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Abstract. Efficient multi-scale manifold reconstruction from point clouds
can be obtained through the Hierarchical Radial Basis Functions (HRBF)
network. An online training procedure for HRBF is here presented and
applied to real-time surface reconstruction during a 3D scanning session.
Results show that the online version compares well with the batch one.

1 Introduction

Online learning is a widely diffused learning modality in neural networks [1][2].
It is adopted in non stationary problems, where the statistical distribution of the
input data changes over time [3], and for real-time learning [4]. In this case, online
learning can be used to perform a reconstruction of the data manifold, while
data points are being sampled. This second domain, although less common, has
interesting applications. For instance, the real-time reconstruction of the surface
of an artifact, while it is being 3D scanned [5], would be of great help to drive the
sampling procedure where the details are missing [6]. Up to now, methods based
on splatting [7] have been mainly used to the scope. These methods display an
elliptical shape centered in the data points, whose color intensity changes with
the estimated normals of the surface, providing the perception of a continuous
surface without giving its analytical description.

We propose here to reconstruct the 3D surface, as the output of Hierarchical
Radial Basis Functions (HRBF) network [8], introducing a new on-line training
procedure, which can produce in real-time multi-scale reconstruction.

In Section 2 the batch version of the HRBF training procedure is reported,
while the proposed online version is reported in Section 3. The algorithm has
been implemented and challenged in real-time surface reconstruction problem.
Results are reported in Section 4 and discussed in Section 5.

2 The HRBF Model

Let us assume that the manifold can be described as a R
D → R function. In

this case, the input dataset is a height field: {(Pi, zi) | zi = S(Pi), Pi ∈ R
D, 1 ≤

i ≤ N}, and the manifold will assume the explicit analytical shape: z = S(P ).
The output of a HRBF network is obtained by adding the output of a pool
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of Radial Basis Functions (RBF) networks, organized as a stack of hierarchical
layers, each of which is characterized by a scale parameter, σl, with σl > σl + 1.
If we suppose that the units are equally spaced on a grid support and that a
normalized Gaussian function, G(·; σ) = 1√

πσ2
D exp

(

−|| · ||2/σ2
)

, is taken as

the basis function, the output of each layer can be written as a linear low-pass
filter:

S(P ) =
L

∑

l=1

al(P ; σl) =
L

∑

l=1

Ml
∑

k=1

wl, kG(||P − Pl, k||; σl) (1)

where Ml is the number of Gaussian units of the l-th layer. The G(·) are equally
spaced on a D-dimensional grid, which covers the input domain, that is the
{Pl, k}s are positioned in the grid crossings of the l-th layer. The side of the grid,
∆Pl, is a function of σl: the smaller is σl, the shorter is ∆Pl, the denser are the
Gaussians and the finer are the details which can be reconstructed.

The actual shape of the surface in (1) depends on a set of parameters: the
number, M =

∑

l Ml, the scale ensemble, {σl}, the position, {Pl, k}, and the
weights of the Gaussians, {wl, k}. Each RBF grid, l, realizes a reconstruction
of the surface up to a certain scale, determined by σl. Signal processing theory
allows to set ∆Pl as σl = 1.465 ∆Pl and to determine consequently M and the
{Pl, k} [8]. If only the l-th layer would be used, from the analogy between (1)
and linear filtering theory, the weights {wl, k} can be as: wl, k = S(Pl, k) · ∆PD

l

[8]. As the data set usually does not include the {S(Pl, k)} (or they could be
corrupted by noise), these values should be estimated.

A weighted average of the data points that lie in a neigborhood of Pl, k can
be used to estimate S(Pl, k). This neighborhood, called receptive field, A(Pl, k),
can be chosen as a spherical region, with the radius proportional to ∆Pl. A
possible weighting function, which is related to the Nadaraya-Watson estimator
and maximizes the conditional probability density when the noise is normally
distributed, zero mean [9], is:

S̃(Pl, k) =
nl, k

dl, k
=

∑

Pm∈A(Pl, k)

S(Pm) e−||Pl, k−Pm||2/σ2

l

∑

Pm∈A(Pl, k)

e−||Pl, k−Pm||2/σ2

l

(2)

Although a single layer with Gaussians of very small scale could reconstruct
the finest details, this would produce an unnecessary dense packing of units in
flat regions and an unreliable estimate of S̃(Pl, k) if too few points fall in A(Pl, k).
A better solution is to adaptively allocate the Gaussian units, with an adequate
scale in the different regions of the domain by adding and configuring one layer
at time, starting from the largest scale one. Each new layer will feature half the
scale of the previous one.

All the layers after the first one will be trained to approximate the residual,
that is the difference between the original data and the actual output produced
by the already configured layers. Hence, the residual, rl, is computed as:

rl(Pm) = rl−1(Pm) − al(Pm) (3)
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and it is used for estimating the weights of the l-th layer by substituting S(Pm)
in (2). r0(Pm) = zm is also assumed.

The quality of the approximation may be evaluated, for each Gaussian, Pl, k,
through an integral measure of the residuals inside A(Pl, k). This measure, which
represents the local residual error, R(Pl, k), is computed as the L1 norm of the
local residual as:

R(Pl, k) =
1

|A(Pl, k)|

∑

Pm∈A(Pl, k)

|rl−1(Pm)|. (4)

When R(Pl, k) is over a given threshold, ǫ, the Gaussian is inserted: Gaussians
at a smaller scales are inserted only in those regions where there are still some
missing details. The introduction of new layers ends when the residual error is
under threshold over the entire domain (uniform approximation).

As the Gaussian function decreases very fast to zero with the distance from its
center, computational time can be saved by allowing each Gaussian to contribute
to the residuals only for those points that belong to an appropriate neighborhood
of the Gaussian center, Pl, k, called influence region, I(Pl, k).

This batch HRBF training procedure exploits the knowledge of the entire
input dataset, and adopts local estimates to setup the network parameters with
a fast configuration which can be parallelized, but that has to wait that all the
data points are available.

3 Online Training Procedure

When the data set is not entirely known, but grows one point at a time, the
schema described in Section 2 cannot be applied. In fact, let us assume that a
HRBF has been already configured with a given data set, Sold and that a new
point, Pnew is sampled over the manifold.

In this case, the estimate in (2) becomes out of date for all the units (1, k)
such that Pnew ∈ A(P1,k), and has to be estimated with the new data set,
Sold ∪ Pnew. This modifies al inside the influence region of the updated units.
As a consequence, the residual for the points that belong to this region changes,
making out of date the weights for all those Gaussians of the second layer whose
receptive field has a non-empty intersection with this region. This causes a chain-
reaction that, at the end, may involve an important subset of the units of the
HRBF network. Moreover, the need for a new layer can also occur.

If the computational power cannot be sufficient to sustain the updating of
the network weights for every new input data, some approximations have to be
accepted to obtain real-time configuration.

The algorithm proposed here is based on updating the network parameters
every Q points (with Q << N). In the first phase, a few internal variables,
associated to those Gaussians whose receptive field includes the collected points,
are computed and the network weights are updated. In the second phase, the
residual error, (4), is computed, and new Gaussians are inserted where it is over
threshold. The two phases are iterated as far as data points are sampled.
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3.1 Data Structures

For every layer, l, input space is partitioned into squares, {Cl, k}, each centered
in a different Gaussian center, Pl, k. The points, which belong to Cl, k will be
closer to Pl, k than to any other Gaussian of the l-th layer. We therefore call Cl, k

the close neighborhood of the (l, k)-th Gaussian.

(a) (b)

Fig. 1. (a) The close neighborhood of each Gaussian (’o’) is partitioned into four close

neighborhoods of Gaussians of the next layer (’+’). (b) During the training, the parti-
tioning is iterated adaptively. For sake of clarity, the close neighborhood of the Gaus-
sians is depicted as a circle, having a diameter slightly smaller than the close neighbor-

hood side. The circles changes their color from black to white depending on the layer
(lower to higher) they belong to.

At the (l, k)-th Gaussian is associated a data structure containing: Pl, k, σl, k,
the points inside Cl, k, its weight, wl, k, the numerator, nl, k, and the denominator,
dl, k, of (2). As ∆Pl = 1

2∆Pl−1, the close neigborhood of each Gaussian (father)
of the l-th layer will be formed by the close neigborhood of the four corresponding
Gaussians (children) of the (l+1)-th layer. This relationship, depicted in Fig. 1a,
is used to organize in a quadtree the Gaussians data: from each father Gaussian,
it is easy to access to every children of the higher layers.

3.2 First Phase: Parameters Updating

When a new point, Pnew, is acquired, the parameters n1, k, d1, k, and, hence,
w1, k of the Gaussians of the first layer such that Pnew ∈ A(P1, k) are updated:

n1, k := n1, k + S(Pnew) · e−||P1, k−Pnew||2/σ2

1 (5)

d1, k := d1, k + e−||P1, k−Pnew||2/σ2

1 (6)

This procedure is iterated on the higher layers, considering for updating only
the children of the updated Gaussians. According to (3), in the higher layers,
rl(Pnew) is used instead of S(Pnew). The computation of the rl’s is limited to
Pnew: the contribution of the old points to nl, k and dl, k is not modified.

Overall, the processing of Pnew produces a modification of the network out-
put in those regions covered by Gaussians whose receptive field contains Pnew.
However, only a small subset of the network units is involved, for each Pnew.
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After updating the weights, Pnew is inserted into the data structure associated
to the Gaussian such that Pnew ∈ Cl, k.

3.3 Second phase: Splitting

When Q points are collected, the reconstructed manifold is examined in corre-
spondence of the receptive fields of those Gaussians which satisfies three condi-
tions: they have no children, at least a given number of sampled points, K, was
sampled inside its close neighborhood, and whose close neighborhood includes at
least one of the last Q points processed. For each of these Gaussians, the resid-
ual error is computed inside their receptive field and compared with the error
threshold, ǫ, as in (4). As for the updating phase, for each layer, the Gaussians
that contribute to the output computation are selected among the children of
the units considered in the previous layer. If the reconstruction is not satisfac-
tory for the Gaussian (l, k), four Gaussians, are inserted in the next layer, l +1,
and the points collected by the Gaussian (l, k) are distributed between the new
Gaussians. The parameters of the new Gaussians (nl, k, dl, k, and wl, k) are then
set using the points contained in their close neighborhood.

Not all the four children Gaussians always have data points inside their close

neighborhood. The weight of the Gaussians with an empty close neighborhood is
set to zero and they do not contribute to the output of the network.

3.4 Initialization

The only a priori information needed is the bounding box of the input space
to be sampled. It is used to set up the scale parameter of the first layer, which
will be composed by only one Gaussian. Let B the maximum side length of the
bounding box, σ1 will be set as σ1 = 1.465 B, and the center of the Gaussian,
P1, 1, will be positioned at the center of the bounding box: C1, 1, is defined as
the square centered in P1, 1, having a side length of B.

The parameters of the online training algorithm, ǫ, Q, and K, may depend
from the application, as they should be set proportional to the noise of the input
data and to the computational power of the processing system.

4 Results

We applied the neural model described in Section 3 to 3D scanning, where the
artifact’s surface in Fig. 2a is reconstructed in real-time. In particular the Au-
toscan system [5] is used here, which allows to sample for a longer time in those
regions where more details are concentrated. The acquired 3D input dataset is
reported in Fig. 2b: it is composed of 16,000 3D points. Acquisition was stopped
when the visual quality of the reconstructed surface (Fig. 2c-f) was judged suffi-
cient and no significant improvement in the model quality was observed adding
new points (Fig.2e and Fig.2f). Alternatively the procedure could be stopped
when no splitting occurs. In this example, ǫ = 0.8, Q = 100, and K = 9.
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(a)

(b)

(c) (d)

(e) (f)

Fig. 2. A typical data set used to test the online training procedure. From the mask
reported in (a), 16, 000 points, which constitute the input data set (b), are sampled
by the Autoscan system [5]. Notice the higher point density in the mouth and eyes
regions. Surface reconstruction as the acquisition proceeds. Panels (c), (d), (e), and (f)
show the reconstruction after 1000, 5000, 10000, and 16000 points have been sampled.
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Fig. 3. Performance indexes of the batch HRBF model with respect to the number
of processed points. The total number of Gaussians created and the number of those
that contribute to the reconstruction (i.e., those with an associated non-zero weight)
for online, (a), and batch, (c), HRBF. The error figures: RMSE, mean and standard
deviation of the absolute error for the online, (b), and batch, (d), HRBF.
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As can be seen in Fig. 3a the number of units increases with the number of
data points, improving the quality of the reconstructed model. However, compar-
ing the number of allocated Gaussians (Table 1), with the maximum number of
Gaussians for each layer, the reconstruction is obtained with a very sparse Gaus-
sians set (cf. Fig. 2b) as only 3, 774 units over 87, 381 are used. Only a small
portion of the Gaussians created are not used in the reconstruction. The re-
construction error decreases rapidly at the beginning, and continues to decrease
down to 1.22 mm, which is close to the measurement error with the adopted
setup, in accordance with the good visual quality of the reconstructed model.

Table 1. Performance Indexes and Parameters of Each Layer of the final HRBF Net-
work

online batch

l σl max #Gauss. #eff. Gauss. RMSE ǫmean ǫstd RMSE ǫmean ǫstd

#Gauss. [mm] [mm] [mm] [mm] [mm] [mm]

1 330 1 1 1 46.0 15.1 43.4 30.1 26.3 14.9

2 165 4 4 4 30.7 14.0 27.3 16.0 13.5 14.0

3 82.4 16 16 16 13.4 7.83 10.8 11.4 9.37 11.4

4 41.2 64 64 50 5.87 3.71 4.54 7.79 6.15 7.79

5 20.6 256 204 181 3.33 2.21 2.49 4.36 3.28 4.36

6 10.3 1024 672 632 2.23 1.63 1.53 2.51 1.82 2.51

7 5.15 4096 1744 1674 1.59 1.26 0.970 1.47 1.02 1.47

8 2.58 16384 1240 1206 1.49 1.22 0.868 0.980 0.672 0.977

9 1.29 65536 12 10 1.49 1.22 0.868 0.830 0.581 0.825

Table 1 reports the number of units of the final networks and the residuals of
each layer, and compares these data with those obtained from the batch version
of a HRBF network applied to the same dataset of Fig. 2. To the scope, every
Q = 1000 data points, a new batch HRBF network is created from scratch.
We constrained the maximum number of layers and the scale parameters of the
batch HRBF network to be equal to the corresponding parameters of the online
version. In the batch HRBF the value of K is set to 3: due to the complete
knowledge of the input dataset, few points are considered sufficient to estimate
the surface height. The final error of the two HRBF models was quite comparable,
1.22±0.868 mm versus 0.581±0.83 mm. However, as expected, the batch version
converged faster to a smaller error than the on-line version, as shown in Fig 3.
Moreover, the batch network grows faster.

5 Discussion

The manifold height in Pl, k (2) is estimated as the ratio between nl, k and dl, k,
which is obtained as a run-time sum of the values derived from each sampled
point. However, this value is equal to that in the batch model only for the first
layer as the residual is subject to changes as the points are sampled, and the
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contribution of the older points in the residual estimation may become unreliable
as the training proceeds. However, due to the non-orthogonality of their basis
functions, the HRBF model is able to compensate the error in one layer, with
the approximation achieved by the next layer [10].

The choice of a suitable value for K may be critical as it can lead to an early
splitting: if K is too small, the weight estimate of the new Gaussians may be
unreliable because the contribution of the first points will not be changed. This
effect could be mitigated by using an aging strategy for the estimated n and d.
On the other hand, the more the points are processed, the more the weights of
the lower layers become reliable. Hence, a late splitting involves a more accurated
reconstruction. However, using a too large value of K, the Gaussians are inserted
slowly, and the reconstruction details cannot became apparent.

Depending on the rate the example are available and by the computational
power of the system, idle time may exploited for re-processing old points. This
activity does not increase the input data points density and do not contribute to
splitting, but should compensate the bad estimate operated in the early stages.

6 Conclusion

An online training procedure for the HRBF model is here presented, illustrated
by an application to real-time surface reconstruction problem. The accuracy of
the online procedure results comparable with that of the batch versiont. This
online version can be used in all the domains of low dimensionality, where real-
time manifolds approximation is required.
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