled view from the menu bar:Windows->Tile. All of the display
windows will be empty when you first execute the program. The following list describes each display
window.

• The Register window display shows the values of all registers in the MIPS CPU and FPU.

• The Text Segment window display shows instructions both from your program and the system
code that is loaded automatically when PCSpim is running.

• The Data Segment window display shows the data loaded into your program’s memory and the
data of the program’s stack.

• The Messages window display is the where PCSpim uses to write messages. This is where error
messages appear.


