
An Introduction to Tree Search

Acting rationally

• Introducing the agent and her rationality, two central concepts

Agent

• We need to build a system that can act rationally, where do we start?

AI approaches: the main ingredients

• Problems in AI have different dimensions of complexity

• computation: some problems are difficult in the sense that designing an
efficient algorithm for their resolution might be difficult or even not possible

• information: the resolution of some problems might require the availability
and the capability to process large amounts of data

Problem Solution

P2) What is the fastest route from A to B?

P1) Is there any person in this picture?

To have a more concrete view let’s consider two (classical) running problems:

First approach: learning

Problem Solution

Building Using

Model

Agent: the entity that
solves the problem

how some features of the
world map to the solution• Building the model from

data, selecting from a
family

• Extracting relevant
features and
understanding how they
map to a solution

• The agent queries the
model, she’s a reactive
or reflex agent

Typically difficult Typically easy

P1

Second approach: inference

Problem Solution

Building Using

Model

Agent: the entity that
solves the problem

descriptions of some
features of the world and

how they change

• Building a model of the
problem

• Computing the solution
by inference on the
model

• The agent must search,
reason, explore different
directions

Typically easy

Typically difficult

P2

• We will focus on this approach

Agents

Agent

environment

perceptions actions

• The model we want to build is called agent

• The agent works on a problem model maintaining an internal representation
of it integrating the environment perceptions

• It can perform actions that change the environment and, as a consequence,
the internal representation

• The agent wants to accomplish something, it has goals/preferences and acts
rationally with respect to them

State-based problem formulation

• (Single agent: the automated problem solver)

• State space defined as a set of nodes, each node represents a state; we assume a
finite state space

• For each state, we have set of actions that can be undertaken by the agent from
that state

• Transition model: given a starting state and an action, indicates an arrival state
(here we assume no uncertainties, i.e., deterministic transitions and full
observability)

• Action costs: any transition has a cost, which we assume to be greater than a
positive constant (reasonable assumption, useful for deriving some properties of
the algorithms we discuss)

• Initial state

Compact representation: state transition graph G=(V,E)
(We will use “state” and “node” as interchangeable terms)

Formally describing the desired solution

• In the problem formulation we need to formally describe the features of the
solution we seek

• Two (three) classes of problems:

feasibility

is there a path to
an exit?

Set of goal states, find any
sequence of actions (path)
from the initial state to a
goal state

If at least a path to an
exit exists, what is the
one with the minimum
number of turns?

optimality

Set of goal states, find the
sequence of actions (path) from
the initial state to a goal state that
has the minimum cost

(approximation)

Problem example

Consider a mobile robot moving on a graph-represented environment:

• States: nodes of the graph, they represent physical locations

• Edges: represent connections between nearby locations or, equivalently,
movement actions

• Initial state: some starting location for the robot

Desired solution:

• Goal state(s): some location(s) to reach, e.g., recharging station, parking depot…

• Find a path to the initial location to a goal one

Problem example

Problem example

Problem example

starting location

goal locations

Problem specification

• How to specify a planning problem?

• First approach: provide the full state transition graph G (as in the previous
example)

• Most of the times this is not an affordable option due to the combinatorial
nature of the state space:

• Chess board: approx. 1047 states (game tree approx.
10123)

• We can specify the initial state and the transition
function in some compact form (e.g., set of rules to
generate next states)

• The planning problem “unfolds” as search progresses
• We need an efficient procedure for goal checking

General features of search algorithms

A search algorithm explores the state-transition graph graph G until it discovers the
desired solution

• In feasibility: when a goal node is visited the path that led to that node is
returned

• In optimality: when a goal node is visited, if any other possible path to that
node has higher cost the path that led to that node is returned

start goal

It does not suffice to visit a goal node, the algorithm has to reconstruct the path it followed
to get there: it must keep a trace of its search

Such a trace can be mapped to a subgraph of G, it is called search graph

how to evaluate a (search) algorithm?

• We can evaluate a search algorithm along different dimensions

• Sound?

• Complete? (Systematic?)

• Space complexity?

• Time complexity?

(The above criteria can actually be used to evaluate a broader class of algorithms)

Soundness

• If the algorithm returns a solution, is it compliant with the desired features
specified in the problem formulation?

• Example:

• In feasibility: does the returned solution lead to a goal?

• In optimality: does the returned solution lead to a goal with minimum cost?

Completeness and the systematic property

• If a solution exists, does the algorithm find it?

• Example:

• In feasibility: does it always find a path to the goal when it exists?

• In optimality: does it always find the path to the goal that has minimum cost
when at least one exists?

• Typically shown by proving that the search will/will not visit all states if given
enough time

• If the state space is infinite, we can ask if the search is systematic:

• if the answer is “yes” the algorithm must terminate

• if the answer is “no”, it’s ok if it does not terminate but …

• … all reachable states must be visited in the limit: as time goes to infinity, all
states are visited (this definition is sound under the assumption of countable
state space)

Visual example

IN

OUT

is there a
route from
IN to OUT?

Visual example

IN

OUTComplete / Systematic

• Searching along multiple trajectories (either concurrently or not), eventually covers all
the reachable space

Visual example

IN

OUT

Not complete / Not systematic

• Searching along a single trajectory, eventually gets stuck in a dead end

Space and time complexity

• Asymptotic trend:
• We measure complexity with a function of the input size
• For analysis purposes, the “Big O” notation is convenient:

• Space complexity: how does the amount of memory required by
the search algorithm grows as a function of the problem’s
dimension (worst case)?

• Time complexity: how does the time required by the search
algorithm grows as a function of the problem’s dimension (worst
case)?

• An algorithm that is is better than one that is
• If is an exponential, the algorithm is not efficient

Running example

• To present the various search algorithms, we will use this problem instance as our
running example

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

State-transition graph:

Initial state: A

Desired solution: any path to goal state E

• It might be useful to think it as a map, but keep in mind that this interpretation does not
hold for every instance

Search algorithm definition

• The different search algorithms are substantially characterized by the answer they
provide to the following question:

• The answer is encoded in a set of rules that drives the search and define its type, let’s
start with the simplest one

A F D
Given what I searched so far,
where to search next?

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• We are avoiding loops on the same branch (loops are redundant paths)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

A

B F

C D

F G

G

E

Solution: (A->B->D->F->G->E)

Depth-First Search (DFS)

• DFS with loops removal and BT is sound and complete

• Call the maximum branching factor, i.e., the maximum
number of actions available in a state

• Call the maximum depth of a solution, i.e., the maximum
number of actions in a path

• Space complexity:

• Time complexity:

Breadth-First Search (BFS)

A

B F

C D

F G

D

B G

G

D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

E

• A Breadth-First Search (BFS) chooses the shallowest node, thus exploring in a level
by level fashion

• It has a more conservative behavior and does not need to reconsider decisions

• Call the depth of the shallowest solution (in general)

Solution: (A->F->G->E)

• Space complexity:

• Time complexity:

Redundant paths

• Both DFS and BFS visited some nodes multiple times (avoiding loops prevents
this to happen only within the same branch)

• In general, this does not seem very efficient. Why?

A

B F

C D

F G

D

B G

G

D E

A

B F

C D

F G

G

E

• Idea: discard a newly generated node if already present somewhere on the
tree, we can do this with an enqueued list

Search for the optimal solution

• Now we assume to be interested in the solution with minimum cost (not just any
path to the goal, but the cheapest possible)

• To devise an optimal search algorithm we take the moves from BFS. Why it seems
reasonable to do that?

• We generalize the idea of BFS to that of Uniform Cost Search (UCS)

• BFS proceeds by depth levels, UCS does that by cost levels (as a consequence, if costs
are all equal to some constant BFS and UCS coincide)

• Cost accumulated on a path from the start node to v: (we should include a
dependency on the path, but it will always be clear from the context)

• For now let’s remove the enqueued list and the goal checking as we know it

Uniform Cost Search (UCS)

• Have we found the optimal path to the goal? In this problem instance, we can answer
yes by inspecting the graph

• How about larger instances? Can we prove optimality?

• Actually, we can prove a stronger claim: every time UCS selects for the first time a node
for expansion, the associated path leading to that node has minimum cost

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 B12 G13

G16

D15 E14

C19E15 E16

Informed vs non-informed search

• Besides its own rules, any search algorithm decides where to search next by leveraging
some knowledge

• Non-informed search uses only knowledge specified at problem-definition time (e.g.,
goal and start nodes, edge costs), just like we saw in the previous examples

• An informed search might go beyond such knowledge

• Idea: using an estimate of how far a given node is from the goal

• Such an estimate is often called a heuristic

Estimate of the cost of the optimal path from node v to the goal:

A*

• The informed version of UCS is called A*

• Very popular search algorithm

• It was born in the early days of mobile robotics when, in 1968, Nilsson, Hart, and
Raphael had to face a practical problem with Shakey (one of the ancestors of today’s
mobile robots)

SRI RoboticsWikipedia

A*

• The idea behind A* is simple: perform a UCS, but instead of considering accumulated
costs consider the following:

Cost of the minimum path from n to the goal

• To guarantee that the search is sound and complete we need to require that the
heuristic is admissible: it is an optimistic estimate or, more formally:

Cost accumulated
on the path to n
(“cost-to-come”)

Heuristic
(“cost-to-go”)

• If the heuristic is not admissible we might discard a path that could actually turn out
to be better that the best candidate found so far

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A
0+10=10

B
5+7=12

F
6+7=13

C
5+7+1=13

D
5+3+3=11

D
6+3+3=12

G
6+5+2=13

F
5+3+3+7=18

G
5+3+4+2=14

D
6+5+4+3=18

E
6+5+3+0=14

