
A* ALGORITHM

 Print this file

Ø Theory
Ø Heuristic
Ø Implementation
Ø Bibliography
Ø Pseudo-code
Ø Source code

THEORY

The A* algorithm is a path-finding algorithm whose
purpose is to find the shortest path from start to goal
(e.g. in the pac-man game start = ghost position
whereas goal = pac-man position).
The A* algorithm repeatedly examines the “most
promising” (lowest cost) unexplored location it has
seen so far. When a location is explored, the
algorithm ends when the location that is currently
exploring represents the goal; otherwise, the algorithm
makes note of all that location’s neighbors for further
exploration.
More precisely, A* keeps track of 2 lists of states,
called OPEN and CLOSE, for unexamined and
examined states, respectively. At the start, CLOSE is

empty, and OPEN has only the starting state. In each
iteration the algorithm removes the most promising
state from OPEN for examination. If the state is not
the goal, its neighbor locations are examined: if
they’re new, they’re placed in OPEN whereas if
they’re already in OPEN, information about those
locations are updated, if this is a cheaper path to
them. Locations in CLOSE are ignored if their cost is
higher than their previous one; otherwise they’re re-
opened (removed from CLOSE and pushed into
OPEN). If the OPEN list becomes empty before the
goal is found, it means there is no path to the goal
from the start location.
Each state X includes the following information to
determine the shortest path: the cost of the cheapest
path that has led to this state from the start (which
we’ll call costFromStart(X), in literature called g(X)); a
heuristic estimate costToGoal(X) (in literature called
h(X)) that is the cost of the remaining distance from X
to the goal; and finally the totalCost (also called f(X)),
defined as
CostFromStart + CostToGoal = totalCost
In addition each state keeps a pointer to its parent
state; when a goal state is found, these links can be
traced back to the start in order to build the path from
start to goal.

HEURISTIC

The idea behind the heuristic cost is to estimate the
true cost from a particular node to the goal. It’s

important to choose a good heuristic function. If you
always knew the real cost to the goal, A* will only
follow the best path and never expands anything else,
without wasting any search time going down the
wrong path, making it very fast. But if the heuristic
estimate happens to overestimate the real cost, the
heuristic becomes “inadmissible” and the algorithm
might not find the optimal path (and might find a
terrible path), but it may run faster. If the heuristic part
of the total cost is bigger than it should be, it distorts
the reasoning by which nodes on the OPEN list are
picked off. Since A* always picks the node with the
least total cost, this distortion promotes nodes closer
to the goal to be picked (since we don’t have weights
on edges).
The way to guarantee that the heuristic cost is never
overestimated is by calculating the Euclidean distance
between the node and the goal. When coding A* for
the first time, this is the best thing to do until it’s time
to optimize. Since the cost will never be more than
this distance, the optimal path will always be found.
The lower h(X), the more node A* expands making it
slower. If h(X) is too little, then we’ll continue to get
shortest path, but slow down the things. If h(X) is too
high, then we give up shortest path, but A* will run
faster.
Note: if you set the heuristic to return zero, you will
never overestimated the distance to goal, but what
you will get is a simple search of every node
generated at each step (Dijkstra’s alg).

A* algorithm will not only find a path, if there is one,
but it will find the shortest path (because it has the
heuristic presence).
An optimization respect Euclidean distance is
Manhattan distance following explained.
Heuristic for grid maps --> MANHATTAN DISTANCE

h(n) = D * (abs(n.x – goal.x) + abs(n.y – goal.y))
D = minimum cost for moving from one space to an
adjacent space

IMPLEMENTATION

As already said, A* makes use of 2 sets, OPEN and
CLOSE, in order to take care about nodes
examination, and so I do. The OPEN set contains
those nodes that are candidates for examining while
the CLOSE set those that have already been
examined. Initially, the OPEN set contains just one
element: the starting position and the CLOSE set is
empty. Each node also keeps a pointer to its parent
node so that we can determine how it was found.
There is a main loop that repeatedly pulls out the best
node n in OPEN (the node with the lowest f value) and
examines it. If n is the goal, then we’re done.
Otherwise, node n is removed from OPEN and added
to CLOSE. Then its neighbors n’ are examined. If n’
don’t belong neither to OPEN nor CLOSE then put n’
in OPEN; if n’ belong to OPEN and it has a lower cost,
then the value in the OPEN set must be adjusted. The
adjustment operation involves removing the node,

updating it and re-inserting the node into OPEN set. If
n’ belong to CLOSE and it has a lower cost, then pop
it from CLOSE e push it into OPEN (re-open it) with its
associated info.
I used two hashtable to implement the 2 sets OPEN
and CLOSE in order to prevent having to do a linear
search. The hash table has an hash function equals to
totalCost’s node.
The source code was implemented in J2ME.

Bibliography:
Bibliography references from the following sources:

 Amit’s thoughts on path-finding and A-star
http://theory.stanford.edu/~amitp/GamePr
ogramming

 A* algorithm tutorial (Justin Heyes-Jones)
http://www.geocities.com/jheyesJones/ast
ar.html

 Game Programming Gems – Mark A. DeLoura
– Charles River Media

 Mobile Phone Game Programming – Michael
Morrison - SAMS

PSEUDO-CODE

Set startNode
Set goalNode
Push startNode into OPEN
While OPEN !empty
{

 ExtractNode = pop the lowest cost node from
OPEN;
 if(ExtractNode == goalNode)
 {
 I’ve found a path;
 construct a path backward from
ExtractNode to StartNode;
 }
 else
 {
 examine ExtractNode neighborhood (up,
down, left, right position)
 for each neighbor
 {

§ if it’s an obstacle then don’t consider
this neighbor --> continue;

§ check if the node belongs to OPEN;
§ check if the node belongs to

CLOSE;
§ if the node already belongs to

OPEN or CLOSE and its cost is
higher than that inserted then
continue (don’t consider it);

§ if the node already belongs to
CLOSE and its cost is lower than
that inserted then re-open it (that is
remove it from CLOSE and insert it
into OPEN);

§ if the node already belongs to
OPEN and its cost is lower than that
inserted one then update it;

§ if the node doesn’t belong neither to
OPEN nor to CLOSE then insert it
into OPEN;

 }
 }

push ExtractNode in CLOSE
}

SOURCE CODE - Java programming language
(J2ME environment for mobile system)

You can test this program by downloading the Sun
Java Wireless Toolkit
(http://java.sun.com/j2me/download.html)

the game is still a work in progress so, unfortunately, it

presents some issues as well

HSCanvas.java

Node.java

Point.java

ScrambledMIDlet.java

Resources

