UNIVERSITA' DEGLI STUDI DI MILANO
Facolta di Scienze Matematiche, Fisiche e Naturali

Near Optimal Synthesis of Digital
Animation from Multiple Motion
Capture Clips

Corso di Laurea Magistrale in:

Tecnologie dell’'Informazione e della Comunicazione

Marco Alamia
Matricola n. 736779

Relatore: Prof. Ing. Alberto N. BORGHESE
Correlatore: Dott. luri FROSIO

Anno Accademico 2008/2009

ABSTRACT

The present work discusses theory and practice pdveerful animation method designed to
generate walk animations for digital charactersr Gystem permits to interact with the animation,
allowing the user to change at run-time severahation’s parameters, such as the motion directiche
gait style, influencing the final animation. Our ikcstarts presenting the skeleton animation systach
the motion capture system; then we explain how wa®, ¢hanks to these two techniques, generate a
database of walk animation clips. The so obtaimeéthations are provided to the animation system twhic
links them together in a sequence. Linking is at#digenerating a smooth transition from one clithto
next one through the use of the animation blendaxhnique. Since we want to interact with the
animation at run-time, the clip’s sequence is nekg a priori, instead it is generated in real-time
respect to the user’s desires. To this aim we eraatontroller in charge of choosing the next atip
respect to the task that it is given, which carmsibaulating a walk along a line, or simulating a kvailhere
motion direction and character’s orientation arguieed by the user. The controller leans on a fielec
policy in order to choose the next clip; in our wave propose two possible policies, a greedy omkaan
near-optimal one. The former goes through everynation contained in the database and evaluates the
direct cost of adding the clip in exam to the seqee The latter policy, instead, chooses the nigxt ¢
evaluating an approximation of the optimal choisbijch is obtained through the implementation of a
reinforcement learning algorithm. The optimal cleo@stimates both the direct cost of choosing aadip
well as all the future costs that the system wally gor that choice. Unfortunately we can’t effeeliv
implement the optimal policy, therefore we contentselves with an approximation that leads to #ern
optimal policy. We lastly show how both these pielicproduce controllers capable of respondingeat-r
time, to the change of several animation parametlers to the user’s interaction as well as the

environmental constraints.

ACKNOWLEDGMENTS

I want to thank my thesis supervisor associategssafr Alberto N. Borghese for his contribution
during the development of this thesis. | am grdtefthim for passing on to me appreciation for aatel
work and method. This thesis is the fruit of a ela®sllaboration and would certainly not have bden t
same without his contribution. In addition | thamly co-supervisor dott. luri Frosio for his help wihe
motion capture system.

| also wish to thank my family, who always suppdrtee and encouraged me. | am grateful to

you because you have always supported me with sitatien. Thank you.

A mio padre per aver posto le basi di tutto cio she
A mia madre per avermi sempre cresciuto con irfiaihore, nel bene e nel male ed in ogni
momento della mia vita
A mio fratello, inestimabile compagno di viaggioseeltaca

A Flora per aver saputo recuperare

\Y

Vi

CONTENTS

A B S T R A T L e ettt e et e e et e enn—aae e aaas 11
ACKNOWLEDGMENTS ... e e e \%
CON T EN T S e e e et e et e e e e e e e e mna e eaa e eanns VIl
INTRODUGCTION. ...t erm et e e e e e e e e e seeennea e e eean s 1
R 11 (Yo 111 1o o [T SRR 2
00 R [11 o Yo [Tox 1T o PP P P PRRTR 2
1.2 ANIMAtioN frTAMEWOIK ...ttt e e e e e e e e e e e e e e e e e s e e annnaes 2
1.3 BIeNAING SYSIEM ...ttt e e e e e s e e e eea e 3
1.3.1 AnIMAtion DIENAING.uuiieiiiiiiiii ittt e e e e e e e ee e 3
1.3.2 Linear INterpolatioNcooi it a e 3
1.3.3 Clip blending system in the motion MOodel.............coooiiiiiiiiiiii e 4
R 0o 0 (] IS} V1 (=] o PP PPPPPPPTPP 5
1.5 Software implemMENLAtIONceuiiiiiiiie e rre e e e e e e e e e e e s 6
MOTION MODELcen e e e e e e et e e e e e nra e eaa e 8
20 ANIMALION FrAMEWOTKeuiiiiiiieiieeii ettt ettt e et e e e e e e e e e e e bbbt bt e e e e e e e e e aaaaaaaaaaaaaaaas 9
2% N [o1 1o o [FTd 1o o PP PUUPPP TP TPPR 9
2.2 Skeletal ANIMATION.......oii ittt e e e e e e et b bbb e e e e e eeeaeas 9
2.3 The avatar MOUEL.... ...ttt e e e e e e et e e e e e e et e et e e e e e e e e e e e e e s s e s aaannnnnees 9
23.1] =] [(o o PP UTUUTPPPPPUTR 11
pZ (1] 11 o PSSR 12
2 -V = 1111 14
P2 T Y/ [1 o] g =T o 1= SO 15
P2 T A |V (o) 1o] I O o (= S 15
2.5.2 SMART — MOtiON Capture SYSIEMuuuiiiiiieiiieiieeeieeeee e e e e s e e s rereeeeeee e e e e 16
2.5.3 NOISE aNd MIiSSING DALAuuuvirriiiiiiiiieeeeeeiieriieireeee e e e e ae e e e e e e s s e s s e s rrrerreeaaaaaees 18
P S |V = Vo] o] o o [P TP PTTPP TR 20
255 SKeleton’s Frenet frames ceceeee et 20
2.5.6 Head's Frenet frame e et ee e 22
2.6 Software implemMENTAtioNeeeiiii i 24
2.7 CONCIUSION SUMIMAIY ...ttt ieeeeaa bbbt e e ettt e e e e aaaaaaaaaaeaessaaannnseseeeeeaaaaaaaaaaaaaaaanns 25
T =1 =T oo [T T TS V7] 1= o 26
I % A [1 o To [UTox 1o o PP PRPPTPPPRR 26
RS 772 A o 11 .4 F= 4o] 1] =T Vo 1 Vo [PPSR 26
R 0 T - 1 o Y oX [S PS 27
20 S Vo i o T Yo [e 1o PP 28
Rt N @ 1o F=3 o =3 1 1 (o] o 28
3.4.2 ClipS CONSIIAINIS SYSIEMutiiiiiiiieiits et tbtebee et et eaeaaaaaaaaeaea s s e s aaaannseaeeeeeaaaaaaaaens 29
3.4.3 Mirroring @NiMALIONSccoiiiiiiiiiiae ettt e e e e e e e e e e e e e e e 31

R 78 T 1 {10 18] [T o 1T SRR 34

3.5.1 BleNdING PrOCESS . .uuiiiiiiiiiiiiiiii it ie e e ceeeeeee ettt e et e e e ae e e e e e et e st s s s st rrr e e e e eeeaee e e e e e e annnnnn 34
17 ST @ o Tor 117 T o =TTy o1 4= 1Y/ S 36
CONTROL SYSTEM ...eiiiiiii ittt e e e e et eeeenmsa e ees 37
N @70 11 10 1537251 =] 12 USSR 38
o R | 011 7 To 111 1o] o [PR PRTT 38
4.2 CONtroller @nd SLALEScoiiiiiiiiee e 38
421 SHAL .ttt et e e e e e e e e e e e e e e e e a e e a e 38
4.2.2 Transition from State t0 STALEciiiceeeeeiiie e 40
N I L] RO SRR 42
O 0 11 (= F PSPPSR 43
4.4.1 Representation of the task goals USING COSES wmeiiiiiiiiiiiiiiiiiiiiiee e 43
4.4.2] = 1 L= o 0 1] S PP 43
4.4.3 LI 1 g 7110 g o7 1= RSP 43
T =0 Tox =T PP 44
Y0 R €1 =T To |V o To] o3 Y PP P P TP T RPN 44
T ©] o 1.4 = I o To o3 PP 45
4.5.3 Basis FUNCION APPrOXIMALIONceeee e eeeeeeeeeeeaeeeesesssssasssssennrenrrrrreseeeeeeessens 46
454 Near-optimal POLICY ..oeviiiiieeeee i eeeee e e e e e e e e e 48
4.6 RUNIME CONIOL .ot eoreeet ettt e ettt e s e e e e e st e e e e e s nnnbbeeeee s 50
4.7 Differences between the tWO POIICIES ... eeeeeeeeiieiiisiiiieeirerree e ereeeseesesssesnnnennnnne 51
N O] o o] 11 1] o E U SUSRPTPPRPNS 54
CONCLUSIONS .t e e et e r e e e ea e e eenas 55
T ©70) (o] 11 1] To] [PP PPPPTPUPPRPRN 56
L0 A O o Tox U1 o P RPP PRSP 56
5.1.1 CoNClUSION AN FESUILSeeeeiiiieiiet s ettt e ettt e e e st e s st ee e e s s nnaneeeeeens 56
5.1.2 Considerations and FUtUre WOrkS...........cccoveiiiiiiiiiiiiniicii e 57
AN e e | D 1 G NP 60
A: MathematiCal NOTALIONSuuii i eeeas 60
NN R Y = Tt P PP TP PR 60
ALl ROAHON MAICES .iiiiiiiiiiiiie ettt ee e ettt e st e e e e s s be e e e e s sb b e e e e e s annneeeeeas 60
A.1.2 Matrix-to-Matrix MUItipliCatioNcooiiiiiiiiie e 61
A.1.3 Vector-to-Matrix mUltipliCatioNncccoomeeeeeeee e e e e e e 61
F N 1 o =T g g o) =1 1T o OO PRSP 62
N R @1 - o o o I8 {1 o 110 o PSSP 62
N (0] 1 4 T= 1IN =Tox (] U USPRPPPRPRN 62
A.2.3 Translation Matrix 0N PIANE XZeei ittt e et e e e e e e e e e seesesbeeeeeeee e 63
A2 4 ANQIE DEIWEEN VECIOIS ... ettt ettt e e e e e e e e e e e e e e e 63
APPENDIX B ..ot r e 64
B: LR T=TTal {0 o=T 0 g [=Y o) =Y U o1 oo 64
2 30 Yo T=T o | «S3R= UaTo B =t 01V 4= | S 64
B.1.1 Reinforcement through reWardSoooomuiiiiiiiiiiiiie e 65
B.1.2 ValUE fUNCLIONS ...uuiiiiiii et emmmme et e e e e e e e e e e e et seeeeeaeseeeasarnnns 65

B.1.3 Optimal value fUNCLIONScccoiiiii it e e e e e e e e e e e e 66

BIBLIOGRAPHY

Part |

INTRODUCTION

1: Introduction

1.1 Introduction

Despite years of research on the topic, generdtitgyractive realistic character animation
remains one of the greatest challenges in digitathation. Capturing the smoothness and the nuahae o
person that reacts to external stimulations requieecking a high amount of variables that ofteange in
unpredictable ways.

Our goal is to tackle a sub-problem of interactof@racter animation that is achievinglk
animations with interactive controWe will approach this problem through the synihed a kinematic
controller that blends some clips, read from armmation database, to achieve one (or eventually even
more than one) specific task in real-time. For maohnique we have defined, in the following ordsr,
animation frameworkablending enginend acontrol systemThis thesis discusses how we implemented

the three mentioned systems and what results we\esth

1.2 Animation framework

To animate our character we need a motion modelidk animations. We choose to use the
skeletal animatiorsystem for representing movements since this liently the most qualified way to
animate a human character. In the first sectiorchafpter2:Animation Frameworkwe present what
skeletal animation is and how it is implementedisEnimation system has several well known drawback
related to linear interpolation of orthonormal negs. A well known solution to this problem is tseuone
guaternion and one vector to store transformatiosgead of one matrix or to use a dual-quaternion
instead of the pair quaternion-vector (Kavan, et28l08). Because of time-limit problems the matrix
approach was used since its code was already piiasate the engine. The skeleton animation movemen
can be achieved in several ways so we had to dedid# one could work better for us.

After having evaluated several animation methodsopted formotion capturetechniques to
develop the database of motions. In the secondopatiapter one we analyze what motion capturads a
which issues arise in using this technique, fomgda how we do deal with noise and missing datméo
problems are related to the fact that raw datajt a®mes from motion capture, is acquired in an

uncomfortable format; we analyze why this happemsteow a conversion to a better form can be done.

Once we have acquired in a proper format the ammatata, and we have mapped it onto our
skeleton, we cut the so obtained animations intallemclips ready to be mixed together into a sng|

longer animation. To perform this mix we will ugeimation blending

1.3 Blending system

1.3.1 Animation blending

In the past, long character’'s motions were obtaitredting a single linear stream of animations
where the entire motion was planned in advancecamdputed off-line. This approach did not fit well
with interactive 3D character animation becausthefuncertainty that interaction presents. Onetiswziu
for this problem is to generate a set of high duaiiotions and then create transitions betweenethes
motions so they can be strung together into angmatbf unlimited length and great variety (Charkets,
al. 1996). Transitions can be achieved in seveagiswbut the most widely used is animation blending

To mix acquired data into a single long walk anioratwe blend a new skeleton animation and
the current one every time the latter is going rtd.dn the first part of chapte:Blending Systerve

discuss what animation blending is and how we &nitto achieve our goal.

1.3.2 Linear interpolation

When blending two animations together we use autioniaterpolation techniques based on
mathematical frameworks. There are several wayettorm interpolation; the simplest, and probably t
most widely used, iBnear interpolationthatin computer’s jargon is often abbreviatede® (Raymond
2003). Linear interpolation is a method of curvitirfg using linear polynomials. The simplest foreaul

used to lerp two values is the following:

Equation 1.3-1

where , and can be scalar values as well as matrices or \&otdrile is a scalar in and must
respect . If one wants to blend a first skeleton’s pos® iahother skeleton’s pose he can use
Equation 1.3-1 on every bone’s matrix. This mednad tve can compute the in-between poses using the

following equation:

Equation 1.3-2

where , and are bone’s matrices whileand are two different skeleton poses.

To blend two animations the pose from both the ation curves are modified at each of the
frames in the blending interval. Using this applgawhen a new animation is required, the current
movement can be blended into the new one in resd;tvithout having to wait the animation to end.

Actually, blending is used to solve a wider randemblems then the only animation mixing.
For example it can be used to create new poses &xisting ones, like thdlend shapesnethod
implemented insideMaya Ideally, using this method, we can compute a#l ffossible in-between
positions of vertices from two (eventually even gjostarting mesh configurations. One of the edrlies
innovations that led to motion blending was thd-teae procedural animation system of Perlin (Rerli
1995). Blending operations were used to create metions, and to change from one motion to another,
presuming to have a manually constructed set af bagmations. Blending operations can be usedtto ge
multi-target interpolation aiming to create parasned motions as explored in several works (Wéag
Hahn 1997) (Rose, Sloan and Cohen 2001). Blendirsgpowerful way of synthesizing new data and is
no surprise to see its application in continuoustra of locomotion, for example (Park, Shin andrSh
2002).

1.3.3 Clip blending system in the motion model

To properly blend skeleton animations we need tteefve divided and cut in a convenient way.
We call motion model clipevery short animation sequence that we obtairinguthe animation data in
shorter animations; in the second half of chaitee we formally define this entity and the propeie we
want it to have.

The blending technique we developed is not onlyldee mixing clips together, it is also capable
to prevent foot-skating during locomotion withouatvérse kinematics. To do this every motion clip is
provided with constraints that supply, to the blaegdalgorithm, information about the character’s
configuration. The way we define this constraintstam is explained in detail in the chapter.

We now have all the elements we need to blend akelps into a single walk animation. Our
blending method allows us to produce a valid animnatixing any sequence of clips, with no restdos
on which clip to use and, differently from othern®, no explicit motion graph is required in thisdel.

In other works, for example Kovar’s et al. workglieect graph is generated from motion capture datd,
then, using a branch and bound algorithm, charmcee made follow some sketched paths (Kovar,
Gleicher and Phigin, Motion graphs 2002). Otherksdean on a user-guided process, like Snap-Togethe
Motion system which constructs well-connected gsaphd where the searching procedure is made more
efficient by using a simple cyclic graph structkeovar, Gleicher and Shin, et al. 2003). Other vgork
studied efficiency for graph search by composing whole from smaller environment related graphs;

every animation block contains a graph which infenwhat actions are available for animated character

4

within the block, and the final result is obtaineambining these “motion patches” (Lee, Choi and Lee
2006), by pre-computing searching trees (Lau anfin€n 2006), and using groups of similar motions to
build better hierarchical motion graphs (Kwon arfdnS2005). Our motion model instead uses a graph
structure that admits blending between any clipmfthe database and automatically prevents fodirgka
during the mix. The only constraint we must impst choose clips from the set of those that staith
the appropriate foot; in the detail if the clipsderwith a left footstep the set must contain clipgt starts
with the right footstep and vice-versa.

Now that we have defined in general the blendiracess as well as all the elements involved,
the last step is to provide a formal definitiorttie process. To implement the blending algorithnuse a
“re-rooting” system that continually swaps the skeh's root from one foot to the other. To do thes
need to have every clip recorded two times, onestating foot. To simplify the mocap session bé t
clips were recorded with the left foot startingdahen were mirrored to get the right foot startatigs.
Mirroring the animation without affecting the modelgeometry is not straightforward, therefore we
analyze a possible solution to this problem.

When every clip in the database has its mirror copyare ready to define a control system that

selects the next clip for the sequence at run-time.

1.4 Control System

The control systemallows us to handle user’s inputs in real-time amdontrol the character
computing the next clip for the blending sequefiaethis aim we define eontroller which maintains an
internal representation of the current system'testaorder to choose the next clip. In chagte€ontrol
systemwe present how to define a controller and whaputeinside the controller’s state.

Controllers are capable to simulate the evolutibthe system; once they know the current state
they can decide how well is to add a clip to thquesce for a givertask Each controller is then
correlated to a task, and each task can have $ey@aks, like walking towards a given direction \ehi
maintaining the torso oriented to another directidior different tasks, we obtain very different
controllers; only one controller at a time can loiv@ which means that only one task at a time lman
pursued. For instance, the task we have implemestedvigation with user control which goals are to
allow the user to control the character motiondiom, gait and torso orientation. Another task rbayto
require the character to walk along a straight Wigle avoiding obstacles on it and we can eveim taa
controller to move the character while avoiding samoving obstacles.

Task’s goals are expressed as numbers usingtasystemOnce we have defined tasks and costs
we are capable to find the best clip in every sitma but we still leak a searching strategy. Tirgethis

strategy we introduce the conceptmilicy, which is a function that given the system’s stdéeides

which is the best clip. In the last section of deapfour we introduce two possible policies, the
straightforwardgreedy policyand the more complenrear-optimal policy

The greedy policy searches for the clip which &aaad transition’s cost are the smallest. This
approach can lead to unrealistic results sinceanatsually requires planning, like paying highestsdn
the first step in order to pay less in the follogvisteps. To tackle this problem we generate the- nea
optimal policy using an artificial intelligent tesigue called reinforcement learning. This methddved
us to explore the decision steps in the future withinfinite horizon obtaining an optimal decision.
Unfortunately, optimality is out of our reach simae are moving inside a continuous domain; we will
need to approximate the optimum using a finite danaad this approximation leads to the near-optimal
policy we implemented.

Once the controller is defined the character coslystem can be said completed. Our controller
will choose, in real-time, the next clip after hayiqueried the selected policy. The policy correstn

grants us that the avatar will behave in the comey achieving his tasks.

1.5 Software implementation

To obtain our results we developed two softwardstoa first tool for clips creation and a
program that runs the controller and shows the asvat real-time. The software tool, called
ClipBlender , is written in C++ and it takes advantage of gobi@aengine developed in the spare time by
the author of this thesis. The engine is calgyche it is cross-platform (Windows and GNU/Linux
compatible) and uses OpenGL for rendering. Therenglso provides an exporter for 3DStudio Max 9.0
that can export both geometry and skeleton animatata in a proprietary file format call&XO (from
the wordEXOdus). These files can be directly exported from 3D&iudax 9.0 or eventually they are
generated by the tool we develop€etiy Editor . EXOfiles can contain both rendering and/or animation
information. The engine allows to load the rendgrifata from one file and to link the animation data
read from another file, to it.

The Clip Editor tool allows to generate a proprietary file, idéad with extensiorECB(EXO
Qip Blender), that is used to contain information like clipst,| skeleton’s bones correlations, feet
bone’s index, constraints and so on. This file barcreated using th@lip Editor software and can be
read fromPsycheEXOfiles are grouped using a list stored insif:Bfiles.

The controller program, calle@haracter Controlleyis able to read the list from|CBfiles, and
then it can load the animations data and the mesbrdingly. In this program we implemented all the

algorithms discussed in this thesis and we usedddbmpute the results exposed in chapter five

Partll

MOTION MODEL

2: Animation Framework

2.1 Introduction

First, we introduce here the model that we haveptbto animate our character and how we
have built it. We then introduce motion capture #r@lSMART system, used in this thesis, which scbla
on passive markers. We also describe the motiotuagessions that we have performed to obtain the
motion data required to animate our character.lyag¢ describe the procedure to convert the motion
capture linear data in the matrix representatiquired for animation. To this aim, we have devetbpe

script that is optimized for our task.

2.2 Skeletal Animation

Skeletal animation is the most widely used metlwwaharacters animation. In skeletal animation
a character is split into two parts, a graphic espntation, constituted of a textured mesh, and a
hierarchical set of links (roughly correspondingtines) connected through joints (roughly corredpan
to the body joints). This set resembles the hunkateton and it is therefore named generically shele
The mesh is treated like a skin which covers tledetin. The underlying idea of this subdivisiomdsise
the skeleton information, of lower dimensionality,interact with the graphical representation afhlerr
dimensionality, in a simple and intuitive way. The&ength of this model is the possibility, for the
animator, to control few objects to achieve complevements; its weakness is that it does not peovid
any surface deformation due to muscle contractionwoinkle formation; moreover, a detailed
representation of the joint's motion is still begoreach, especially for complex bony structures &kkle,
shoulder and vertebrae; in fact, their true mot®often complex as it requires sliding and rotagiohat
cannot be capture by the simplified model of theleton. A simplified representation of these joiists

usually accepted, in the form of simple spherioaits.

2.3 The avatar model

The “dress” model is a collection of polygons, uBu&iangles, namely a mesh. To define a

mesh, first a list of 3D points is defined, follodvey the definition of all the triangles that cange the

9

mesh: for each triangle the index of its vertiaeghe list of 3D points is given. Attributes assted to
each vertex are also defined, typically the nordiegction that allows smoothing the color field whe
final rendering is applied. Additional propertiesncbe added to the different triangles, called fatike
degree of transparency and texture; the lattepaimicular, is widely used to give realistic apese to
the mesh. A texture is a 2D (or 3D) image thativ®ig along its mapping over the mesh that is redliz
assigning a correspondence between the vertexethamixels in the mesh. Adequate hardware provides
assigning and interpolating the pixels to the nfashks.

Our avatar model is composed of a single textureghmcreated by myself manually from
scratch usingutodesk 3ds Max 9.00he mesh counts 1908 vertices and 3783 face#t @dovered with
a texture of 2048x2048 pixels. The character isnlified digital representation of the author (&g
2.3-1) and both the texture and the model wereldped using his anatomical structure.

Figure 2.3-1: From left to right, mesh in wireframerendering, mesh in flat shading, mesh Gouraud shawlg
and mesh in textured rendering

The animation of the entire mesh is not feasibtevim reasons. The first one is that the position
of all the vertexes should be defined for each &am

Since the mesh is composed of thousands of veitigesuld be impossible to directly edit every
vertex’s information for every animation’s frameo Bimplify the definition of the motion, we need a
method for reducing the volume of data to manigul#n effective technique for this goal skeletal

animation

10

2.3.1 Skeleton

Formally, the topology of a skeleton is apen directed graphor tree (sometimes called
hierarchy). One joint is selected as theot and the other joints are connected in a hiera(éhigure
2.3-1). Differently from the other joints, the rdws no restrictions on its motion. This joint &ticularly
critical as it identifies the global position ofethvhole skeleton; moreover, skeleton motion is aatexb
starting from this root joint.

The nodes in the tree represent the joints of kieéeton therefore a node directly above another
in the tree is that nodefsarent All nodes will have exactly one parent excepttfa root node, which has
none. A node directly below another in the treg¢hst node’schild. Any node can have zero or more
children. Child nodes inherit transformation fromeit parent, so if a leg is rotated the foot willéw the
same rotation. Because of this, any node will igighi inherit transformations from all the parerddes
found in the path from the node itself to the raidie inheritance is handled through forward kinécsat

and relies on matrix concatenation. Below the teggesentation of our skeleton is shown.

[Pelvis
’—[Torso]—‘ [Left Leg] [Right Leg]
I I I
[Head] [Left Arm] [Right Arm] [Left Shin] [Right Shin]
I I I I
[Left Forearm] [Right Forearm] [Left Foot] [Right Foot]

Figure 2.3-2: Our skeleton’s tree representation

Information at every node can be saved in seveagbywone can use Euler angles, quaternions or
matrices and the transformations can be relativin¢oparent node or can be absolute. In our andmati
model a skeleton is a collection of matrices wrerery matrix and the transformation is
expressed in absolute coordinates. It is well knowvat 4-by-4 matrices can represent the rigid
transformations (roto-translations and deformadiomsthin a given reference system, thus each jofnt
the skeleton is fully described by a transformatmatrix, which includes all position, rotation and
eventually scale information.

In particular, for each joint, the matrix according to classical notation in robotics aathputer
animation, contains the position of the joint higirethe hierarchy with respect to the absolutenerice
frame. As far as orientation is concerned, the ¥ &xusually oriented as the bone axis, exitirgrfithe
higher joint, while the orientation of the otherotwrthogonal axes has to be determined. We wiltreet

orientation of these two axes according to geowetdonsiderations as described later.

11

A generic bone’s matrix can be represented asvistlo

Equation 2.3-1

where $ % $ %, $ % forms the orthonormal basis that
represent the bone’s orientation in space whileorek ! % is the position of the joint higher in the
hierarchy. Once we defined all the bones of a sBrleve can refer to this set as to a pose. A pose

& where is the number of bones in the skeleton, is a ctitla of matrices which specifies

every joint position in the kinematic skeleton. \d&fine a skeletal animation to be fully represeritgd
finite sequence of poses.

The skeleton considered for the present work istitated of thirteen bones as shown in the right
side of Figure 2.3-3. Every segment can rotateratdhe joint higher in the hierarchy, with threeyoees
of freedom that express three independent rotatibtise bone with respect to this joint. Every baméhe
model is stored using absolute coordinates thezdfwere is no concatenation to the root bone waath
like any other bone. For roto-translating the whekeleton we defined a specific root-matrix that, b
default, is the identity matrix. The root-matriXcals rotations around all the three axe and isinbth

from:

Equation 2.3-2

where functiong * and+ are the rotations angles around respectivelyand z axis. Functiong , (
and (provide the rotation matrix around the respecBubscript axis and are described in detail in
Appendix A while matrix describes the root position.

Once the definition of the skeleton has been cotegdlere must set a correspondence between the
mesh’s vertices and the skeleton’s joints such thating the bones result in deforming the overlying

mesh. This operation is often callgkinning

2.3.2 Skinning

To bind the graphical representation through thehme the skeleton every mesh’s vertex is tied

to at least one bone segment throughirdiuenceor weight(Parent 2001). Every vertex can be ted t

12

several bones, and each weight specifies how mmiftlreence every bone has over the vertex itself. For
every bone linked to the vertex, one and only oeaht is defined, and the sum of all the weightsafioy

of the vertices must be exactipe As we already said, the process of linking thestmi® the skeleton is
often calledskinning because the mesh can be seen as a virtual skimireg the bones. This process is
usually performed by an animator using modelingretion software, such as 3D Studio or Maya, and it
often requires some manual editing.

The posture of the mesh (and of the skeleton), vakénming is performed, is called bind pose
(Figure 2.3-3). In the present case, the avatastasding with legs slightly apart and arm unfolded.
Differently from the figure, when the animator perhs the skinning process, the skeleton and thdn mes
are overlapped. When the skinning starts the prodries to automatically link any vertex to the sgst
bone. The animator can then manually edit the émfbe of the bones for achieving better results.

The bind pose is very important for animating thesm In fact, when vertices are saved, they are

Figure 2.3-3: On the left the mesh, on the right té skeleton

stored in the position of the bind pose. Since mesaving the transformations as absolute movemests
must use the bone’s matrix inverse to move thdogst‘away” from the bind pose before applying the
appropriate transformation that represents theandtr the next frame. This is described in théofeing
formula:

-~ -0 4123 1561 7

Equation 2.3-3

13

where- is the vertex at the current frame ancht the next frame. 4 ,; is the bind pose inverse matrix

for the bone ;" that is the matrix that defines the position dfthe bones with respect to the absolute
reference frame in the bind pose, 5 is the current frame bone matrix for bone that is the matrix that
the defines the position of all the bones with ee$jio the absolute reference frame in the actose pand
. 7is the weight of each bone for the vertex

Using Equation 2.3-3, at a given frame for every vertex in the mesh, results in movihg t
mesh’s vertices in the new position obtaining a méttude for our avatar. Therefore we need tordeéill
the bones’ matrices for all the frames of the atimma Setting every bone’s position at every sirfggene
is a very time consuming task. For one animati@i thst 30 seconds, playing at 25 frames per segond
which uses a skeleton composed of 13 bones, wgaoang to define 9750 bones’ transformations. These

are too much for any animator to handle. This pobleads us tkey framing

2.4 Key frames

A key framejn computer graphics skeleton animation, is aifpdcame where we manually set
the position and attitude of the skeleton. Thisneadefines the starting and the ending points sshaoth
transition. Key frames are defined in some specifaments over the timeline and provide both spatial
and time information. The remaining frames aredillsingn-betweengechniques. Inbetweening (or just
tweening, in skeletal animation, is the process of gelgaintermediate frames, between two skeleton
attitudes, to give the appearance that the firaseboconfiguration evolves smoothly into the second.

The main advantage of this technique is that thaor is not forced to set the skeleton at every
single frame while the biggest disadvantage isnefacontrol over the “in-betweened” frames.

In characters animation the in-betweening techrigb@ve another big problem. The human
movement is highly coordinated and respects sewesabement spatiotemporal constraints. Any alteratio
of these constraints, even a small one, leads matural character movements. Thus is very diffitolt
achieve any realistic animation using key frames iabetweening techniques. Although few attempts to
synthesize human motion from scratch(Faloutsos,deaPanne and Terzopoulos 2001), this task is still
unfeasible for complex human motion.

If we cannot rely on key frames animations we naedther technique to achieve the animation
data for every frame. This technique should protigehigh number of frames we are looking for witho

having to manually define every bone. This techaitpucallednotion capture

14

2.5 Motion Capture

2.5.1 Motion Capture

The term motion capture refers to an animationneple used for recording a movement and
reproducing it on a digital model. Scott Dyer, Jirtin, and John Zulauf, in their paper on thejsct
explain that motion capture "involves measuringosject's position and orientation in physical space
then recording that information in a computer-usafolrm. Objects of interest include human and non-
human bodies, facial expressions, camera or lighitipns, and other elements in a scene." (DyertiMa
and Zulauf 1995). Since in this work motion captwas used solely to acquire human motion, we will
refer to this kind of acquisition with this term.e@Mill also use the generic terrmbcap” as abbreviation
for motion capture. We explicitly remark that matioapture is aimed to acquire the motion disregardi
all the appearance aspects of the actor: coldtitig and texture.

To perform a motion capture session movements flloenactor are sampled at a frequency
sufficiently high to get the impression of contisumotion when motion is replied: typically capture
sessions sample the motion at 30Hz or 60Hz. Thmation data acquired are then mapped onto a 3D
model so that the model performs the same actecrded from the actor.

Mocap techniques have several applications in tbst misparate fields, from medicine to video-
games, and can be achieved using several techas|amie of the most diffused is thptical one which
is based on video cameras that acquire imagesvidea stream. Using the images taken from several
cameras the 3D position of some repere pointspheatomputed by triangulation from the differentead
streams. In optical systems the repere points troactor are identified by markemassive optical
systemaise marker coated with a retro-reflective matddatetro reflect the light rays generated by g rin
of flashing lights, positioned around every camaral synchronized with the camera shutictive
optical systemsmploy, instead of retro-reflective markers, acddtEDs rapidly illuminated one at a time
and then relying on software capable to identiiirtiposition. An improvement of active optical st
employstime modulated active markernghich takes advantage of amplitude modulation dseowidth to
transmit marker’s ID information. Emerging techréguand research in motion capture is aiming to a
markerless approach to mocap. The visual hull oblject can be defined as the locally convex over
approximation of the volume occupied; its recoredtan consists in the projection of the object’s
silhouette from each of the cameras’ plane bacth¢o3D volume. Having the hull is then possible to
reconstruct the motion of the subject. (Corazzal.e2006). Other then optical methods there aversé
motion capture technologies that lean on diffeyimciples.Inertial systemdor example are based on
inertial sensors, biomechanical models and sensiori algorithms. Most inertial systems use gyrpsso
to measure rotations that are then translatedskéteton data from software algorithms. Other syste

may usemechanical motiortapture devices that track joint angles using>aslkeleton to measure joint

15

angles in real-time without occlusion problems, magnetic systemswhich compute position and
orientation using orthogonal coils.

The interest in using motion capture for charaeteimation increased a lot in the last years
because this technique can provide motion datalfategrees of freedom at a very high level of illeta
Mocap allows obtaining data of good quality in @rshime and it does reduce the cost of classiegt k
frame based animation; moreover, complex and palgiealistic interactions such as weights and
exchange of forces can be easily recreated in emra® manner. On the other hand we have a lack of
flexibility since it is difficult to modify capturé motion tracks and repeating the acquisitions lwamhoo
costly or even impossible. A general approach twipe better ways of editing motion capture is dayat
the motion to different constraints while presegvihe style of the original motion. Witkin and Pepo
studied a method to blend clips at some specifegdfkames that an animator manually set (Witkin and
Popovi 1995). Wiley and Hahn developed a method to miras from a motion capture database to
create new animation that matches required spatitic (Wiley and Hahn 1997). Rose et al. developed
method which leans on radial basis functions angnomials to interpolate between example motions
while maintaining inverse kinematics constrainto$® Cohen and Bodenheimer 1998). However all
these methods do not allow creating movementsatetoo different from the original ones; technigue
aimed to reuse captured data linking them to foomgl animation sequences have become of large

interest.

2.5.2 SMART — Motion Capture System

Performing a mocap session is a complex task coagpota number of phases that Lisa Marie
Naugle identifies in her paper (Naugle 1990)saslio set-upcalibration of capture areacapture of
movementclean-up of datandpost-processing of datd o accomplish every phase described by Naugle,
and obtain the animation data, we had to rearrtimgg/hole lab for the acquisition sessions andefglal
the SMART mocap system to acquire the bigger volaxalable.

The system we used is a six cameras configuratimm BTS-Bioengineering (B&W cameras,
640 x 480 pixel at 8bpp, 30-60Hz) provided withethrsoftware, a capture program, a tracker and an
analyzer.

Goal of the acquisition was to record gait clipgliffierent speeds and turning angle, each of them

containing four walking steps.

16

The choice of the repere points on which attach rifegkers is the result of a compromise
between the number of markers and the cleanndsg ofiotion tracks: the more are the markers, theemo
detailed is the acquisition of the motion; howevecreases the probability of markers hiding, sviagp
or missing.

As a result, we have analyzed gait motion and wee hdentified the following repere points:

neck base, pelvis front, pelvis back, left shouldieft elbow, left wrist, right shoulder, right @y, right

e

Figure 2.5-1: Work volume and cameras positions.

wrist, left greater trochanter, left knee, left fealus, left foot metacarpus, right greater tro¢bgrright
knee, right malleolus and right foot metacarpus. &¥plicitly take into account that the elbow ane th
knee have only one degree of freedom and therdfaréi-normal of arm and forearm, and thigh and
shank, is the same and it is equivalent to thahefentire limb (a deeper explanation about mappary
be found in section 2.5.4).

To set-up the laboratory for acquisition we firstmbsed the six cameras in a hexagon, as close as
possible to the lab walls to guarantee the largesking volume: in the final configuration we wesble
to capture motion inside a parallelepiped five meeteng, four meters width and two meters highodtk
two days to find the optimal configuration. Since meeded to acquire four steps, we measured tlce spa

required for a fast walk of four steps that turrmd to be about four meters long. The only way to

17

successfully capture such length was to walk akbegdiagonal line of the lab (acquisitions tendhéave
more missing data when the actor is near to themelboundaries). We had therefore to reorganize the
laboratory furniture: we moved some desks and ddle carpet of the AIBO robots soccer field to mak
enough space for performing the different motionthen the cameras were in position and correctly
oriented, we moved to the second phase: calibration

We spent a lot of time in setting up our systemaliee a poor configuration can lead to lot of
issues, in fact motion capture optical systemsnofigffer ofnoiseandmissing datgproblems. Even with
good cameras configuration it is still possible tm into such problems, mainly because of bad
calibration.

The SMART system calibration consists in two stejpsithe first one a reference system,
composed of three axes with markers mounted on, éagilaced in the middle of the acquisition area.
Capturing a dozen of seconds is usually enoughtler system to identify the axes position and
orientation. In this phase the absolute refererlystem is set, and it is usually set in the cenfethe
acquisition volume with the Z axis orthogonal te taboratory floor.

The second step requires walking around in the ingriarea slowly moving a wand carrying
three markers. In this step the system refineg#iienate of the calibration parameters and idestifilso
the working volume. This step could be done in apé® of minutes but calibration would turn out Heal
poor. After several attempts we discovered thatuaben minutes of calibration were needed to have a
well calibrated system.

As the system was ready, markers were attachelet@adtor body in the repere points and his
motion was acquired several times: roughly 130 g, of four steps each, have been capturedativer
at different speeds and for different turning aegkevery acquisition lasted from about 20 to 4@®gds.

Having followed all the phases but two (we postpdhe clean-up of dataand thepost-

processingphases) the motion capture session can be said done

2.5.3 Noise and Missing Data

The captured raw data usually include errors andendlhese issues often stem from a bad
calibration and/or from generic system error measient as well as unintentional marker movements
related to cloths or skin motion and of wrong lahglof the markers. It may also happen that some
markers disappear for several frames from the viEwmost cameras and therefore the system is net abl
any more to reconstruct their 3D position by trialagion. When they reappear some time later these
markers have to be correctly classified. Missingadaroblems are due to marker occlusions that may
occur while the actor is performing. To be ablaise the acquired data we need to solve all thisl@nas.
This lead us the first of the two phases we hadanatyzed before. Thetean-up of data’phase.

Clean-up is made during theacking processSince, in passive optical systems, markers are no

automatically identified during the acquisitioneth is no information on how to discern markers agno

18

them. The tracking process is therefore a semiraatic procedure that requires identifying one frame
manually assign to each point 3D track an iderttfan label. This procedure is carried out onceefach
trial. During the process we are forced to deahwibise and missing data problems.

When one starts tracking the software automaticalgs to reconstruct the motion of each
marker and tries to follow it over the whole acdfies. This is not always possible, therefore tiratf
output of tracking is a set of strings, each astedito one marker and associated to part of thé®mo
time interval. If no data are lost for a markeiisisufficient to give a label to the marker trackit spans
the whole motion time interval. If the marker traskost due to noise, wrong marker automatic liaigel
or disappearing of the marker, the track will résuterrupted and it may restart again later inetinm this
case the animator must edit the track before babig to assign the label properly. The trackengari
provides some manual tools to deal with these prab) in particular it allows manually labeling mank
in some frames or assigning the same label to phelgiartial tracks. When tracking is done it mdsthe
noise from the raw data should have been removed.

Missing data issues cannot be directly handledhduriacking. Obviously these problems lead to
interrupted tracks, but while the tracks can bdeedio incorporate or eliminate markers not colyect
labeled, not all the hole can be fitted just byxkiag. Some other tool is required. The SMART Anzaly
tool permits to fill data gaps employing interp@at techniques based on complex data analysis. Any
moving point is analyzed by the tool which compuseseral information such as its velocity and its
acceleration; then the analyzer tries to guess evtier point could have been if it had not get l$tis
covers the last phasgost-processing.

To speed up the acquisition process we did nottbeeSMART Analyzer tool; instead, we
developed a less elaborated but efficient intetpiaalgorithm that was added into the tool thatwvete
to blend the different clips, thelipBlender tool (see2.6 Software implementatipnAim of this tool is
to complete automatically the tracks when impogediding to manual check every recorded sample. The
algorithm is based on computing a linear interpotabetween the last known 3D positions of a marker
before and after the gap; since we are not dealittyany complex motion the simple space interpotat
results to work very well without any needs of nging speed or acceleration information that allows
higher order interpolation that cannot always balied.

The “hole filling” algorithm scans all the markeat every frame, looking for any missing
position data. When it founds a missing markepdakks backward and forward, within a defined frame
window, for any valid data to use for interpolatidfie discovered that the algorithm works bettehwit
smaller windows and multiple iterations insteacgaingle run with a larger window.

Once we finally have the data correctly tracked eledned up, we needed to convert them into
skeleton’s animation bones matrices. Currently ohéhe most difficult problems in motion capture is
mapping the acquired linear raw data into animagingles suitable to the 3D animation models; tloeeef

it is important to understand why these issuegas which solutions are available.

19

2.5.4 Mapping

One difficult problem is the linear motion of thearkers into rotations of the joints angles. We
have seen that markers motion is acquired as afs8D moving points but the motion has to be
represented as rotations of the skeleton bones.

There are several ways to perform this task ard aflresearch has been done on the argument,
for example see Choi, et al. (Choi, Park and Ko9)9%hich presents an algorithm that processes the
original joint angle data to produce a new motinnnihich the end-effector error is reduced to zdro a
keyframes. Other works propose the use of physitalels (Zordan and Van Der Horst 2003) or the use
of least-squares fitting technique as recentlygmted by Wen, et al. (Wen, et al. 2006).

Our approach is related to the particular modelsed and turns out to be particularly efficient.
It was implemented directly into th@ipBlender tool. The approach is specific for the bone higrgr
we decided to use; this choice allowed us to spipeithe mapping’s phase but prevent the algorittomfr

being used on different configurations.

2.5.5 Skeleton’s Frenet frames

The idea beyond the mapping algorithm is to gétemet framefor each segment of the skeleton.
Once we have the Frenet frame is straightforwambtopute the bone transformation matrixs for that
segment. A Frenet frame is made of three orthonbwaetors, normal, tangent and bi-normal, which
define a basis for the 3D space. We want to exttede vectors from the point representation. Siase
we've seen before, our acquisitions were samplatjuke number of markers as small as possibleesom

information was missing, forcing us to estimate sarhthe Frenet components.

Mg M7 J { M4
MY e - e
L} ® aMS o M6
g T — Ml ——_
1
|
e
M2
MM‘ M2
|
|
I |
‘ \
; |
f b Ml
M1 L
|
|
|
| |
|
MI6 o
[8 MI3
Mi7.®

Figure 2.5-2: On the left the marker disposal ovethe actor, on the right the skeleton representation

20

The torso has enough markek&l(M2 andM3 as visible in Figure 2.5-2) and we were able to
compute its Frenet frame without any problem. Bosd here we intend the whole trunk from the pelvis
the neck, notice that we do not allow the spinénist. The pelvis bone was computed in a very smil
way using the same markers.

Arms and forearms had three markers ovetad] 15andMé for the left armM7, M8 and M9 for
the right arm): one on the wrist, another on thewai and the last on the shoulder. When these tioeds
are not aligned they lay on a plane which can ezl ue determinate the whole arm orientation. Let us
analyze the details for the derivation of the Ftdrame for the forearm segment (Figure 2.5-3). iHgwv
the three joint points we can compute forearm amd \ectors from pairs of markers. Then, with two

cross products, we can derivate the other vectors:

- = >

- 2@ ?>
- - B-
-c - aB-

Vectors- -, and- . together form the Frenet frame for the forearmnsgy. When the three

points are aligned there are infinite planes pas&iom them so it is not possible to compute thacéx

O M7 - Shoulder

M8 - Elbow

v, - Forearm

O

M9 - Wrist

Figure 2.5-3: Forearm’s Frenet frame construction

orientation. In this case an estimate has to beemhbd detail we derive a vecter,, combining the

21

shoulders’ markers M7 and M4. Vectot defines where the character’s side points to. dérévation is

done as follows:

-A 7= 7
-c - AB-
-A - B-¢

The Frenet frames for the thigh and the leg werapeged in a similar way since they have also
three markers attached (greater trochanter, knéeakle). The foot has been considered as a rigity b
and approximated to a single segment. This isangtassumption for gain, in which, during the po&h
phase the forefoot forms an angle with the regheffoot to propel the body forward. Nevertheldss t
assumption was made to simplify both the captussieas and the subsequent processing. Anyway, the

most difficult problem was to compute the Frenatrfe of the head.

2.5.6 Head’s Frenet frame

To reduce the number of markers to track, no markesre attached to the actor’s head. This
would have required making the working volume higinéroducing problems in capturing accurately feet
motion. Therefore, to obtain a reference systenttferhead, we decided to use the data from the’sors
Frenet frame to estimate the position of the skull.

In the first attempt we copied the Frenet framenfrthe torso to the head, keeping the same
orientation and taking as origin of the Frenet feattime neck joint, identified by the marker attactethe
neck onto the actor. This approach led to unréalisbvements because the head looked like stuttketo
torso.

To tackle this problem, we decided to discard hmtbh androll motions, that are the motions
around thenormal and thebi-normal axis (the vectors marked asandb in Figure 2.5-4), when copying
the Frenet frame. We imagined that the characteddvioy to maintain his sight parallel to the floewen
if the torso is bent forward or backwards. Thisinspired to human motion description work that
hypothesize that the eyes and the head are likaakdesplatform from which reconstruct the body
motion(Pozzo, Berthoz and Lefort 1992). To achithie we force the tangent vector to be orthogooal t
the floor, which means that we impd3e $ % . We can then use cross product operation to derive

the other two axes as follows:
E DBF

F E-BD
Equation 2.5-1

22

where vector€E, D andF form the new Frenet frame for the head, wiiijdandF are read from the
original head’s Frenet frame (Figure 2.5-4).

Moreover, to get a more realistic feeling for theati motion, we observe that the head has to
look forward when walking straight and turns somstants before the body turns. For simulating this

motion knowledge we needed to know when and hoveliaeacter will turn. To do this we read the torso

£ £

Figure 2.5-4: On the left, the Frenet frame for thehead is copied from the torso, on the right the Fenet frame
modified

information ten frames forward, with respect to therent frame, and we computed, using these tiada,
Frenet frame for the skull. Thus, if in the neaufe the torso will be turned, the head startpto & that
direction anticipating the movement of the resthaf body. If, from the current frame, we are ndeab
read ten frames forward, because there are no sy frames left in the animation, we use the current
torso’s frame information. This solution worked tguivell since the head pointed to the motion dioect
just before turning, giving a realistic motion fiegl

The last problem we faced was related to the mgdier correspondence. Markers position is
not coincident with the position of the skeletonresponding joint since markers are applied over th
actor skin and not inside his bone’s joints. Beeaas those problems a little post-processing of the
markers position was needed. Re-targeting is a kedwn solution for adapting motion capture data
(Gleicher 1998), that works well especially wheajdgctory changes are small. In our case retargeting
involved some adjustments in markers’ position ideo to make them fit segments’ length and joints’
position.

In details, after having computed the bi-normalteeéor the arm and the forearm (vectgyin

Figure 2.5-3) we moved the markers of the limb gldre bi-normal direction to pull them as closdhe

23

joints as possible. Since we are trying to estintlaéejoint’s position we have no information of héav

we must move the marker to reach the joint itstblé amount depends on the skeleton’s configuration
therefore we have to factor it out by trial andoeriTo this aim we defined a basic amount for i

the arm’s markers and we used a one-frame anim&idest the mapping’s results. If the arm and the
forearm were still not in place we modified thenstation amount and we tried again until the charée
limb looked fine. Exactly the same operation waselfor the leg and the foreleg.

The neck marker required slight adjustments tooirwerted the normal vector from the torso’s
Frenet frame (that is the vector that points shia@ut from the chest) and then we moved the marker
point as close as possible to the neck’s jointtfmsi We do not have the joint’s position for tliase
either, so we have performed these operationsidlyaind error too; we knew that the neck’s markea i
few centimeters down, along the normal vector, fritwn related joint, therefore we determine the neck
joint’s position starting from the marker’'s positi@and moving back of some centimeters. Again, we
played the test animation and we adjusted thelaams amount until the head looked in position.

Besides the arm and the forearm segments of thetskewere slightly longer if compared to the
segments obtained from markers’ position. Therefafier having moved the markers closer to joirgts a
seen before, the elbow and the wrist were movetthdurfrom the shoulder point along the shoulder-to-
elbow vector, and then the wrist was moved furth@m the elbow using the elbow-to-wrist vector. Bot
the movements’ amount was computed by trial anorerr

Once the mapping is completed the skeleton caaiokto be fully animated.

2.6 Software implementation

All the discussed algorithms are implemented ingltifgBlender . Clips may be added from an
EXOfile or from aC3D file. C3D files store raw 3D coordinate and analog sampta dad are directly
exported by the SMART3D Tracker tool. When a cl§ ddded from &aCc3D file, the tool loads
automatically the data from this file and convehism into bone’s animation matrices saving theltésu
anEXOfile; the list of the available animation clipstieen updated with this file.

The conversion task is committed toclass namedC3DEXOConverter. This class receives a
pointer to theCc3Dfile itself, a frame index from which starting thenversion and a second frame index in
order to know where to stop the conversion. Anyeobijinstantiated fronC3DEXOConverter allows
converting the data by invoking the appropriatehodt The object automatically loads the data froe t
C3Dfile, but it requires the explicit invocation dfe conversion method before starting the procedhee;
conversion process will complete the tracks andreds the motion curve into bones expressed indétren
frames using absolute coordinates. The outputisfabnversion task is a file iexOformat that contains
the bone animation.

24

2.7 Conclusion summary

Animation is carried out defining an adequate skelea mesh and skinning the mesh over the
skeleton. To animate the skeleton, we resorted dtiom capture and we have developed an efficient
technique to complete the motion capture trackammert them into sequences of joint angles thatbea
used to animate the skeleton inside the animatiols ttypically 3D Studio Max.

The skeleton, in turns, propagates its motion érttesh and a realistic animation of the defined
avatar is obtained. The motion clips acquired Ifig tvork have all the same number of markers aad ar

constituted of walks at different speed and turr@ngles to produce a dense library of gait clips.

25

3: Blending System

3.1 Introduction

In this chapter we describe the technique impleetetd blend different animation clips acquired

by motion capture to obtain a single continuous$animation curves.

3.2 Animation blending

Animation blendingwill not produce realistic results unless the inmwotion clips are chosen
with some care. Blending process depends heavilyosnmuch information about animations is given to
the algorithm, if nothing is known about the inmlher than the raw motion parameters, linear blemndi
algorithms are reliable only if the two motions angte similar. Defining the blending algorithm chae
challenging; therefore, to tackle the problems thlahding presents, we require that the clips tndl
have some specific features.

First, we impose thatlips overlap using the same frame amouBihce we are working on
transitions we typically blend the last set of femrfrom the first animation with the first set ofirhes
from the second animation. If we decide to use,efample, ten frames, we must specify which frames
are read from the end of the first animation anittvlare read from the start of the second animabah
anyway we are forced to use only ten frames.

The second property we want, in order to have asalet and smooth blend, is thagically
related events must occur simultaneously and instiree absolute positian the two motion clips. For
example we will incur in blending anomalies if wg to blend animations that totally have no spatial
correlations (i.e. different absolute position$le result will be some kind of quick distortion ttmoves
the character from one position to the other, defiog the whole mesh. Linear blending can fail when
motions have different timing, that is, when cop@zding events occur at different absolute timeséfo
and Gleicher, Flexible automatic motion blendinghwiegistration curves 2003). This point is very
important and we can imagine a lot of situationerghblending is going to show strange behaviors if
animations have no correlations. The correlationwaat for the two animations must be provided oa tw
levels: on a timing level, that is specifying whesrresponding events occur at the same absolute tim
and on a frame alignment level, that is a spatialespondence for the two animations. For exaniplei

have two walking motions that are in phase, but cum¥ing 90 degrees to the left and one curving 90

26

degrees to the right, when blended the result bélla root path that collapse and eventually flips
around(Kovar and Gleicher, Flexible automatic motitending with registration curves 2003).

There are several solutions to these issues. Rondwalips that have the same frame amount
used for blending we must work out a method fomidging which frames to use in every animation
curve. We will see how this can be done furthehia chapter.

A lot more troublesome is providing a logical cdat®n between the two clips. Two skeletal
animations, with different joint speeds and roosipon, can be very difficult to blend in a singkmalistic
motion animation if we have no information on whhé animations are representing, how they are
oriented and where the skeletons are placed irespac

We will solve these problems marking all the frartfeest contain logically correlated events and
using this information to overlap events and cduww many frames are involved in the overlap. We are
going to explain in detail the solutions we adopteuat, before being able to do it, we need to agrea
suitable terminology. Since we are dealing with kvahimations we will borrow the bioengineer’s
definition of gait cycle.

3.3 Gait cycles

In normal walks a gait cycle beings when one famitacts the ground and ends when that foot
hits the ground again. Each cycle contains two maissesstance phasandswing phaseStance phase

accounts for approximately sixty percent, and swihgse for approximately forty percent, of a sirgaé

tEs S8 ¢

Figure 3.3-1: Gait cycle showing every begin/end pa

cycle. Stance phase of gait is divided into foutiqus: loading responsemidstance, terminal stan@nd
pre-swing Swing phase is divided into three periodstial swing, midswingand terminal swing The

beginning and the ending of each period is idexdify specific events:

27

Loading response

Begins withinitial contact(also known as heel strike)

Ends withcontra-lateral toe offwhen the opposite extremity leaves the ground
Midstance

Begins withcontra-lateral toe off

Ends withheel risewhen the center of gravity is directly over théerence foot
Terminal stance

Begins withheel rise

Ends withopposite initial contactwhen contra-lateral foot contacts the ground
Pre-swing

Begins withopposite initial contact

Ends atoe off
Initial swing

Begins withtoe off

Ends with maximum knee flexion when feet are adjace
Midswing

Begins withfeet adjacent

Ends when the tibia is perpendicular to the ground
Terminal swing

Begins when the tibia is perpendicular to the gtbun

Ends withinitial contact

Now that we have defined a common terminology alyaitt cycles we have all the elements to
face the blending problems discussed before. laildetve impose that the animation clips that watva
blend will respect some proprieties, and this waliibw us to solve both the logical correlation desb and
the length problem. The proprieties we want areiolbt cutting the acquired animations so that they
cover a single gait cycle and then defining a gaists system. We will call these shorter animation
motion model clipsr justclips From here we will use the tertlip solely to refer to these motion model

clips.

3.4 Motion model clips
3.4.1 Clips definition

As said before, we define one clip to cover exaothg gait cycle, which is an animation that
starts in the initial contact position and enderm# full gait cycle. Notice that a clip, definddst way,
necessarily has two periods where only one ofweefeet is in ground contact phase. The first anati
the beginning of the terminal stance while the sdcone is at the beginning of the mid-swing. We can
easily cut the motion capture animations so they start and end in the proper way.

Then we will have our motion capture animationspaeld into a set of clip& where each
elementH G consists in a sequence of pokks | & where is the number of poses. Since we
want to blend one clip into another we split eaelquence of poses into two subsequences, paying
attention so that each one includes at least oaengr contact frame, and we can then use the second

subsequence from the first clip over the first ®gjpence of the second clip. Since we defined thertye

28

clip covers one single walk cycle we will call ttveo subsequencegalk cyclein andwalk cycleout The
former begins at heel strike and ends at oppositi&li contact. The latter begins with pre-swingipé

Clip

in out

Figure 3.4-1: Clip struture. Notice the poses insiglthe clip and the
subsequence subdivision
and ends when the terminal swing ends. This pdatialivision allows us to provide a logical cortaa
between every clip in the database because obtlwving consideration.

If the first subsequence contains a step with #fefbot, then the second subsequence must
contain the next step with the right foot, and wessa. Therefore we know which foot is carrying th
weight in every subsequence and this provides uls Aoposition and an orientation correlation. For
example, let say that we want to blend two clipsandH . If we have that the skeleton for clip has its
weight on the right foot in its second subsequemee,want the skeleton iHl to have the right foot
stepping forward in the first half of the animati@nd then we can overlap the two subsequences. Wit
this splitting method we can be sure to have a wak never steps forward with the same foot twees,
and we can assure that the second clip is positiane oriented exactly in the same way of the trst
just caring to overlap their weight feet. Summanggithe two clips are playing the footstep with saene
foot (logical correlation), they can be orientedhie same direction using the foot orientation #ey can
be repositioned to be in the same place overlapihieiy feet positions. Once we have formally dedirze
way to overlap the clips we have solved the logicatelation problem for blending.

We still have to face the length problem; as wel,shiending requires the two clips to have the
same length. Currently we are not providing angrimfation about the starting nor the ending pointlfie
blend, therefore we need to define hawalk cyclein andwalk cycleout are obtained from the clip and
how the blending system should use them for blendiforeover, the two subdivided sets usually wilt n
match and we need to decide which of the overlajaedes we will discard.

We can solve both the overlapping problem and ehgth problem defining a constraint system

for our motion model clips’ set.

3.4.2 Clips Constraints System

To overlap the clips we need to know which frames&th subsequence contains the pose that
represent the full ground contact instant. It Eiclilt to automatically identify this frame, evéihwe can

try to find it analyzing the segments’ vertical agities the so obtained results are unreliablaetbee, to

29

have a more accurate estimate, we will requireremator to manually mark it. We call the markecdhfiea
from the first subsequent¢g, and the one from the second subsequéhge Once we have identified the
two frames in every animation we can overlap twipscko thatHy, fit together withH,g as shown in
Figure 3.4-2. This provides the logical correlatand allows us compute the frames involved in blegnd

for both the clips. Clip one uses frames fréf, H 75 to Hy, , while clip two uses frames from 0 to

He H j«. . Therefore we can define the interpolation valyédor blending, as follows:
< Hu Hye
NOPQ R S
M 9
H7& H JKL

Equation 3.4-1

where< is the current frame read from clip one ands the number of frames from the same clip. Now

that we have the interpolation value we can use Equation 1.3-2, as, to compute the new blended

L.)Lll}‘L"_ Constraint

Clip 1

Blend

Blend time

Clip 2

[nput Constraint

Figure 3.4-2: Two overlapped clips

skeleton pose. We have now solved both our problerashave isolated the frames we want to overlap,
and we have a correlation given by the constraistiesn we set.

Having defined the clip constraint system in thisywhas another big advantage; it allows us to
prevent foot-skating, during locomotion, withoutngsany inverse kinematics methddverse kinematics
(abbreviatdK) is a type of motion planning used for determinthg parameters of a kinematic chain in
order to achieve the goal pose (Zhao and Badle®)19&is motion planning method allows the animator
to define the position of the “end-effector” changithe software to factor out all the values foe th
involved joint angles. Therefore the animator cpecfy the foot position during the walk and the
algorithm will do everything else. Inverse kinergatihas its own disadvantages too; as it is based on

minimizing a geometric cost function, it doesn'tvalys choose the most normal pose, can lock under

30

certain conditions and doesn't avoid self collisomhese drawbacks in IK methods are difficultackte

or solve, often undermining this technique’s effitdy. The constraint system we use can achieve the
same results of an inverse kinematics algorithnh,playing smaller costs, although it is thought torky
only for legs and during a walk animation.

Foot-skate prevention in our method is made posdibtause of two pre-processing steps. First,
before blending two clips we can arbitrarily reemt and re-position the root of the incoming clip
preserving continuity. This operation is done whea overlap the clips using their constrain frame.
Second, kinematic blending is linear in the rootha skeleton, although nonlinear in all other stat
joints. Therefore if we properly transform the f@atsition and orientation while “re-rooting” theed&ton
at its foot, we can satisfy a foot position conistraAs we saw, the second animation is placed tver
first one so that the foot is overlapped with tlaene foot from the first animation. If we re-rooeth
skeleton at is foot and if the foot is fixed durimgerval T, ,\Vin subsequencealk cycle outand during
Ty wmVin subsequencealk cycle in then, by the linearity of blending at the rottere cannot be foot-
skate on the interval ; yWWT ; \Vof the blended animation. Since we have manuabyked the
frames where foot is not moving, we are sure thathe intersection of intervals no foot-skating can
happen for the constrained foot.

There is a last issue, not directly related withnbling, that we have to solve. All the clips from
the database are recorded with the left foot stepforward, but we also need clips to start with tight
foot for the overlaying system to work. To avoidptaing all the clips a second time we decided to

mirror every animation previously acquired.

3.4.3 Mirroring animations

Mirroring a mesh is usually a simple task, but what want to do here is not the plain mesh
reflection, instead we want to reflect the solenation’s motion without any change to the mesh’'s
geometry; this goal can be quite challenging. Nt if we simply reflect the skeleton we will also
reflect all the mesh’s vertices that are bindethobones, moving, for example, the right arm’diges to
the left side of the mesh. To reflect the sole atiom we need to reflect the skeleton paying atterto
preserve the reference system of every bone aradliond the mesh to the new mirrored skeleton ficst
describe what a regular mirroring process involve.

In mathematics, a reflection is a map that tramsfoan object into its mirror image. In order to
reflect a three-dimensional object one should ugkauae for mirroring. In detail, to find the reftem of a
point, a perpendicular line is drawn from the pdmthe plane used for reflection, and continuesttie
same distance on the other side. To find the r@dle®f an object, for example a polygonal mestg on
reflects each vertex in the mesh. Since the réflegbreserve distances between points the reflectio

operation is an isometry.

31

In three-dimensional geometry mirroring can be doseng matrix multiplication. Mirroring

operation can be seen as a change of referene@sygiere one of the axes is reflected towards tier o

side. The following mirror matrix Y reflects any point multiplied against it using thg

plane as the mirror plane.

Here we meet the first problem. Unfortunately waraa just mirror all the bones of the skeleton
using an x-y mirror matrix since this will flip the axis in every bones’ matrix (obviously the same
problem happens using any other mirror plane,st ghange the axis that flips). If this happenswile
have that the whole model reverted along the z axid this is a problem since we do not want tcehav
right arm that blends to a left arm (Figure 3.4-3).

To avoid this issue we need to preserve the Fifeaieie composition avoiding that any axis flips
when the system is mirrored. Since we cannot dyrgeevent the axis to be reverted, we manipulaée t

Frenet frame locally before the mirroring happeriserefore, if we flip only the axis that we knowliwi

Figure 3.4-3: On the left the character’s pose, ithe middle the correctly mirrored pose and on the ight a
wrong mirrored pose.

revert, at the very beginning of the mirroring, wil have the Frenet frame locally inverted. Thea @an
use the transformation matrix as usual, but thedéraow will have the z axis flipped and, if we roirthe
bone this time, we get the frame correctly orier{fédure 3.4-3 in the middle. Notice the logo oa #hirt
that is still on the right).

This approach solves our first issue but we stilfdto deal with the second problem. Let recall

that our goal is to have, for example, the rigim &nat acts like the left arm and vice-versa; tfieeeany

32

bone on the left side must be swapped to the siglet and vice-versa. Notice that this also meaatswie
need to re-bind the whole mesh after having middahe skeleton.

That being so we divide mirroring equations in tdifferent categories; the ones that reflect
bones that lies along the character symmetry mplame, and those that reflect bones far from thag
The bones far from the plane are the bones that beuswapped to grant, for example, the left arracto
as the right arm and vice-versa.

Let define the mirroring formula for the first cgtey of bones, those that have no
correspondences (for instance in our skeleton #reyonlyPelivs , Torso andHead bones). Recalling

Equation 2.3-3 we see that every bonis pre-multiplied for its bind pose inverse

Equation 3.4-2

so, assuming that the model is facing along thesitpe axis, we can mirror the z axis, after thedb
pose multiplication, using a local mirror matrikeh we act normally using the current frame matind

then we multiply for the world mirror matrix.

4
123 2 15Z \[a
Equation 3.4-3

whereZ yy should mirror the character along the symmetry@land must be computed in relation to
the bind pose, that is, if the model is facing plositive z axisZ y will be an x-y mirror matrixZ
mirrors the animation reverting the same axis #igpisingZ -

We handle the second category of bones now. Ibtim® has a correspondence on the other side,
then it is far from the symmetry plane and we nuss the bind pose from the correlated bone, instéad

its own bind pose, as follows:

4
b s Zpyy 152
Equation 3.4-4

whereb?, ,; is the bind pose inverse of the correlated boneisThe need to save, for every bone that
uses this formula, the correlated first frame mdfwr mirroring. If we imagine the first category lmones

to be self-correlated, for example we correlatettbad to itself, we can use the sole Equation Ja-4
mirroring. Mirroring the whole set of clips doublgeeir number and provides to our blending engivee t
missing animation needed. Finally, since now weehal the animations, we can discuss the blending

system itself.

33

3.5 Clip blending
3.5.1 Blending process

Blending between two clipd andH is a three step process. In the first step welapehe two
clips at their constraint frames, respectively, andH,g (as shown in Figure 3.4-2). Therefore we will
work, in the following steps, using the constrdiatmes we defined.

In the second step we re-oridit so that its ground-contact foot coincides with Haene foot
from H . We are sure that feet are in ground-contact kscthey are taken from the constraint frames. In
detail, when the foot will be in the position débed atH;,, it will be overlapped onto the same foot, from
clip one, read at framidy, . We don’t want a “perfect” overlap, we requireittfeet to match in positions
and in orientation only on the x-z plane (thathis totation around the Y axis and the positionfenX-Z
axis). We discard pitch and roll motions (aroundaXd Z axis) because we are supposing that the
character is walking on a horizontal plane.

Re-orienting and re-positioning are both represkbtea single roto-translation matrix, therefore
we need to factor out this matrix to accomplistpdigo. We remember from section 3.4.2 that we must
re-root the second clip, before overlapping, arat this will also assure foot-skate prevention. &i&o
recall that our bones are expressed in absolutelcwdes thus we defined a root-matrix that tramafthe
skeleton in the space as the root bone should dave if we were using relative coordinates.

During the animation of clip two we update the romitrix using the inverse transformation of
the foot defined at framid,,. Since we want a partial overlap we need to chaingdoot’s transformation
matrix, in order to discard the unused componeans, then we invert it. In detail we break down the

matrix, let call it , and use its parts as follows:

cdQPOe féhﬁj
K
[PmOn
» COLCPgE gyq
' o I r ,64 rs

Equation 3.5-1

where; (in the matrix subscript) is the index for the tfdmne in the skeleton, is the root-matrix for
clip two (functions cdQPO, P mOn co;;cpq and(are defined inAppendix A:Mathematical
notationd ands is the transformation matrix for the skeleton iip ®ne, that is the position and

orientation of the skeleton measured at the cansldfoot in respect to the absolute reference éram

34

The first part of , thatisO(| r ,64 , will move the whole skeleton so that the constdi
foot will be in the origin when the animation plaframe H,,. If we now apply a transformation that
moves the skeleton from the origin to the positidrere is placed the constrained foot from clip ome,
have effectively re-positioned clip two onto climeo This is exactly the role of matrx . We can

compute this matrix as follows:

ot f w6 ot f w6

cdQPOe orfj\,wej

k
| PmOn

,coicpde g d
s (I r,

Equation 3.5-2

where' is the root-matrix for clip one and it is used faositioning the animation so that ,x
uvw

contains the foot position in respect to the alisoheference frame. Notice that here indein
represent the same foot of Equation 3.5-1 indexs@ay in ; this happens because one of the two clips
is coming from the mirrored set, so the right fosés the index of the left foot and vice-versa.

Multiplying the skeleton in clip two and the roofatrix we can complete step two overlapping
the clips. Notice that clip one has its own roottimawhen a new clip is added to the sequencectipe
named two will be re-labeled as clip one and theamener will be labeled clip two, the same happens t
the root matrix s6 is the old' . At the very first step instead, is just the identity matrix.

Finally, we face the last step, which is blendingnf H to H with the ground contact foot
treated as the root of the kinematic skeleton. Glkeed time is computed as shown in Equation 3.4-1.
we iterate this method for a sequence of clips W&in a long seamless animation as shown in Figure
3.5-1.

Figure 3.5-1: A sequence of blended clips

35

The sequence of clips is mixed in a seamless waillaation composed of the clips we used.
Notice that, thank to the constraint system, theimam blending occurs during ground contact, when
forces are used for changing direction and bothalinand angular momentum vary the most. Minimal
blending occurs during initial contact and oppogitgal contact periods.

The major drawback is that we use constraints ¢r@etame, when both are on the ground only
one of the two is constrained to don't skate. fherlarge class of motion that don't involve doustiznce,
such as walking and running, this model works vwidicause the motion model avoids non-smooth blends
it doesn’t need any graph structure of valid matidavery transition is allowed and valid therefome are

granting a very high branching factor that allowscl changes of direction.

3.6 Conclusion summary

Blending allows mixing a sequence of animationspamticular we blend clips captured using
motion capture, to obtain a single long walk anioratWe prevent foot-skating using a constraintesys
and “re-rooting” the clip.

We have not defined yet how the sequence of clighosen and how we can generate it on the

fly satisfying the user inputs. To achieve thislgea want to define a controller system.

36

Partlll

CONTROLSYSTEM

4. Control system

4.1 Introduction

The sequence of clips to be blended is not defmpdori, instead it is dynamically generated in
order to accomplish a specific task, which is dedim priori and gives the goal of the whole anioratiro
this aim we define the controller, which selects tiext best clip for the sequence on the basiseohigh
level information of the current task.

We have implemented only one controller whose task navigate the character over a plane
allowing the user to specify a desired motion ditet torso orientation and type of gait. Theseréssare
encoded as parameters inside the controller itdedfefore the controller selects the next clifunction
of the user’s requirements besides of the overl.dgrhis allows the user to interact with the avats
specified by the task during the animation itseihteractive rates.

In the first part, we propose a definition of a miegful state valid for the controller and the task
considered here and the parametric structure otdméroller. We also define a way to move from the
controller’s current state to the next state thathtained adding the selected clip to the sequékieghen
introduce more formally the concept of task andh@ second part we present some cost functions that
allow the controller to choose each next clip; ¢hip is passed to a blender system that will mix tivo
clips smoothly. This chapter ends analyzing thécgaystem that we developed to choose each nigxt cl

and presents two possible policies, the greedytt@mdear-optimal one.

4.2 Controller and states

4.2.1 State

The character’s controller allows the user contrglthe avatar while it is accomplishing a given
task, for example moving over a plane. To this aigontroller has the main function of supplying ayw
for changing from one state into the next one. Atailler, therefore, must capture and handle ttstesy
state; however, these states cannot be defineidi@ gince they depend on what the controller'«saare
and on what the controller must keep track of. €fae, the controller depends on the chosen tadk an
then, to define a state, we must identify thoseabées that are important for our task. Once weehav

identified all the meaningful variables for eveagk we can save them inside state vectar

38

State is represented using a vegqiorz (wherez is the collection of all the possible states)
containing all the variables that better descrifee ¢urrent character situation. For the task cemsil
here, namely navigation with explicitly control tfrso orientation, gait style and gait directiorg have
chosen the following state variables. The firstiatale included in the state vector is the curreipt E
G, whereG is the set of all the available motion model clipeluding clipH is required since we cannot
define a state without knowing which clip we arayphg The next three state variables are the character’s
position and orientation on the x-z plane. Theg@bées are named ! andl and represent respectively
the position along the X-axis, the position alongxs and the angle around the Y-axis, taken clas&w
The next variable is namddand it is the angle between the torso’s normatoreend the desired torso’s
orientation read in the very moment when the stat®mputed. The current torso orientation is reach
the clip data at the current frame, while the adbtorso orientation is an angle defined by useurad the
Y-axis taken clockwise. Finally, the last stateiable represents the user’s desires, in particulathis
case it represents the gait style that is codeghdategel } These last two variable§,and| } represent
intentions and can be directly manipulated in teaé while the animation is created. As we salldtha

named variables are inserted in a single stat®rect

Equation 4.2-1

More explanations are required on the referencmdran which the position and orientation
variables ! and| are expressed. Position and orientation variabtesnot expressed in the absolute
reference frame, instead, every time a new clipreguired, the reference system is changed an
repositioned in a convenient way as explained énrtext paragraph and shown in Figure 4.2-1; thezefo
position and orientation variables refer to a sfiecbordinate system that is updated at every sijich.
This means that every time a new clip is addetiécsequence the state vector is no longer validtdras
to be computed again.

When blending of two clips occurs, we have two<lip blendH , that is the last played clip (it
can even being still playing for blending purposes)dH that is the current clip; we then also introduce
a third clip,H*, that represents a possible next clip choice. bl reposition the reference system in the
mentioned convenient way, that is, as shown inrfeigu2-1, we place the reference system’s origthet
position where feet overlap for blending, that isene the constraintd,g andH;, overlap (as specified in
the first step of the blending algorithm, sectiof.B). The reference frame is then re-orientechat the
X-axis is coincident with the desired direction afied by the user. Once the reference system bas b
set, we can finally define what is represented lxy position and orientation state variables. Irs thi
scenario and! represent the third footstep’s position, that ieeve we have the constraint fraig, , on

39

the x-z plane. Notice that foot one is thig
position of the last played clip, while the fourth
foot represented in the diagram is the possible
Hfx_ position computed using a generic third
clip. The diagram represents three possible foot-
four’'s position because this footstep is yet not
defined at this level, so those steps are the
possible positions obtained using three different
clips overlapped on the third foot.
Summarizing, this diagram involves
three clips: one that was played (or it is still
playing while blended), one that is currently
being played (eventually blending with the old
clip) and another one that can be used for
computing the next potential step. This last clip
is not defined at this level, it is shown in the
graph to give the idea of what would happen if a
third clip is used and how the direction changes
using different clips. Notice how the controller
automatically knows where foot-two is, since it
is always in the origin, and saves only the foc Figure 4.2-1: State coordinate system
three position explicitly. The first footstep doeo
not interest the system then we just discard tf@nmation about it. As shown in the diagrdms the
angle embraced by the foot's “look” vector and thesired direction therefore anglerepresents the
orientation of the second footstep in respect ¢oxtaxis.
The state vector captures everything that is relei@m the system so that the task can be
achieved correctly. Now we want to define a traosifunction that computes the new state given any
new clip. Once we define this function we will beleto simulate where the character will move after

having performed a step with any of the clips frilni@ database.

4.2.2 Transition from state to state

We define aransition functionfor our controller in order to change from a statéhe next one.
The transition function requires a new clip to pedfied; choosing a clip for transitioning meangnig
both the third clip and the fourth footstep we disged before. Changing from a stat® another statp

is done according to the transition functio®z B G « z as follows:

40

H H

_— we D 7% | £,
<pH p f w0 Ef 7%l £, f
~1 e ~ I # .
{ {
| ¥ |} "
Equation 4.2-2
whereH is the new clip, - ! andl - represent

the new position and orientatiofi, the new
angle between torso’s normal and torso desired
orientation while| }is copied as it is. Points

and f- are computed in function of theta using
two distancesf, andif. These distances are
measured from the fourth to the second foot
after having aligned the reference system so
that the normal vector of the second foot
coincides with the x-axis (Figure 4.2-2).
Notice how these distances can be computed a
priori after having chosen any two clips, they
do not depend on the character’s paosition nor
on its orientation. In Figure 4.2-1 and Figure
4.2-2 there are three possible positions for
foot-four obtained using three different clips;
the middle one, labeled foot-four, is obtained
using H so it shows ‘S%o< ! coordinates.

Angle differencefl is computed measuring

tAr
the angle embraced between the normal vec Figure 4.2-2: How#e and e are measured

from foot-two and the normal vector fron

foot-three:

I PmOnEcdQPOe ;i o cdQPOe Otfih6i°
uvw g

Equation 4.2-3

where ; is the index of foot-three’s bone andthe index of foot-two’s bone. Anglé is computed
measuring the angle embraced between the normanieom the torso in the first clip and the normal

vectorf that represent the desired torso orientation:

41

{ PmOnecdQPOe (i 7

Equation 4.2-4

where the indeX refers to the torso’s bone.

Once we have defined the state representationrsysied a way to make it evolve in time using
the transition function, we have to define an adégweost function. We need to define a cost aswutia
each task because this allows to assign a valaestate with respect to the specific goals provigethe
task itself. States cannot have any absolute viayjuthemselves, they are just representing the wcurre
character’s situation, but we can evaluate thenh wéspect to a task, and then we can decide which

transition will better fit in our goals.

4.3 Task

As said, a task, in our system, requires to spehiygoals that the controller must achieve when
choosing a clip; after having casted these godts mumerical values we will be able to define some
strategy to accomplish the task optimally.

The task that we have considered is navigatiors, i example, requires the avatar to move on
a plane giving to the user the ability to contrabtion direction, gait style and torso’s orientatidiie
want that the character can move with differentsyaherefore, to do this, we captured differenp<l
through motion capture, in each of which that scibjealked at different speeds, eventually staytegdy
in place. These last type of clips are neededtéstisg and stopping the character’s motion; faaraple it
starts steady on place when the simulation beyfifesdivided the clips in different set based onehgait
styles: steady, normal walking and fast walking.aWfasked to choose the next clip the controllet wil
exclude those clips that are not in the set ofjeiestyle required by the user.

We allow the user to specify a direction along whio move the character. The task will then
require the character to walk along the linear paltich is oriented as specified by the direction an
which starts from the foot that is currently sugpay the body weight. We also require the charatier
move forward as close as possible to the linearomgtath, avoiding to have the character that walits
the legs apart.

The last goal is to allow the user to specify thesad orientation that the character must maintain
while moving along the desired direction. This aloobtaining different kinds of walk, for example w
can revert the torso direction with respect to pwtiirection, to achieve a backward walk.

Given the current task, we need a way to specify good is a clip in achieving all the goals
specified for the task. To this aim we use a cgstesn as this allows us to use reinforcement legrni

techniques to learn the optimal policy for clipteston.

42

4.4 Costs

4.4.1 Representation of the task goals using costs

We express the task’s goals using a cost systemasgns a cost to every state and every
transition. The underlying idea is that a more lyostate, or transition, is less attractive thechaaper
one; therefore if we properly assign the cost tergwnew state and to all the possible transitiores can
estimate which transition will lead to a new stpteying the lower cost. Costs are obtained from two

functions:

N€z

N€zBz-
Equation 4.4-1

whereN is thestate cost functioandN is thetransition cost functionThis functions compute costs that

are inversely proportional to how well the inputst(or states for transition) fulfill the task’sais.

4.4.2 State cost

Every state has an inherent cost. We define thiefgostion as follows:

. +ole + oo H |g

N
p ~ HTMl}

Equation 4.4-2

In this function the first part tries to minimizbet distance of the new step from the desired dinect
motion path. Parameteris used to weight this factor. The second partuatak how far is the clip from
the desired orientation. Again parameteis used to weight this torso orientation factorolr results we

have set the weights »>= and+ = 2.10; these values have been obtained by tigkaror.

4.4.3 Transition cost

We impose a cost for changing from one state tohemaising the following function:

Npp +oe HH +;2
Equation 4.4-3

43

where the physical cos€ GBG « measures the physical error in blending freimo HYusing a
weighted sum of squared difference on position weldcity computed over all the bones. This function
allows us to get the most natural transition pdesitom our library of clipss computes the squared
difference of joints’ position and velocity duritige blending frames, that are those frames whaye ate
overlapped. These differences are weighted and suhtogether and the result will be in inverse
proportion to the naturalness of the transitionisMalue is used as a cost, which allows us to stdbe
clip that produces the most natural transition.tlyag is the angle between the vector from the origin to

foot-three and the x-axis.

Z PmOnj ¢ ¢£
f

Equation 4.4-4

In our results we have set the weight of these tcaings to+, > and+ > (like the previous
values, these parameters have been obtained bgrideerror). The presented cost system provideaya
to give a numerical value to every clip with redpiecthe task, but it is not saying anything abloonv to
choose the next clip for the sequence. To thiswaémeed to define policy that takes advantage of the

cost system to choose the next clip.

4.5 Policies

4.5.1 Greedy policy

Differently from the standard definition used irinfercement learning (where€z B ¥ «
ando, o P is the probability thaP, P if o o , see Appendix B.1 for more details) we define bcgo
as a functiom€z « G that, given a state, chooses the next clip totadde sequence. The way the policy
chooses the next clip depends on how we implementpblicy’s decision process. The most obvious
policy is greedy, that is a policy whose strategytoi minimize the immediate cost of both the nei ahd

the transition to get to it:

o, p §f“%gompp N.p 6

Equation 4.5-1

44

wheren, denotes the greedy policy apdis given by the transition functignr <p H - as shown in
Equation 4.2-2. In our results we have seen tlegthedy policy produces realistic movements.

In general, motion usually requires to be planmeddvance in time in order to look natural, that
is we can choose action in the immediate that astlycbut that produce a global lower cost in thegl
run(Treuille, Lee and PopovR007). Therefore, even if the greedy policy beldawvell we have chosen to
implement a more complex planning policy that i Idsed on short-term cost but to a long term one t
achieve a better result in the long run. To this aie designed a cost function capable to consiti¢ne
costs that a choice will impose to the system enghesent and in the future. This approach is &jgic
reinforcement learning techniques and will help system to choose the clip that will produce thestmo
natural motion. The best of all the policies innfercement learning is calleabtimal policy(Appendix
B.1.3).

4.5.2 Optimal policy

The optimal policy evaluates both the immediatet aifsselecting the new clip and all the
following costs that the system will incur in thetdre if that clip is chosen. Such a policy is oy
because it can consider an infinite number of stepise future. To define the optimal policy leSsppose
that we have a policye which produces the sequence of statgsg p p | , where
p. <p 4 °® Q@4 andpg is known, then we will measure the cost of the teequence instead of
the sole first step measured by the greedy policydo this we define a cost function that measthes

cost of the first element of the sequence as:

-

N pg /) “ON p.p. N.p_. 6
L89

Equation 4.5-2

where) is thediscount rateand it is inT ~ to ensure the series to converge since we aiagett

no limits on the step number. The equation candséyerewritten in a recursive and more generainfor

Nep. Nypopee Nepo N p
Equation 4.5-3

Under general condition, minimizing Equation 4.%562 each initial state results in obtaining the

optimal policyr (Bertsekas 2001). This allows us to define thenagtvalue function . €z« for

«®

45

this policy that can be written ag, p N. p , therefore, for all thep we can rewrite the previous

equation as:

<<®p NLpp N“p) «®p
Equation 4.5-4

wherep- < p H andH =& z© that is the optimal next clip. Now that we havdired the value

function for the optimal policy we can define thaipy itself in a proper way.

Be© §;%geNpp b P) «eP]

Equation 4.5-5

Therefore the optimal value function,, p completely specifies the optimal controller.
Unfortunately we cannot implement the optimal coltér as it is; the problem is that we cannot cotepu
the exact value of the optimal value function icantinuous states space, because this would mean to
handle infinite possible states. Therefore the amly to pursue optimality is to achieve a near+opti
result through approximation of the value functithis is why we are going to introdubasis functions

approximation

4.5.3 Basis Function Approximation

We achieve approximation using a method basedrmadiprogramming proposed in the work

“The linear programming approach to approximateasiyic programming” (de Farias and Roy 2003). The
idea is to work on the cost system; the domairisfsystem is the states space whose size typigadlys
exponentially in the number of state variabless(firioblem is known asurse of dimensionalijy To deal
with this difficult problem one can try to approxate a value function mapping it to an approximated
functon*¥zB *+ | and then compute a vecwr ° that “fit” with the original value function so
that 3~ . Vectord can be quite difficult to be computed becausesitvily depends on what shape the
value function has. In de Farias and Roy’s workdgdine %, they introduce a basis vectop

M pPpH plU gp where each basisl £z« can be evaluated in closed form, such as

polynomials, and this leads to the approximatiomeign:

I+

p /d 7H7P
78

Equation 4.5-6

46

This lead us to approximate the optimal value fiomctiefined previously as follows:

&

“«gP */d suzp “pd
78
Equation 4.5-7

Therefore we have reduced the problem of solving the complete value function to the lower
dimensional problem of solving for vectdthat approximates it.

We now want to define basis vectorin order to be able to compute a veadhat approximates
«g These basis depends on the desired degree abapjation. We started our tries from the work done
in the Treuille, Lee and Popo's paper and we defined the basis as polynomialsecbnd degree in

function ofl and!. In this paper the authors suggested to use fatiraeus basis functiofi ' |

whereq is defined a4 < < < ., While the outer product is defined as

1o < » d ee» 1 d ° . Thisproduced the following nine bases:

Hop
Hop !
Hap !
Hep |
Hyp I
Hyp !
Hywp |
MHep 10!
Hap | !

graphically represented in Figure 4.5-1.

a7

Figure 4.5-1: The nine basis graphically represented

Once we defined the basis we must define an algorito compute the parameters veator
Approximation will remove the problem of having iimfe states and will allow us to define the new

function® 3" ., and to use it for computingreear-optimal policy

4.5.4 Near-optimal policy

Near-optimal policy is defined using the approxiethvalue function we derived in the previous
section:

Ap© 8% eNpp ,-p) %P 8% Npp ,.p Apd

Equation 4.5-8

The last problem we have to face now is to compattord. To compute it we generate a set of samples
for the state set}A z and then, for every state sample, we evaluatesahee function. Once we have
estimated the value function over the samples s&ttere can develop an algorithm that works instmae

way the iterative policy evaluation algorithm usedeinforcement learning do.

48

We define a sef\ A z}B z of state transition pairs, each one starting famample state and
ending in the corresponding next state computedgusie policyA® as defined in Equation 4.5-8.
ThereforeA contains an array of pairs that describes whie ste controller will choose using the current
policy and starting from one of the sample statd,tb be able to use Equation 4.5-8 we must dedine
default value for vectod. When the algorithm starts we set all elementihisfvector to zero. The idea is
that, after every iteration, we refine vectband we use it to re-compute state transitionslé8i The

algorithm iterates through the following:

1. Empty outA and then fill it again computing a new set of esastarting from every

sample and according to the current value funaimproximation

AE-,
AEpp-p z}

wherep- is the next state obtained frgmcomputed using poIicﬁ\® © and using the
resulting clip as a parameter for the transitiomction so thap: <p nA@ ©
2. We then solve a linear program that maximizes vetttasing the pairs read frod as

constraints

§§, I~ %, p
Ez}
HEL,P NLpp .-p) %, p pp A

In this step we essentially inflate the value fiorctapproximation as much as possible

but having it still subjected to the bounds. Thequality constraint forces the

approximated value function to respect the codesysand in particular Equation 4.5-4.
3. Test if the resulting vector is not too differerdrh the one obtained in the last iteration;

if it is then exit, else go back to step one.

This algorithm can or cannot converge dependinwloat value the parametgris set, depending on how
the samples are taken and on the value functidmepes Anyway we discovered that trying different
values for parametér can lead to convergence; we set a default value.&sd for alpha and then we

adjust it until the algorithm converges.

49

We encoded the shown algorithm insidpBlender and we used it to compute the value
function for our character. Samples are takenirgéahe character around its foot (foot-two) inwieg|
of 90° every time until it makes a complete rotatand gets back to its original orientation; sam@es
taken around both left and right foot. Therefore duery clip we acquire three samples at 0°, 960°1
and 270°. To solve the linear program we implengflex , insideClipBlender , to take advantage of

this good problem solver. An approximation of tladue function is visible in Figure 4.5-2.

Figure 4.5-2: Approximated value fun(:tionlé!gG

Both the presented policies allow the controllemtark properly when it has to choose the next
clip for the sequence. We now define how the cdletrevorks at run-time to have completely described
its implementation.

4.6 Runtime control

The runtime control algorithm is fast and simplecsi all it has to do is to select the next clip
using the enabled policy. Notice how user inpuishsas changing the motion direction, torso origora
or gait, change the state variables so that théemsysan automatically adjust itself to match the
requirements in the next state transition. Thegefany time a clip finishes the runtime controllast]

invoke the policy function to compute the nextatah agree with the user inputs:

50

Equation 4.6-1

whereo can bea, oré,

4.7 Differences between the two policies

Since motion requires planning we expected the-aptimal policy to work better then the
greedy one; instead, we discovered that both thieig@® were acting almost in the same way. This is
probably due to the controller definition we madad it can result different if we define some sfieci

task, however, for the navigation task, the twdqied worked almost identically.

Figure 4.7-1: First test graph

To better compare the two policies we have defigederal tests with two characters, one that
uses the greedy policy and another one that adogtsear-optimal policy. After we have run each tes
have computed a graph that shows the cost, expres®¢ p N _p p -, paid by the system at each
step.

The first test we've carried out changes the charadirection of 180° after 10 steps; the whole
test last 20 seconds and then the program quitshéan both the policies choose the same clip$ tineti
inversion of motion, then they do different choidrg converge quickly to a common pattern choosing
again the same clips. This result is very differfieatn what we expected and underlines how much the

greedy policy’s results are good.

51

In the second test we let the characters moved@e8onds and we changed their direction every
6 seconds. The direction change were random (athadentical for both the characters) obtained

changing the direction of motion adding to it amglarbetween 90° and 180°. Even in this test wesesn

Figure 4.7-3: Second test graph

how the two policies are working similarly. Jusivfeifferences are noticeable after a turn aroured28i
step.

Figure 4.7-2: Third test graph

The third test stressed the movement with a coatisichange to the characters direction adding
to it a random angle between 150° and 220°. Evethis test results from the two policies are very
similar. We then run a fourth test where we chariyetth the direction of motion and the torso oriéinta
every 5 seconds for a whole of 40 seconds of ¢ changes set the motion angle and the torso

orientation randomly on the whole spectrum of 3@@rdes. As the diagram shows the policies work

52

similarly, even if we notice that the near-optirpalicy chooses a costly clip around step¥ a8d 3§'.
These two high cost steps may be due to the appadiins done to the value function.

Figure 4.7-4: Fourth test graph

It would be interesting to analyze why the two pi@é are acting so similarly while in other
works it has been proven that the greedy policyopers worse (Treuille, Lee and Popo007). In fact,
if avoiding the training pass, required by the f@ioement learning algorithm, it would be still gdsde to
achieve realistic results using a simpler firspspgediction, this would be a big improvement tdsth
technique. However it is very probable that thefigrenance of the greedy controller are related éoviéry
definition of the coordinate system and of the oafér structure, therefore, if it is so, it shoute

possible to identify some tasks that push the greeticy to behave worse than the near-optimal one.

53

4.8 Conclusion

Now that we have completely defined the controdfietucture and behavior we can say to have
finished our animation system. Our controller usesost system that is strictly correlated to the
controller’'s task. Once we have defined the taskmwest introduce a policy for selecting the nexp cli
evaluating the system’s state and the various c@&shave proposed two policies, one that evaltrate
cost at the very first step, and another one #iad into account all the possible future steps. [@tier has
been approximated using basis functions. We can aoalyze the results we obtained from both the

policies and discuss some implementation details.

54

Part v

CONCLUSIONS

5: Conclusions

5.1 Conclusions

5.1.1 Conclusion and results

Summarizing, this work presents a control systemcfwaracters animation in real-time. The
system is divided into a motion model and a colgraystem. The motion model enables transitioos fr
clip to clip while preventing foot-skating thanksthe definition of some constraints. The contgatem
allows to represent the system state and to ediitgtevolutions when a certain clip is added t® th
sequence. To choose the clip we defined a reinfoeoe learning paradigm with two possible choices of
the next clip: a greedy and a near-optimal choldee latter is based on an approximation of the evalu
function through basis functions.

We led several tests using the character showhapter two. To achieve our results we captured
about 160 motion capture clips using 17 markergrieelip has been partitioned on the base of itsiga
one of the three possible sstand walk and quick walk Unfortunately there were no room in our
laboratory for capturing a running gait, therefare limited ourselves with the quick walk gait. hetfinal
version of our program we discarded some of thpschecause they were never selected from the
algorithm or because the gait was not recognizalslea walk nor as a quick walk, or other similar
problems. If we had had more time it would haverbbetter to re-acquire those clips to have a bigger
sample state space.

The last configuration we adopted used a subsabofit 80 clips from the 160 we acquired; this
sped up most of the computations still permittisgta achieve a good visual result (notice thatscéipe
mirrored after being loaded, therefore the 80 clipmntioned are only those that starts with the ftadt;
when loaded they are mirrored reaching a grandl e6te60 clips).

At runtime the controller chooses between clipsyvauickly; we measured the time it takes to
query the policy and we have discovered that iesakbout 30 milliseconds using any of the two pesdic
Learning the near-optimal policy, instead, is H@ttquickly since it can require from 1 up to 5 ui@s
and it can miss to converge; when this happens ave o retrain the system trying a different alpha
value. In our last configuration we had alpha 4€2.85 and the approximation function convergea in

about minute.

56

All the procedures for setting the constraints, veasll as the procedure to compute the
approximated value function, are embedded insideCtibBlender tool. When loading our file the tool
takes about 14 seconds to load everything up dlfca170Mb of memory. The main animation program
instead loads the system in less than 10 secdndsyuires ~250Mb of memory and plays ~180 frame pe
second (including rendering and animation algorghm

Our test has been done on an Intel Core2 Quad Gs80@at 2.40Ghz having 2.00 GB of RAM
and using an NVIDIA GeForce GTS 250 (1.00 GB of RAkboard) as video card.

In spite of the power of dynamic programming, coatius and high dimensionality controllers
are challenging. A way to deal with it is to useitchthe value function at runtime. This technique ekpl
the idea that some state variables remain condtairig the clip transition, for example the gaiedmot
change without an explicit user command. Sincectiroller cannot affect the gait we do not need to
take it into account during the estimation of tladue function.

We can then switch between two different value fioms computed using two different gaits.
For example, when transitioning from a walking gaita quick-walking gait, we just change the value
function used for evaluating the policy. This avaisl to put the gait variable inside the value fiomgt
speeding up the evaluation process. With this éixple don’t resolve the curse of dimensionality dem
inherent in reinforcement learning, but we justussthe amount of computation that the algorithnstmu

perform.

5.1.2 Considerations and Future works

This animation synthesis technique has proved toptwerful in generating realistic walk
animations, but it is not free from problems. Therst issue in this technique is related to thedarg
amount of motion capture clips needed when sevesis with their own controller are defined. For
example if we would allow the user to control theatl orientation too, we should capture other motion
capture clips with all the possible combinatiorhefid/torso/motion-direction. This will lead to tisands
of captures, and obviously it is a big problem &aldwith. Moreover controllers’ dimensionality wdul
increase very quickly leading to long learning tifoaethe near-optimal value function.

A Solution may be to compute the additional clifes & digital synthesis process for example. A
related problem is that transitions are limitedtbg number of different states which makes it hatde
achieve a fine control such as stepping exactly given position. We should have a clip for anysilas
step in any possible position to achieve such altrdsut such a quantity tends to infinite. Agaieaution
may be to use clips synthesis, for example viadifey) to compute the missing steps in our database.

Another issue is related to character's reactiametiEven if our model has a high branching
factor, which permits to choose any clip from tleatbase, we can have several situations where well-
timed movements lead to slow responses. The woesiasio is if user requires a 180° turn to the abiar

as soon as the system has changed the clip; tramsribat the user has to wait two steps before the

57

character effectively turns to the desired directith would be really interesting to analyze a systthat

allows the character to react at the first nexp stetead that to the third next step.

58

59

APPENDIXA

A: Mathematical notations

A.1 Matrices

A matrix is a rectangular array of numbers withaeg number of rows and columns. We usually
say that a matrix @ B , meaning it ha® rows and columns and we refer to this size as the dimension

of the matrix. In this thesis matrices are writtenfollows:

P99 P9 I P 9&
P P I P
20 S S T B R
Po P 1 Pig
Every entry of the matri; , the first index is used for rows and the second & for
columns. All the matrices used have dimension hdlae said to be in ; every matrix is stored

in row-major order.

The main reason to use 4x4 matrices is to represgatt rotations, scales and translations in a
three-dimensional space. For example, every bong Ipeatotally represented by its roto-translation
matrix

Multiplying matrices allows describing a sequendéeaiations/scales/translations (or a mix of
them).

A.1.1 Rotation matrices

In linear algebra, a rotation matrix is any mattirat acts as a rotation in Euclidean space.
Rotation matrices are always square, and we astheneto have real entries, though the definitiorkesa
sense for other scalar fields. There are threeclyasition matrices in three dimensions and we rgiiér

to them using the compact notation of functionse Tallowing matrices represent counterclockwise

60

rotations of an object relative to fixed coordinates, by an angle of The direction of the rotation is as
follows: (rotates they-axis towards the-axis, (rotates thez-axis towards the-axis, and(rotates

thex-axis towards thg-axis:

pee T T7%o0l
- X "% ,...T1 Y
oo T "%l
Ch Xy o Y
pee Tl T%01
A.1.2 Matrix-to-Matrix multiplication
Since we are using only matrices in the matrix by matrix multiplication is always
defined as follows:
b Ir .BDb 1
o}
2ol/P 7cco s YE L XDy X
080

Since matrix multiplication is not commutative tl@erands order is relevant; in this work

transformations are read from left to right, setation followed by a translation is represented as

A.1.3 Vector-to-Matrix multiplication

To transform a given vector against the desired transformation matrix a vettomatrix
multiplication is performed:

61

O

q/ Zur € 5 X
080

where is the original pointZ it the transformation matrix and the transformed point. The
point here is represented using homogeneous coordisatésis a vector € where the fourth

component {) is the homogeneous component.

Any vector in this thesis, if not differently spged, has to be considered in the homogeneous
coordinate system. The dot notation for vectorssisd to specify a component from it, so thealue from

vector can be specified using .

A.2 Other notations

A.2.1 Clamp function

Let define a clamp function for general purposes:

P P
NOPQy u U o s
c Und:;on

A.2.2 Normal vector

This function requires to be feed with an orthonalrmrmatrix and returns the normal vector

extracted from it.

Sg

cdQPOs X
Sg

62

A.2.3 Translation matrix on plane XZ

This function read the position from the transfotiora matrix provided as input and returns a

new matrix with the sole translation on plane XZ.

co;;epg s X Y

Sag Sa

A.2.4 Angle between vectors

This function gets two vectors £) and returns the anglebetween them.

P mOn- - N L o

63

APPENDIX B

B: Reinforcement Learnir

B.1 Agents and Environme

In reinforcement learning the decis-maker is calledagentwhile any other thing it interac
with is part of theenvironmer (Sutton and Barto 1998)The agent and the environment intel
continually, the former selectc performsan action and the latter responds to those acpogsenting
new situation to the agent. In reinforcement laggnive want the environment to provide rewards &
agent to represent how good the agent is performvitig his actions. These irractions are portrayed

figure C.1-1.

state, action,

Figure B.1-1: Agent-environment diagram

At every time step the agent chooses a new acoga function called agenipolicy, denoted
where is the probability tha if . Reinforcement learningpecifie: how the agent
changests policy as a result of its experience in theimment; the agent’s goal is to maximize the t

amount of reward it receives from the environmerer the long run.

64

B.1.1 Reinforcement through rewards

A reward is a signal passed from the environmernhéoagent formalized as a numlaer
Informally, the agent’s goal is to maximize thealctmount of the reward, which means maximizing not
the immediate reward but cumulative reward in theglrun. The expected return is then defined agsom
specific function of the reward sequence. Dependitite agent-environment interaction does or dogs
break naturally into finite time steps or just ga@s continually without any limit, some additional
concepts must be introduced. If the final step™ , meaning no limits is set, the additional concefpt
discountingis needed. Roughly speaking, at every step thareve ever less precious for the agent to

collect. The expected discounted return functiotheiined as follows:

Equation B.1-1

where+ is a parameter + calleddiscount rate

B.1.2 Value functions

Almost all reinforcement learning algorithms areséxd on estimatingalue functionsA value
function estimates how good a state is for the tafgestay in or how good it is to perform an actiorihe

given state.

Equation B.1-2

whered, denotes the expected value if agent is followiakicy @ and is any time step.

In reinforcement learning it is usual to defineaation-value functiobesides the specifiestate-
value function but in this thesis we assume actions having retscd/alue functions can be estimated
from experience keeping averages, for each stateumtered, of the actual returns of the state; the
average will converge to the state’s value o as the number of state is encountered infinitgsingince
value functions satisfy a particular recursive tietzship (Sutton and Barto 1998) the following etippra

can be derived:

“o Ja oP/] Yel + <oj
U
Equation B.1-3

65

given that in, this thesis, we assufié P ¥ 0 0 zo' z, equation C.1-1 becomes

“o /o oP/e® Y 4+ <o
u
Equation B.1-4
where® U- is the expected immediate reward on transitiomfocto oYunder actiorP.

Equation C.1-3 is thBellman equatiorfor ~ «; it expresses a relationship between the value of
state and the values of its successor states. dlle function « is the unique solution to its Bellman
equation.

Reinforcement learning methods relies on updatebackup operations to transfer value
information from a state back to its parent.

B.1.3 Optimal value functions

A policy @ is said to be better then another pokcyif its expected return is greater than that of
a- for all the states formalized as% - "ee S%oc< ...%:C& '@ %~ 0 0 z . The policy which is
better than or equal to all other policies is @hllieeoptimal policyand it's denoted as® while its state-

value function is calledptimal state-value functiogienoted ag®.

é®0 85 ““o t z
Equation B.1-5

Becauset®is the value function for a policy it must satishe self-consistency given in Equation C.1-4
but sinceé® is the optimal value function, its consistency dition can be written without reference to

any specific policy.

é®o §§ Je® Y-+ ®o |
e i

Equation B.1-6

Equation C.1-6 is the Bellman optimality equatiornene f.¥ P ¥ 0 0 zo' z. This
equation is actually a system of equations, onesfze, so that for N states there are N equadodsN
unknowns. Having®it is possible to determine an optimal policy.

Since in our work actions lead to one and only stage Equation C.1-6 can be written as:

é®¢ §S,) U + @5
e¥°

Equation B.1-7

66

67

BIBLIOGRAPHY

Bertsekas, Dimitri PDynamic Programming and Optimal Control, vol &thena Scientific,
2001.

Charles, Rose, Brian Guenter, Bobby Bodenheimet,Michael F Cohen. "Efficient generation
of motion transitions using spacetime constrairfesdceedings of the 23rd annual conference on
Computer graphics and interactive technique396: 147 - 154.

Choi, Kwang-Jin, Sang-Hyun Park, and Hyeong-Seok 'lReocessing Motion Capture Data to
Achieve Positional AccuracyGraphical Models and Imag&eptember 1999: 61(5):260-273.

Corazza, S., L. Muendermann, A. Chaudhari, T. Dama€. Cobelli, and T. Andriacchi. "A
Markerless Motion Capture System to Study Muscudteskl." Annals of Biomedical
Engineering June 2006: Vol. 34, No. 6.

de Farias, Daniela Pucci, and Van Benjamin Roy.e"Tlinear Programming Approach to
Approximate Dynamic ProgrammingJperations Research, Volume, 2003: 850 - 865 .

Dyer, Scott, Jeff Martin, and John Zulauf. "MotiGapture White Paper.” 1995.

Faloutsos, Petros, Michiel van de Panne, and Deérietrzopoulos. "The virtual stuntman:
dynamic characters with a repertoire of autonommoo$or skills." Computers and Graphics, 25
(6), 2001: 933-953.

Gleicher, Michael. "Retargetting motion to new awers."Proceedings of the 25th annual
conference on Computer graphics and interactivanépes July 1998: 33-42.

Kavan, Ladislav, Steven Collins, Jiri Zara, and da®'Sullivan. "Geometric Skinning with
Approximate Dual Quaternion BlendingACM Transaction on Graphic2008: 27(4).

Kovar, Lucas, and Michael Gleicher. "Flexible au&tim motion blending with registration
curves." Proceedings of the 2003 ACM SIGGRAPH/Eurographigspesium on Computer
animation 2003: 214 - 224.

Kovar, Lucas, Michael Gleicher, and Frédéric PhigiMotion graphs."ACM Transactions on
Graphics (21, 3)July 2002: 473-482.

Kovar, Lucas, Michael Gleicher, Hyun Joon Shin, @mtirew Jepsen. "Snap-together motion:
Assembling run-time AnimationsACM Transactions on Graphics 22,Bily 2003: 702-702.

Kwon, Taeso, and Sung Yong Shin. "Motion Modelimg On-Line Locomotion Synthesis."
Eurographics/ACM SIGGRAPH Symposium on Computenatinn 2005: 29-38.

Lau, Manfred, and James Kuffner. "Precomputed $edrees: Planning for interactive goal-
driven animation."ACM SIGGRAPH / Eurographics Symposium on Computénation 2006:
299-308.

Lee, Kang Hoon, Myung Geol Choi, and Jehee Lee.titigpatches: building blocks for virtual
environments annotated with motion datACM Transactions on Graphics 25(3)uly 2006:
898-906.

Naugle, Lisa Marie. "Motion Capture: Re-collectinige Dance."International Council of
Kinetography LabanJuly 1990.

68

Parent, RickComputer Animation: Algorithms and Techniquelmrgan Kaufmann; 1st edition,
2001.

Park, S. I., H. J. Shin, and S. Y. Shin. "On-lioedmotion generation based on motion blending."
Proceedings of ACM SIGGRAPH/Eurographics SymposinnComputer Animation 2002uly
2002.

Perlin, Ken. "Real time responsive animation witkergonality." IEEE Transactions on
Visualization and Computer Graphjdglarch 1995: 1(1):5-15.

Pozzo, Thierry, Alain Berthoz, and Loic Lefort. "&teKinematics during Complex Movements.
In The Head-Neck Sensory Motor SystBB8Y-590. Oxford University Press, 1992.

Raymond, Eric.LERP. 2003. http://www.catb.org/jargon/html/L/LERP.htrtdccessed 02 15,
2010).

Rose, Charles F., Peter-Pike J. Sloan, and Midha@&bhen. "Artist-Directed Inverse-Kinematics
Using Radial Basis Function Interpolatio@bmputer Graphics Forun2001: 20(3).

Rose, Charles, Michael F. Cohen, and Bobby Bodemei "Verbs and adverbs:
Multidimensional motion interpolation.TEEE Computer Graphics & ApplicationgOctober
1998: 18(5).

Sutton, Richard S., and Andrew G. Baf®einforcement Learning: An IntroductioBambridge:
MIT Press, 1998.

Treuille, Adrien, Yongjoon Lee, and Zoran PopovViNear-optimal character animation with
continuous control.,ACM Transactions on Graphics (TOGuly 2007: 26(3).

Wen, Gaojin, Zhaoqi Wang, Shihong Xia, and Dengning. "From Motion Capture Data to
Character Animation.'Proceedings of the ACM symposium on Virtual reafibftware and
technology 2006: 165 - 168 .

Wiley, Douglas J., and James K. Hahn. "Interpotatsynthesis of articulated figure motion."
IEEE Computer Graphics and Applicatigriidovember/December 1997: 39-45.

Witkin, Andrew, and Zoran Popovi "Motion warping." SIGGRAPH 95 Conference
Proceedings, Annual Conferendsugust 1995: 105-108.

Zhao, Jianmin, and Norman |. Badler. "Real Timeehse Kinematics with Joint Limits and
Spatial Constraints." January 9, 1989.

Zordan, Victor B., and Nicholas C. Van Der Hordtldpping optical motion capture data to
skeletal motion using a physical modeEurographics/SIGGRAPH Symposium on Computer
Animation 2003.

69

