

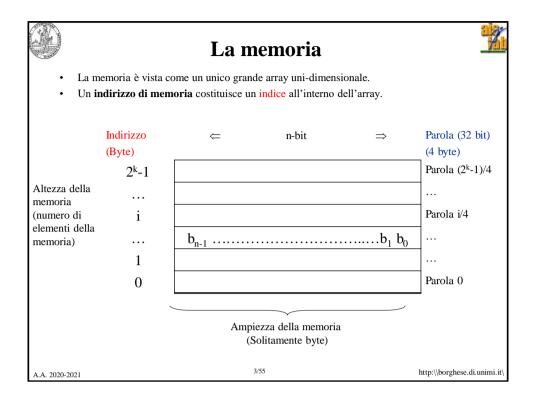
ISA e linguaggio assembler

Prof. Alberto Borghese Dipartimento di Informatica

borghese@di.unimi.it

Università degli Studi di Milano Riferimento sul Patterson: capitolo 4.2, 4.4, D1, D2.

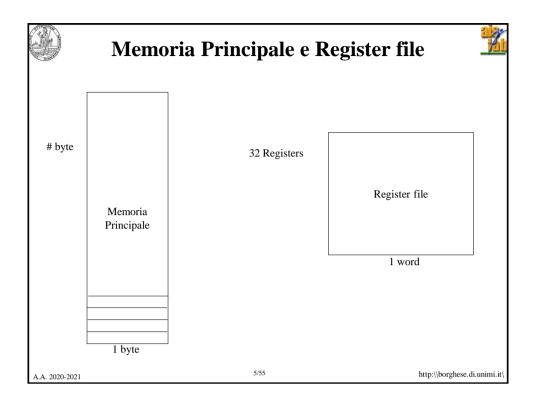
A.A. 2020-2021 1/55 http://borghese.di.unimi.it/



Sommario

- Istruzioni di accesso alla memoria
- · Istruzioni di salto
- I tipi di istruzioni: il formato R
- I tipi di istruzioni: il formato I
- I tipi di istruzioni: il formato J

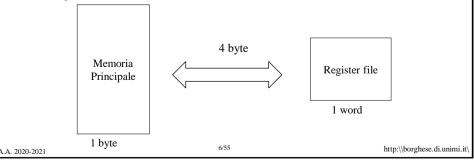
A 2020-2021 2/55 http://borghese.di.unimi.it/

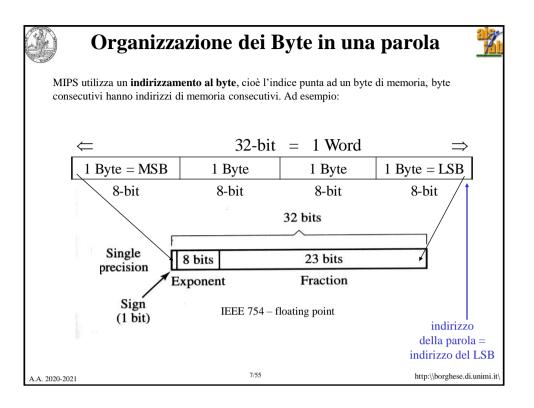


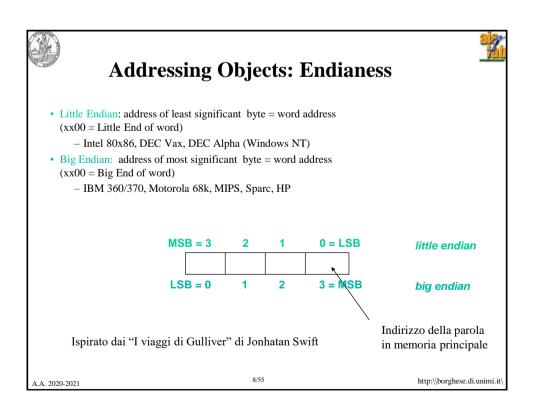
Indirizzi nella memoria principale

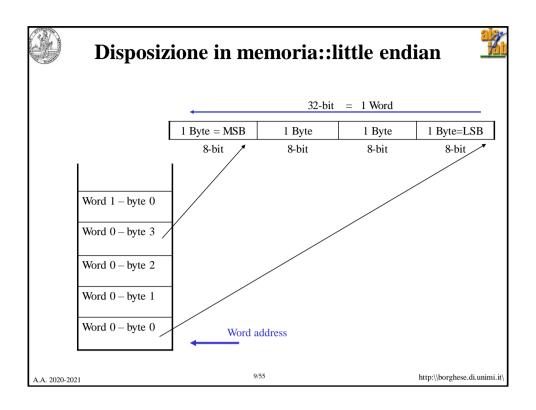
- La memoria è organizzata in parole composte da n-bit che possono essere indirizzate come un unicum.
- Ogni parola di memoria è associata ad un indirizzo composto da k-bit.
- I 2^k indirizzi costituiscono lo *spazio di indirizzamento* del calcolatore. Ad esempio un indirizzo di memoria composto da 32-bit genera uno spazio di indirizzamento di 2³² Byte o 4Gbyte.

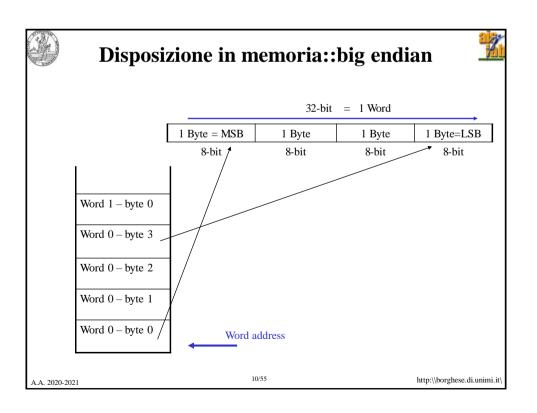
A A 2020-2021 4/55 http:\\borghese.di.unimi.it\






Memoria Principale e parole




- In genere, la dimensione della parola di memoria (1 Byte) non coincide con la dimensione dei registri contenuti all'interno della CPU (1 word)
- Supponiamo che a ogni trasferimento tra Memoria Principale e Registri, venga trasferito
 contemporaneamente in parallelo un numero di Byte pari alla dimensione dei registri
 dell'architettura (1 word).
 - ⇒ l'operazione di *load/store* di una parola avviene in un singolo ciclo di clock del bus.
 - => Vengono trasferiti in parallelo 4 Byte
- Le parole hanno quindi generalmente indirizzo in memoria che è multiplo di del numero di byte di una parola (32 bit = 4, 64 bit = 8).
- I dati possono essere rappresentati su singolo Byte (e.g. caratteri) o su coppie di Byte (e.g. audio).
 Nasce un problema di allineamento dei dati.

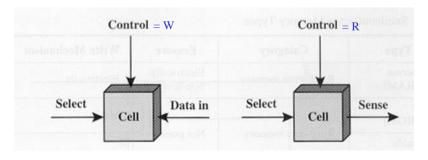
Istruzioni di trasferimento dati

- Gli operandi di una istruzione aritmetica devono risiedere nei registri (architettura load/store) che sono in numero limitato (32 nel MIPS). I programmi in genere richiedono un numero maggiore di variabili.
- Cosa succede ai programmi i cui dati richiedono più di 32 registri (32 variabili)?
 Alcuni dati risiederanno in memoria.
- La tecnica di trasferire le variabili meno usate (o usate successivamente) in memoria viene chiamata *Register Spilling*.

Servono istruzioni apposite per trasferire dati da memoria a registri e viceversa

A.A. 2020-2021

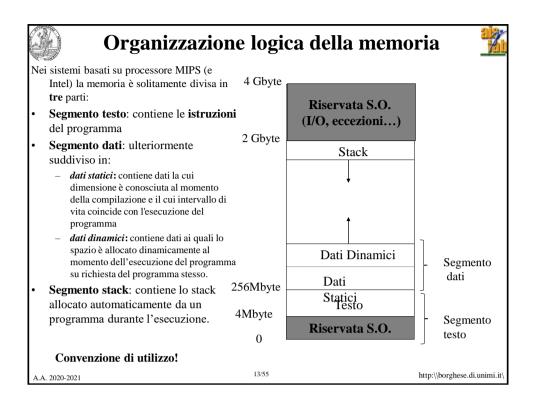
http://borghese.di.unimi.it/

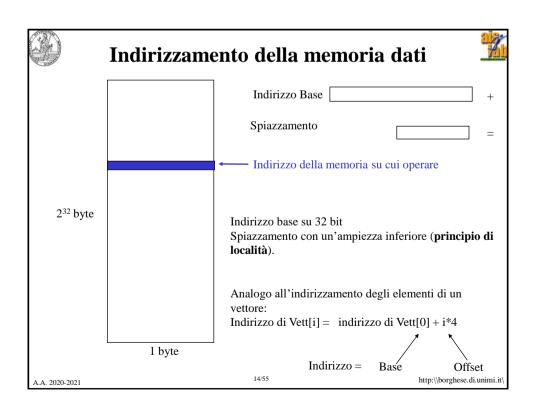


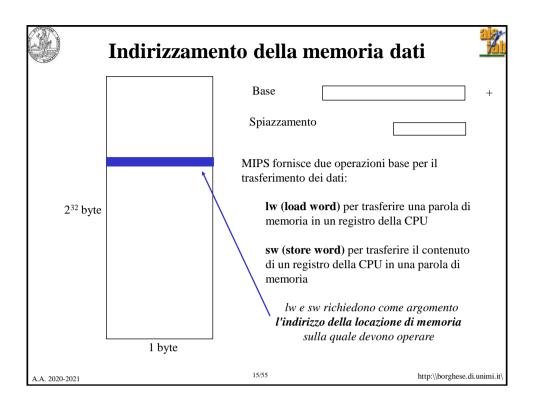
Cella di memoria

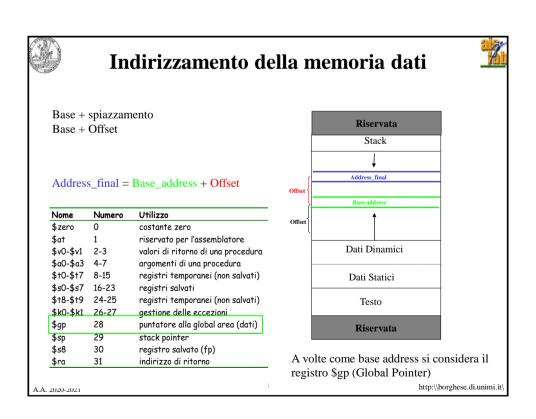
La memoria è suddivisa in celle, ciascuna delle quali assume un valore binario stabile. Si può scrivere il valore 0/1 in una cella.

Si può leggere il valore di ciascuna cella.




Control (lettura – scrittura) Select (selezione) Data in oppure Data out (sense)


Base


A.A. 2020-2021

12/55

Istruzione load

 L'istruzione di load trasferisce una copia di un dato/istruzione, contenuto in una specifica locazione di memoria, a un registro della CPU, lasciando inalterata la parola di memoria:

load LOC, reg

reg ← [LOC]

- La CPU invia l'indirizzo della locazione desiderata alla memoria e richiede un'operazione di lettura del suo contenuto.
- La memoria effettua la lettura del dato memorizzato all'indirizzo specificato e lo invia alla CPU.

A.A. 2020-2021 17/55 http:\\borghese.di.unimi.it\

Implementazione MIPS

Nel MIPS l'istruzione di caricamento di un dato dalla memoria è: "load word" (lw):

- Nel MIPS, l'istruzione lw ha tre argomenti:
 - un registro base (base register) che contiene il valore dell'indirizzo base (base address) da sommare all'offset.
 - una costante o spiazzamento (offset)
 - il registro destinazione in cui caricare la parola letta dalla memoria

lw \$s1, 100(\$s2) # \$s1 \leftarrow M[[\$s2] + 100]

Al registro destinazione \$s1 è assegnato il valore contenuto all'indirizzo della memoria principale: (\$s2 + 100). L'indirizzo è espresso in byte.

LA. 2020-2021 18/55 http://borghese.di.unimi.it/

Istruzione di sw

 L'istruzione di store trasferisce una parola di dato/istruzione da un registro della CPU in una specifica locazione di memoria, sovrascrivendo il contenuto precedente di quella locazione:

store reg, LOC

[LOC] ← reg

- La CPU invia l'indirizzo della locazione di memoria, assieme con i dati che vi devono essere scritti e richiede un'operazione di scrittura.
- La memoria effettua la scrittura dei dati all'indirizzo specificato.

L'istruzione MIPS per la scrittura di un registro in memoria è la sw (store word). Essa possiede argomenti analoghi alla lw

Esempio:

```
sw $s1, 100($s2) # M[ [$s2] + 100 ] \leftarrow $s1
```

Alla locazione di memoria di indirizzo (\$s2 + 100) è caricato il contenuto del registro \$s1

lw & sw: esempio

Elaborazione di dati di un vettore A.

Codice C:
$$A[12] = h + A[8];$$

- · Si suppone che:
 - la variabile **h** sia associata al registro **\$s2**
 - l'indirizzo del primo elemento dell'array (base address) sia contenuto nel registro \$s3 (A[0])

Codice MIPS:

```
1w $t0, 32($s3) # $t0 \leftarrow M[ [$s3] + 32]
add $t0, $s2, $t0 # $t0 \leftarrow $s2 + $t0
sw $t0, 48($s3) # M[ [$s3] + 48] \leftarrow $t0
```

A 2020 2021 20/55

Memorizzazione di un vettore

- L'elemento **i-esimo** di un array di N elementi, si troverà nella locazione **br + 4 * i** dove:
 - **br** è il registro base;
 - i è l'indice del vettore (e.g. codice C);
 - il fattore 4 dipende dall'indirizzamento al byte della memoria nel MIPS e si riferisce ad architetture a 32 bit

(puntatori)	C
s3	A[0]
s3 + 4	A[1]
s3 + 8	A[2]

A[0]	3	2	1	0
A[1]	7	6	5	4
A[2]	11	10	9	8
A[N-1]	2 ^{N*4} -1	2 ^{N*4} -2	2 ^{N*4} -3	2 ^{(N-1)*4}

0x40008

0x40000 0x40004

A.A. 2020-2021

21/55

http:\\borghese.di.unimi.it\

Frammento di gestione di un vettore

- Sia A un array di N word. Realizziamo l'istruzione C:
- g = h + A[i]

- Si suppone che:
 - le variabili g, h, i siano associate rispettivamente ai registri \$\$1, \$\$2, ed \$\$4
 - l'indirizzo del primo elemento dell'array (base address) sia contenuto nel registro \$s3
- L'elemento i-esimo dell'array si trova nella locazione di memoria di indirizzo (\$s3+ 4*i)
- Caricamento dell'indirizzo di A[i] nel registro temporaneo \$t1:

• Per trasferire A[i] nel registro temporaneo \$t0:

lw \$t0, 0(\$t1) # \$t0 ← A[i]

• Per sommare h e A[i] e mettere il risultato in g:

add \$s1, \$s2, \$t0 # g = h + A[i

A.A. 2020-2021

22/55

Vettori: aritmetica dei puntatori

Codice C:

for (i=0; i<N; i+=2) q = h + A[i];

Supponiamo che l'indirizzo del primo elemento dell'array A (base address) sia contenuto nel registro \$s3

Codice Assembler:

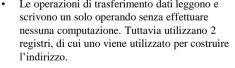
First iteration:

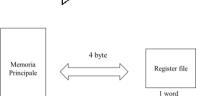
lw \$t0, 0(\$s3) # Carico l'indirizzo dell'elemento 0 di A (base address)

All the other iterations:

addi \$s3, \$s3, 8 # Carico l'elemento successivo (+=2) lw \$t0, 0(\$s3)

Increment of the address of the location of A[i], inside \$s3, by adding the proper offset (here 4 Byte * 2 elements = 8 Byte, as we supposed a 32 bit architecture)


23/55 http:\\borghese.di.unimi.it\ A.A. 2020-2021


Istruzioni aritmetiche vs. load/store

- Le istruzioni aritmetiche leggono il contenuto di due registri (operandi), eseguono una computazione e scrivono il risultato in un terzo registro (destinazione o risultato)
 - Overflow Le operazioni di trasferimento dati leggono e

Le operazioni di trasferimento dati sono necessarie per eseguire le istruzioni aritmetiche!! (cf. Roof model)

. Risultato

http:\\borghese.di.unimi.it\

A.A. 2020-2021

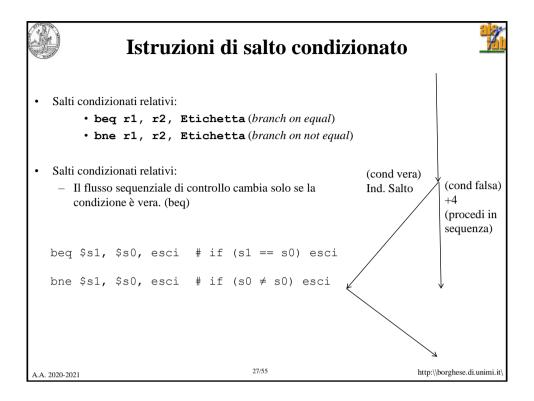
24/55

1 byte

Sommario

- Istruzioni di accesso alla memoria
- Istruzioni di salto
- I tipi di istruzioni: il formato R
- I tipi di istruzioni: il formato I
- I tipi di istruzioni: il formato J

A.A. 2020-2021 25/55 http:\\borghese.di.unimi.it\

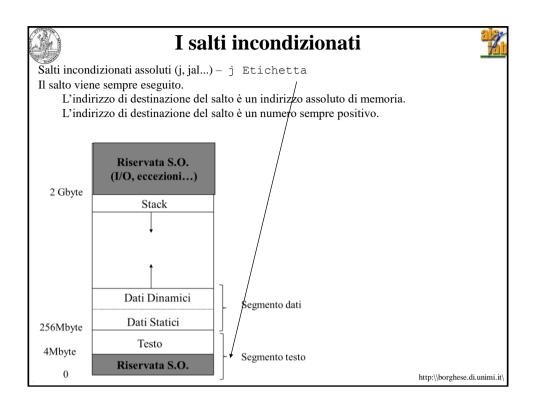

Istruzioni di salto in ciclo for

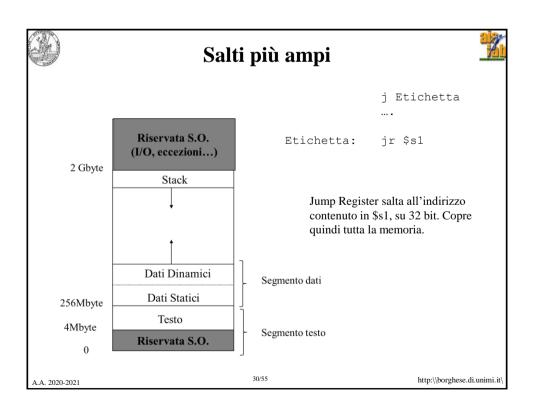
Ciclo a condizione iniziale di uscita (può essere eseguito 0 volte)

```
for (i=0; i<N; i++)
                             // Istruzioni di controllo
   elem = i*N + j;
                             // Istruzioni aritmetico-logiche
   s = v[elem];
                             // Istruzioni di accesso a memoria
   z[elem] = s;
                             // Istruzioni di accesso a memoria
}
inizia:
          0x40000 beq $t0, $s0, esci
                                                 // $s0 conteggio fine ciclo
          0x40004 ..
          0x40068 j inizia
                                                  ; torna in ciclo
esci:
```

A.A. 2020-2021 26/55 http:\\borghese.di.unimi.it\

Condizioni di minoranza


```
blt $s1, $s0, esci # if (s1 < s0) esci
```


bgt è una pseudo-istruzione:

- Non fa parte dell'ISA
- E' un'istruzione molto utilizzata
- Equivale a due o più istruzioni dell'ISA

```
slt $t0, $s1, $s0  # if (s1 < s0) t0 = 1 bne $t0, $zero, esci  # if (t0 \neq 0) esci
```

A.A. 2020-2021 28/55 http://borghese.di.unimi.it/

Sommario

- · Istruzioni di accesso alla memoria
- Istruzioni di salto
- I tipi di istruzioni: il formato R
- I tipi di istruzioni: il formato I
- I tipi di istruzioni: il formato J

A.A. 2020-2021 31/55 http:\\borghese.di.unimi.it\

Codifica delle istruzioni

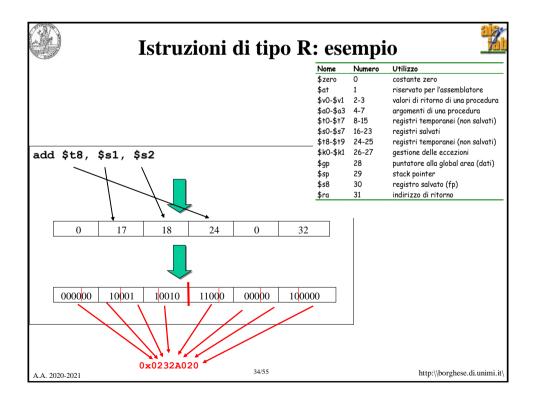
- Tutte le istruzioni MIPS hanno la stessa dimensione (32 bit) Architettura RISC.
- I 32 bit hanno un significato diverso a seconda del formato (o tipo) di istruzione
 - il tipo di istruzione è riconosciuto in base al valore di alcuni bit (6 bit) più significativi (codice operativo - OPCODE)
- Le istruzioni MIPS sono di 3 tipi (formati):
 - Tipo R (register) Lavorano prevalentemente su 3 registri.
 - · Istruzioni aritmetico-logiche.
 - Tipo I (immediate) Lavorano su 2 registri. L'istruzione è suddivisa in un gruppo di 16 bit contenenti informazioni + 16 bit riservati ad una costante.
 - Istruzioni di accesso alla memoria o operazioni con una costante.
 - Tipo J (jump) Lavora senza registri: codice operativo + indirizzo di salto.
 - Istruzioni di salto incondizionato.

	6-bit	5-bit	5-bit	5-bit	5-bit	6-bit				
R	op	rs	rt	rd	shamt	funct				
I	op	rs	rt	Indirizzo / costante						
J	op		Indirizzo / costante							

A.A. 2020-2021 32/55 http://borghese.di.unimi.it/

Formato delle istruzioni di tipo R

(32 registri)


Contiene:

- Un codice operativo su 6 bit
- Un registro source, rs, su 5 bit
 - Un registro target, rt, su 5 bit (32 registri)
- - Un registro destinazione, rd, su 5 bit (32 registri) Un numero di posizioni di shift (shift amount, shamt), su 5 bit
- Un codice di funzione (cf. selettore ALU), su 6 bit

	6-bit	5-bit	5-bit	5-bit	5-bit	6-bit
R	op	rs	rt	rd	shamt	funct

A.A. 2020-2021

33/55

Istruzioni di tipo R: esempi

Nome campo	Ор	Rs	rt	rd	Shamt	Funct	
Dimensione	6-bit	5-bit	5-bit	5-bit	5-bit	6-bit	
add \$t8, \$s1, \$s2	000000	10001	10010	11000	00000	100010	
Nome campo	op	rs	rt	rd	shamt	funct	
Dimensione	6-bit	5-bit	5-bit	5-bit	5-bit	6-bit	
sub \$t8, \$s1, \$s2	000000	10001	10010	11000	00000	100010	
Nome campo	ор	rs	rt	rd	shamt	funct	
Dimensione	6-bit	5-bit	5-bit	5-bit	5-bit	6-bit	
and \$s1, \$s2, \$s3	000000	10010	10011	10001	00000	100100	
Nome campo	ор	rs	rt	rd	shamt	funct	•
Dimensione	6-bit	5-bit	5-bit	5-bit	5-bit	6-bit	•
sll \$s1, \$s2, 3	000000	Χ	10010	10001	00011	000000	
$1 = s2*2^3$ Se s2 contiene 2	0 (0000	0010100)	=> s1 co	nterrà = 2	$0*2^3 = 160$	(000000	0100000
Nome campo	ор	rs	rt	rd	shamt	funct	
Dimensione	6-bit	5-bit	5-bit	5-bit	5-bit	6-bit	
srl \$s1, \$s2, 6	000000	Χ	10010	10001	00110	000010	
$s1 = s2*2^{-6}$							
		35/55				1	:\\borghes

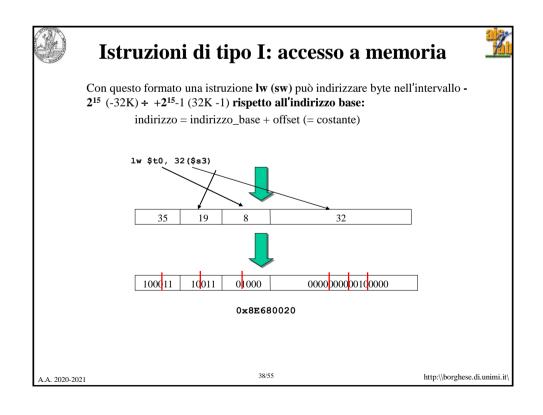
A.A. 2020-2021

Sommario

http:\\borghese.di.unimi.it\

- Istruzioni di accesso alla memoria
- · Istruzioni di salto
- I tipi di istruzioni: il formato R
- I tipi di istruzioni: il formato I
- I tipi di istruzioni: il formato J

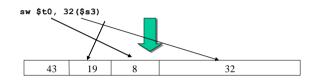
A 2020 2021 36/55


Formato istruzioni di tipo I

I	op	rs	rt	costante
	6 bit	5 bit	5 bit	16 bit

- In questo caso, i campi hanno il seguente significato:
 - op identifica il tipo di istruzione;
 - rs indica il registro sorgente. Nel caso di una lw contiene il registro base;
 - rt indica il registro target. Nel caso di una lw, contiene il registro destinazione dell'istruzione di caricamento;
 - costante. Nel caso di una lw riporta lo spiazzamento (offset).

A.A. 2020-2021 37/55 http:\\borghese.di.unimi.it\



Istruzioni di tipo I: accesso memoria

Nome campo	ор	rs	rt	indirizzo
Dimensione	6-bit	5-bit	5-bit	16-bit
lw \$t0, 32 (\$s3)	100011	10011	01000	0000 0000 0010 0000

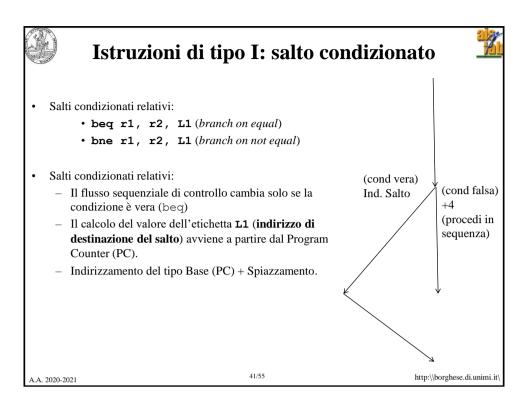
Nome campo	ор	rs	rt		indi	rizzo	
Dimensione	6-bit	5-bit	5-bit	16-bit			
sw \$t0, 32 (\$s3)	101011	10011	01000	0000	0000	0010	0000

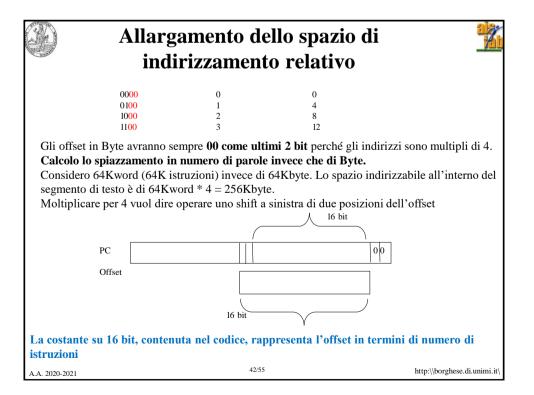
Differenza di 1 bit -> cambia la direzione del trasferimento con la memoria.

A.A. 2020-2021 39/55 http:\\borghese.di.unimi.it\

Istruzioni di tipo I: aritmetico-logiche

Nome campo	op	rs	rt		cost	ante	
Dimensione	6-bit	5-bit	5-bit		16	-bit	
addi \$t0, \$s3, 64	001000	10011	01000	0000	0000	0100	0000


Nome campo	op	rs	rt	costante
Dimensione	6-bit	5-bit	5-bit	16-bit
andi \$t0, \$s3, 64	001100	10011	01000	0000 0000 0100 0000


Nome campo	ор	rs	rt		cost	ante	
Dimensione	6-bit	5-bit	5-bit	16-bit			
slti \$t0, \$s2, 8	001010	10010	01000	0000	0000	0000	1000

\$t0 = 1 if \$s2 < 8

NB ruolo del registro target: nelle istruzioni di addi e di lw rappresenta **dove nel register file vado a scrivere.** Nelle istruzioni di tipo R e di sw contiene **uno dei dati in ingresso.**

A.A. 2020-2021 40/55 http:\\borghese.di.unimi.it\

Calcolo dell'indirizzo di salto

_	0x400		addi \$t1, \$zero, 10	# N=10
Repeat				
	0x404		addi \$t0,\$zero,0	# i =0;
{	0x408	loop:	addi \$t0, \$t0,1	# i++
	0x40C			
	0x420		bne \$t0, \$t1, loop	
} until (i N)				

Quanto vale il campo costante da inserire nella stringa dell'istruzione bne?

A.A. 2020-2021 43/55 http:\\borghese.di.unimi.it\

		Calcol	o dell'indi	rizzo di sal	to				
Ind	Ind								
Dec	Exadec		Istruzione	e	# istruzione				
400	0x400	a	ddi \$t1, \$zero, 10	# N=10	1				
404	0x404	a	ddi \$t0,\$zero,0	# i =0;	2				
408	0x408	loop: a	ddi \$t0, \$t0,1	# i++	3				
412	0x40C				4				
432	0x424	b	ne \$t0, \$t1, loop						
436	0x428				9				
L'ind	L'indirizzo di destinazione è 0x408 (indirizzo dell'etichetta loop)								
				08 - 0x424) = (408-4 oni è pari a -7 istruzio	,				
Prova			= Indirizzo PC+4 rante = 436	+ Offset (#istruzion	ni) * 4 * 4				
	5	8	9 -7 = 1111	1111 1111 1001					
A.A. 2020-2021			44/55		$http: \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} http: \hspace{-0.05cm} -0.05c$				

Istruzioni di tipo I - Branch

Nome campo	ор	rs	rt	indirizzo
Dimensione	6-bit	5-bit	5-bit	16-bit
beq \$s1, \$s2, L1	000100	10001	10010	0000 0000 0001 1001

L1 = PC + 4 + 100 byte Codifica su 18 bit: (00) 000 0000 0001 1001(00) in binario.

Nome campo	ор	rs	rt		indi	rizzo	
Dimensione	6-bit	5-bit	5-bit		16	-bit	
beq \$s1, \$s2, L1	000100	10001	10010	1111	1111	1110	0111

L1 = PC+4 - 100 byte Codifica su 18 bit: (11)111 1111 1110 0111(00) in binario.

A.A. 2020-2021

45/55

Osservazione

Nome campo	op	rs	rt		indi	rizzo	
Dimensione	6-bit	5-bit	5-bit		16	-bit	
beq \$s1, \$s2, L1	000100	10001	10010	0000	0000	0001	1000

Nome campo	ор	rs	rt		indir	izzo	
Dimensione	6-bit	5-bit	5-bit		16	-bit	
lw \$s2, 24(\$s1)	100011	10001	10010	0000	0000	0001	1000

Nome campo	ор	rs	rt	indirizzo
Dimensione	6-bit	5-bit	5-bit	16-bit
addi \$s2,\$s1,24	001000	10001	10010	0000 0000 0001 1000

Istruzioni molto diverse possono distare pochi bit una dall'altra.

A A 2020 202

46/55

Formato R ed operazioni logicomatematiche

Non tutte le operazioni logico-matematico, sono di tipo R.

Le operazioni logico-matematiche di tipo R hanno codice operativo 0.

Non tutte le operazioni con codice operativo 0 sono logico-matematiche (ad esempio ci sono le istruzioni di *jr*; *syscall*...).

Occorre distinguere il funzionamento dell'istruzione elementare dalla sua codifica.

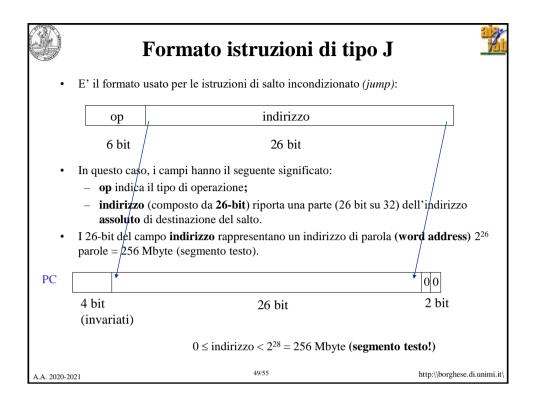
- •Codifiche simili (e.g. Tipo R) possono essere condivise da istruzioni di tipo diverso (e.g. aritmetico-logiche, salto).
- •Codifiche diverse (e.g. Tipo I e Tipo R) possono essere condivise da istruzioni dello stesso tipo (e.g. add ed addi)

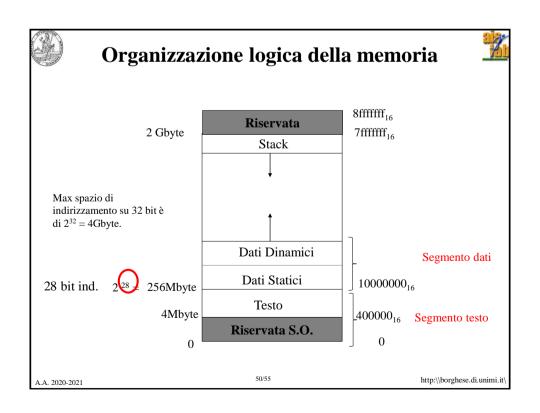
Non c'è corrispondenza 1 a 1, tra tipi strutturali e tipi funzionali.

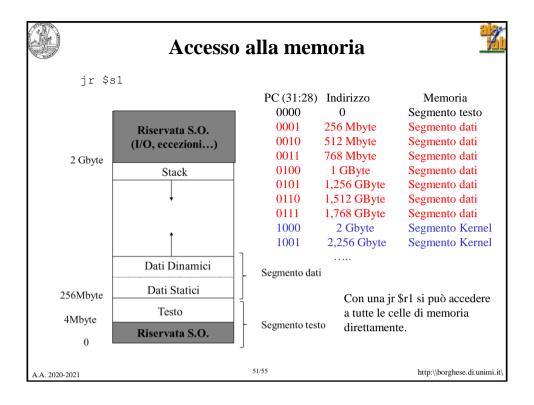
A.A. 2020-2021

47/55

http:\\borghese.di.unimi.it\


Sommario




- · Istruzioni di accesso alla memoria
- Istruzioni di salto
- I tipi di istruzioni: il formato R
- I tipi di istruzioni: il formato I
- I tipi di istruzioni: il formato J

A 2020 2021 48/55 http://borghese.di.unimi.it

24

Codifica delle istruzioni

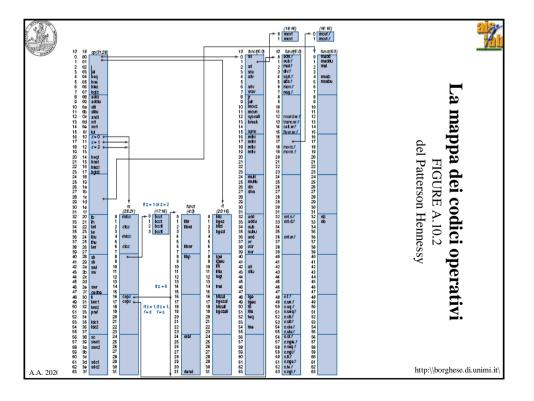
- Tutte le istruzioni MIPS hanno la stessa dimensione (32 bit) Architettura RISC.
- I 32 bit hanno un significato diverso a seconda del formato (o tipo) di istruzione
 - il tipo di istruzione è riconosciuto in base al valore di alcuni bit (6 bit) più significativi (codice operativo - OPCODE)
- Le istruzioni MIPS sono di 3 tipi (formati):
 - Tipo R (register) Lavorano su 3 registri.
 - · Istruzioni aritmetico-logiche.
 - Tipo I (immediate) Lavorano su 2 registri. L'istruzione è suddivisa in un gruppo di 16 bit contenenti informazioni + 16 bit riservati ad una costante.
 - Istruzioni di accesso alla memoria o operazioni contenenti delle costanti.
 - Tipo J (jump) Lavora senza registri: codice operativo + indirizzo di salto.
 - · Istruzioni di salto incondizionato.

	6-bit	5-bit	5-bit	5-bit	5-bit	6-bit			
R	op	rs	rt	rd	shamt	funct			
I	op	rs	rt		Indirizzo / costante				
J	op		Indirizzo / costante						

A.A. 2020-2021 52/55 http:\\borghese.di.unimi.it

Formati e tipi di istruzioni

Tipi di istruzioni di un'ISA


- Istruzioni aritmetiche
- Istruzioni di accesso a memoria
- Istruzioni di controllo di flusso
- (Istruzioni di I/O)

Formati

- R Registro
- I Immediato
- J Jump (salto)

Non c'è corrispondenza 1 a 1 tra tipi di istruzioni e formati

A.A. 2020-2021 53/55 http:\\borghese.di.unimi.it\

Sommario

- Istruzioni di accesso alla memoria
- Istruzioni di salto
- I tipi di istruzioni: il formato R
- I tipi di istruzioni: il formato I
- I tipi di istruzioni: il formato J

A.A. 2020-2021 55/55 http:\\borghese.di.unimi.it\